

Num. Schemes Multiphase Flows A. Gerschenfeld Introduction Search Applications

Conclusion

Development of Numerical Schemes for solving Multiphase Flows on General Meshes

Antoine Gerschenfeld, Yannick Gorsse

CEA - DM2S/STMF

14/06/2022

Introduction Motivation Equations Cartesian Challenges Search Applications Conclusion

Motivation

Development of the TrioMC code :

- two-phase sodium flows ($\rho_l/\rho_g\sim 2000$)
- based on the TRUST open-source platform developed at CEA (together with FLICA5, TrioCFD,...)

Introduction

non-regular meshes: hexahedra, prisms, tetrahedra...

Introduction

Equations

Num. Schemes Multiphase Flows A. Gerschenfeld

Introduction

Equations Cartesian Challenges Search Applications Conclusion Large kinematic and thermal disequilibria \rightarrow need the Euler-Euler system:

$$\begin{array}{ll} (\mathcal{M}_k) & \frac{\partial \alpha_k \rho_k}{\partial t} + \nabla . (\alpha_k \rho_k \vec{v}_k) &= \Gamma_k \\ (\mathcal{Q}_k) & \frac{\partial \alpha_k \rho_k \vec{v}_k}{\partial t} + \nabla . (\alpha_k \rho_k \vec{v}_k \otimes \vec{v}_k) &= -\alpha_k \nabla p + \vec{F}_{ki} + \Gamma_k \vec{v}_{ki} + \nabla . \alpha_k \mu_k (\nabla \vec{v}_k + {}^t \nabla \vec{v}_k) \\ (\mathcal{E}_k) & \frac{\partial \alpha_k \rho_k e_k}{\partial t} + \nabla . (\alpha_k \rho_k e_k \vec{v}_k) &= q_{ki} + \Gamma_k h_{ki} + \nabla . (\alpha_k \lambda_k \nabla T_k) \end{array}$$

- equations : mass/momentum/energy conservation per-phase $\rightarrow 3N$
- unknowns : α_k ($\sum \alpha_k = 1$), T_k , v_k , p (single-pressure) $\rightarrow 3N$
- equations of state: $\rho_k(p, T_k)$, $e_k(p, T_k)$
- transport properties: $\mu_k(p, Tk)$, $\lambda_k(p, Tk)$
- closure laws: Γ_k (phase change), F_{ki} (interfacial friction), q_{ki} (interfacial heat transfer)

An industrial solution method

Num. Schemes Multiphase Flows

A Gerschenfeld

Introduction

Equations Cartesian

Search

Applications Conclusion **1** spatial discretisation \rightarrow use MAC scheme (finite-volume) :

- scalar variables $(\alpha_k, p, T_k) \rightarrow \text{cell averages} : [p]_c = \frac{1}{|c|} \int_c p(x) dV$
- vector variables $(v_k) \rightarrow$ normal component averages: $[v_k]_f = \frac{1}{|f|} \int f \vec{v}_k d\vec{S}$
- **2** time discretisation \rightarrow semi-implicit:

$$\begin{aligned} (\mathcal{M}_k) & \frac{\alpha_k^+ \rho_k^+ - \alpha_k^- \rho_k^-}{\Delta t} + \nabla . (\alpha_k^- \rho_k^- \mathbf{v}_k^+) &= \mathbf{\Gamma}_k^+ \\ (\mathcal{Q}_k) & \alpha_k^- \rho_k^- \frac{\mathbf{v}_k^+ - \mathbf{v}_k^-}{\Delta t} + \nabla . (\alpha_k^- \rho_k^- \mathbf{v}_k^- \otimes \mathbf{v}_k^-) &= -\alpha_k^- \nabla \mathbf{p}^+ + \mathbf{F}_{ki}^+ + D[\mathbf{v}_k^-] + \dots \\ (\mathcal{E}_k) & \frac{\alpha_k^+ \rho_k^+ \mathbf{e}_k^+ - \alpha_k^- \rho_k^- \mathbf{e}_k^-}{\Delta t} + \nabla . (\alpha_k^- \rho_k^- \mathbf{e}_k^- \mathbf{v}_k^+) &= \mathbf{q}_{ki}^+ + \mathbf{q}_{kp}^+ + D[\mathbf{T}_k^-] + \dots \end{aligned}$$

- $p \rightarrow$ fully implicit
- $(Q_k) \rightarrow \text{all scalar variables explicit, only local terms } (F_{ki}) \text{ implicit}$
- $(\mathcal{M}_k), (\mathcal{E}_k) \rightarrow \text{local terms explicit, transport terms implicit}$

Num. Schemes Multiphase Flows

Introduction Motivation Equations Cartesian Challenges Search Applications Conclusion

An industrial solution method

- **1** semi-implicit: time discretisation \rightarrow why?
 - \rightarrow gives a block-diagonal Jacobian when solving Newton iterations:

$$\begin{pmatrix} \frac{\partial \mathcal{M}}{\partial \alpha} & \frac{\partial \mathcal{M}}{\partial T} & \frac{\partial \mathcal{M}}{\partial \vec{z}} \\ \frac{\partial \mathcal{E}}{\partial \alpha} & \frac{\partial \mathcal{E}}{\partial T} & \frac{\partial \mathcal{E}}{\partial \vec{z}} \\ 0 & 0 & \frac{\partial \mathcal{Q}}{\partial \vec{v}} \end{pmatrix} \cdot \begin{pmatrix} \delta \alpha \\ \delta T \\ \delta \vec{v} \end{pmatrix} = \begin{pmatrix} \delta \mathcal{M} \\ \delta \mathcal{E} \\ \delta \mathcal{Q} \end{pmatrix} - \begin{pmatrix} \frac{\partial \mathcal{M}}{\partial p} \\ \frac{\partial \mathcal{E}}{\partial p} \\ \frac{\partial \mathcal{Q}}{\partial p} \end{pmatrix} \cdot \delta p$$

Cartesian meshes

Solution method \rightarrow pressure reduction :

- inverse green block at each face \rightarrow gives $\Delta v = A_v \delta p + b_v$
- inverse blue block at each cell \rightarrow gives $\Delta \alpha = A_{\alpha} \delta p + b_{\alpha}$, $\Delta T = A_T \delta p + b_T$
- inject into $\sum \alpha_k = 1 \rightarrow$ gives linear system in δp
 - homogeneous → no scaling/precision problems
 - similar to Poisson equation \rightarrow multigrid preconditioners apply
 - avoids the (p, v) saddle-point!
- limited by material CFL, but can be extended to CFL> 1 using prediction steps

Challenges

Num. Schemes Multiphase Flows

Advantages/Disadvantages

- + all source terms (very strong) are implicit \rightarrow very robust
- + staggered discretization \rightarrow no low-Mach spurious modes
- + large reduction in final linear system \rightarrow low cost
- MAC scheme limited to Cartesian meshes
- pressure reduction requires block-diagonal structure
 → constraint on potential alternative discretizations
- \Rightarrow can we find an alternative scheme applicable to polyhedral meshes?

General recipe

Num. Schemes Multiphase Flows A. Gerschenfeld

Introduction Search

PolyMAC_P0 PolyMAC_P0F Applications Conclusion

Recipe

1 choose a numerical scheme for scalar diffusion $-\nabla (\Lambda \nabla u) = s$ with a finite-volume interpretation :

$$-\sum_{f\lor c} |f| F_{cf}([u]_C) = \int_c s dV \ , \sum_{c\lor f} F_{cf}([u]_C) = 0$$

2 use the fluxes F_{fc} to discretize:

- the thermal diffusion term $\nabla (\alpha_k \lambda_k \nabla T_k)$ in the energy equations;
- the pressure gradient term $-\alpha_k \nabla p$ in the momentum equations
- all other terms are easy, except for the momentum convection/diffusion terms → use tricks for these!

ntroduction

Search Recipe First scheme PolyMAC_P0 PolyMAC_P0P1n Applications

Conclusion

First scheme

Start from Hybrid Mixed Mimetic schemes (Eymard, Droniou, Bonnelle, da Veiga, Lipnikov, Manzini...)

- unconditionally stable on star-shaped meshes
- **•** first formulation \rightarrow mixed:

$$-\nabla .(\Lambda \nabla u) = f \Rightarrow \begin{cases} \vec{\varphi} = -\lambda \nabla u \\ \nabla . \vec{\varphi} = s \end{cases} \Rightarrow \begin{cases} M_2(\lambda)[\varphi]_f = [\varphi]_{\bar{f}} = |f|([u]_{am(f)} - [u]_{av(f)}) \\ \sum_{f \lor c} |f|[\varphi]_{cf} = |c|[s]_c \end{cases}$$

with $M_2(\lambda)$ a SPD matrix relating $[\varphi]_f$ to the dual face integral $[\varphi]_{\bar{f}} = \int_{am(f)}^{av(f)} \vec{\varphi}. d\vec{l}$

Introduction

Search Recipe First scheme PolyMAC_P0 PolyMAC_P0P1 Applications Conclusion

First scheme

• extended to Stokes by Bonnelle (then to Navier-Stokes by B. Koren et al.) using the identity $\Delta \vec{v} = -\nabla \wedge \vec{\omega}$ with $\vec{\omega} = \nabla \wedge \vec{v}$ the vorticity:

$$\begin{cases} \frac{\partial \vec{v}}{\partial t} = -\nabla p + \nu \Delta \vec{v} \\ \nabla . \vec{v} = 0 \end{cases} \Rightarrow \begin{cases} \frac{\partial \vec{v}}{\partial t} + \nabla \wedge \vec{\omega} + \nabla p &= 0 \\ -\frac{1}{\nu} \vec{\omega} + \nabla \wedge \vec{v} &= 0 \\ \nabla . \vec{v} &= 0 \end{cases} \\ \Rightarrow \begin{cases} M_2 \partial_t [v]_F + M_2 R_F[\omega]_E + G[p]_C &= 0 \\ -M_1(\nu^{-1})[\omega]_A + R_A M_2[v]_F &= 0 \\ D[v]_F &= 0 \end{cases}$$

with M_1 another matrix relating edge dual to edge integrals of $\vec{\omega}$ and R_A , R_F discrete curl operators around faces and edges:

CEA | 14/06/2022 | 9 / 25

First scheme

Introduction

Num. Schemes

Multiphase Flows A. Gerschenfeld

Search Recipe

> First scheme PolyMAC_P0

Applications Conclusion

$\begin{cases} M_2 \partial_t [v]_F + M_2 R_F[\omega]_E + G[p]_C = 0\\ -M_1(\nu^{-1})[\omega]_A + R_A M_2[v]_F = 0\\ D[v]_F = 0 \end{cases}$

can this be solved by pressure reduction?

- **I** compute $[\omega^{-}]_{E}$ from $[v^{-}]_{F}$ by solving $M_{1}(\nu^{-1})[\omega]_{A} = R_{A}M_{2}[v^{-}]_{F} = 0$
 - not block-diagonal
 - but only needed once per time-step
- 2 compute $[v^+]_F$ from $M_2 \frac{[v^+]_F [v^-]_F}{\Delta t} + M_2 R_F [\omega^-]_F + G[p^+]_C = 0$ \rightarrow not possible locally! Instead, must solve the saddle-point

$$\begin{pmatrix} \frac{M_2}{\Delta t} & G\\ -D & 0 \end{pmatrix} \begin{pmatrix} [v^+]_F\\ [p^+]_C \end{pmatrix} = \begin{pmatrix} \frac{M_2}{\Delta t} [v^-]_F - M_2 R_F[\omega^-]_E\\ 0 \end{pmatrix}$$

incompressible flow : constant system \rightarrow can use direct solver

• compressible/multiphase flow: variable matrix \rightarrow must use iterative solver! CFA | 14/06/2022 | 10 / 25

A. Gerschenfeld

Num. Schemes Multiphase Flows

Search Recipe First scheme PolyMAC_P0 PolyMAC_P0P Applications

Conclusion

First scheme: conclusion

- many desirable properties: stability, symmetry (for Stokes),...
- but two incompatibilities with pressure reduction:
 - auxiliary variables to solve diffusion (vorticities $[\omega]_E$)
 - \rightarrow inconvenient, but manageable
 - mass matrix in momentum equation
 - \rightarrow forces a saddle-point system \rightarrow pressure reduction impossible
- \Rightarrow the search continues!

Introduction

Search Recipe First scheme PolyMAC_P0

Applications

Conclusion

Second scheme : avoiding pitfalls

■ start with a classical cel-centered diffusion scheme → MPFA-O (Aavatsmark)

- start from $[u]_c$ (value at cell)
- for each (face, vertex) pair (f, v), introduce a variable u_{fv}
- in each cell, $(u_c, u_{f_1v}, u_{f_2v})$ define a gradient $[\nabla u]_{cv}$
- at each face around v, impose $\vec{n}_f \cdot \Lambda[\nabla u]_{cv} = \vec{n}_f \cdot [\nabla u]_{c'v}$
- solve the local linear system on the (u_{fv}) around each vertex v \rightarrow flux $F_f = -|f|\vec{n}_f.\Lambda\nabla u = F_f([u]_C)!$
- conditionally stable (but rather robust in practice)

Second scheme: discretization

Num. Schemes Multiphase Flows

Introduction

PolyMAC_P0

Applications

Conclusion

Search Recipe

- **mass equation** $(\mathcal{M}_k) \rightarrow \text{discretized in each cell } c$:
 - convective term : $|c|[\nabla .\alpha_k \rho_k \vec{v}_k]_c = \sum_{f \lor c} |f|[\alpha_k \rho_k]_f[v_k]_{cf}$ with $[\alpha_k \rho_k]_f$ chosen by a convection scheme (usually upwind)
 - other terms: local
- **mass equation** $(\mathcal{M}_k) \rightarrow \text{discretized in each cell } c$:
 - convective term : same as in mass equation
 - diffusive term $[\nabla .(\alpha_k \lambda_k \nabla T_k)]_c$: computed using MPFA-O fluxes
 - other terms: local
- **momentum equation** $(Q_k) \rightarrow \text{discretized at faces (normal components):}$
 - **pressure gradient** $-\alpha_k \nabla p$: computed using MPFA-O fluxes
 - convective/diffusive terms: see next slide
 - all other terms: local

Introduction

Search Recipe First scheme PolyMAC_P0 PolyMAC_P0P1nc Applications Conclusion

Second scheme: discretization

How to discretize the momentum convection/diffusion terms without altering the linear system structure?

- ightarrow introduce cell velocities $[ec{v}]_c$:
 - **1** interpolate $[\vec{v}]_c$ from $[v]_f$:
 - at 1^{st} order \rightarrow using "magical identity":

$$[\vec{v}_c] = rac{1}{|c|} \sum_{f \lor c} |f| [v]_{cf} (\vec{x}_f - \vec{x}_c)$$

- **a** at 2^{nd} order (needed for diffusion) \rightarrow possible with more neighbours
- **2** compute momentum convection/diffusion at cells:
 - $[\nabla . (\alpha_k \rho_k \vec{v}_k \otimes \vec{v}_k)]_c$ using a convection scheme on the $[\vec{v}]_c$
 - $[\nabla .\alpha_k \mu_k (\nabla \vec{v}_k + t \nabla \vec{v}_k)]_c$ using MPFA-O fluxes
- **3** interpolate the needed face values by combining cell values :

$$[\nabla . (\alpha_k \rho_k \vec{v}_k \otimes \vec{v}_k)]_f = \mu \vec{n}_f . [\nabla . (\alpha_k \rho_k \vec{v}_k \otimes \vec{v}_k)]_{\textit{am}(f)} + (1-\mu) \vec{n}_f . [\nabla . (\alpha_k \rho_k \vec{v}_k \otimes \vec{v}_k)]_{\textit{av}(f)}$$

CEA | 14/06/2022 | 14 / 25

Num. Schemes Multiphase Flows

- Introduction
- Search
- Recipe
- PolyMAC_P0
- PolyMAC_P0P1nc
- Applications
- Conclusion

Second scheme: properties

no auxiliary variables!

(except when using a prediction step \rightarrow linear system in $([v]_f, [\vec{v}]_c)$

- no spurious oscillations despite using "collocated" momentum operators
 - ightarrow the primary velocities are still the staggered $[v]_F$
- diagonal mass matrix in the momentum equations
 - \rightarrow pressure reduction possible

Drawbacks:

- conditional stability
 - \rightarrow alleviated by sacrificing precision for stability on deformed meshes
- high numerical cost on tetrahedra
 - ightarrow stencil in each cell extends to cells sharing one of its vertices (often \gtrsim 100)

 \Rightarrow scheme implemented as PolyMAC_P0 But can the first scheme be fixed?

Num. Schemes Multiphase Flows A. Gerschenfeld

ntroduction

Search Recipe First scheme PolyMAC_P0 PolyMAC_P0P1nc Applications Conclusion Third scheme: back to HMM

HMM schemes have a second formulation (hybrid form) using face scalar unknowns instead of fluxes to solve $-\nabla .\Lambda \nabla u = s$

 \rightarrow using a SPD matrix $W_2^c(\Lambda)$ in each cell:

$$-[\Lambda \nabla u]_{cf} = \sum_{f' \lor c} W^c_{2ff'}(\Lambda)(u_{f'} - u_c)$$

 \rightarrow the u_f are determined by the equations $[\Lambda \nabla u]_{am(f)f} + [\Lambda \nabla u]_{av(f)f} = 0$, leading to the (SPD) linear system

$$\begin{bmatrix} -\sum_{f \lor c} |f| [\Lambda \nabla u]_{cf} = |c| [s]_c & \forall c \\ [\Lambda \nabla u]_{am(f)f} + [\Lambda \nabla u]_{av(f)f} = 0 & \forall f \end{bmatrix}$$

Third scheme: discretization

Num. Schemes Multiphase Flows A. Gerschenfeld

Introduction Search

PolyMAC_P0 PolyMAC_P0P1nc

Applications

Conclusion

Recipe

- mass equation (\mathcal{M}_k) : as usual
- energy equation (𝔅_k) : introduce face temperatures [𝔽_k]_f to compute the diffusive term [∇.(α_kλ_k∇𝔽_k)]_c
- **momentum equation** $(Q_k) \rightarrow$ integrated at faces (normal components)
 - mass matrix is diagonal!
 - pressure gradient : introduce [p]_f to compute [∇p]_f (system is closed using [∇p]_{cf} + [∇p]_{c'f} = 0)
 - convection term: computed at cells (using 1st-order interpolation), then projected
 - momentum difusion: computed using vorticity variables using the identity $\nabla \wedge (\mu \nabla \wedge \vec{v}) = \nabla . (\mu^t \nabla \vec{v}) \nabla . (\mu \nabla \vec{v})$

Third scheme : properties

- stable on star-shaped meshes \rightarrow like the original HMM scheme
- several auxiliary variables:
 - face temperatures $[T_k]_f$, vorticities $[\omega_k]_e \rightarrow \text{computed once per time step}$
 - face pressures $[p]_f \rightarrow$ included in the reduced pressure system
- but pressure reduction is possible!

Main uses:

Num. Schemes Multiphase Flows A. Gerschenfeld

Introduction Search

PolyMAC_P0 PolyMAC_P0P1nc

Applications

Conclusion

Recipe

- very deformed meshes (but PolyMAC_P0 is hard to beat in practice...)
- meshes consisting mainly in tetrahedra

implemented as PolyMAC_P0P1nc (or "PolyMAC")

Num. Schemes Multiphase Flows

A. Gerschenfeld

Introduction Search Applications Sodium NS 3D

Heat exchanger Outlet Flow mixe P 512 Spacer grid Pump tank Wrapper tube Free surface numn Cooling loop Test section Bypass (604) (601) 80 (P) 602 Main loon

Applications

Two-phase sodium : KNS-37 L22 test

- the reference for sodium boiling!
- 37 pin, electrically-heated reactor element (~ 700 KW)
- loss of flow-type transient:
 - t = 0: pump trip ($t_{1/2} \sim 2.5$ s)
 - t = 6.3s : local boiling (does not obstruct flow)
 - t = 8.5s : generalized boiling
 - \rightarrow blockage : flow redistribution
 - *t* = 9.45s : dry-out
 - \rightarrow electrical power trip

Applications

A. Gerschenfeld

- Introduction
- Search
- Applications Sodium NS 3D
- Conclusion

KNS-37 L22 : overall behavior, boiling zone

Applications

Num. Schemes Multiphase Flows A. Gerschenfeld

Introduction Search Application Sodium

Conclusion

KNS-37 L22: flowrate, pressure

Introduction Search Applications Sodium

Conclusion

KNS-37 L22: pin temperature at 2/3rds + top of heated length

Applications

Introduction Search Applications

NS 3D

Conclusio

Applications

Navier-Stokes 3D benchmark

- proposed by M. Ndjinga for this symposium
- 3D manufactured solution (Poiseuille-like) for N-S:

$$ec{v}_{ana} = x(1-x)y(1-y)ec{e}_z$$

- **transient simulation** from $\vec{u} = 0$ at $CFL = 10^3$: need either
 - full (\vec{v}, p) system \rightarrow saddle-ppint:

direct solvers (used here), augmented Lagrangian...

prediction-correction

 $\begin{array}{l} \textbf{1} \quad \text{prediction} \rightarrow \vec{v}^* \text{ with } \nabla.\vec{v}^* \neq 0: \\ \text{PolyMAC_P0}: \quad \text{system in } ([v^*]_f, [\vec{v}^*]_c) \\ \text{PolyMAC_P0P1nc}: \quad \text{system in } ([v^*]_f, [\omega^*]_e) \\ \rightarrow \quad \text{saddle-point!} \\ \text{but still solvable by iterative solvers (BCGS here)} \\ \textbf{2} \quad \text{correction} \rightarrow \text{elliptic system on } p^+ \text{ to obtain } \nabla.\vec{v}^+:0: \\ \text{PolyMAC_P0}: \quad \text{system in } ([p^+]_c) \\ \text{PolyMAC_P0P1nc}: \quad \text{system in } ([p^+]_c, [p^+]_f) \end{array}$

Applications

Introduction Search Applications

Sodium NS 3D

Conclusion

Navier-Stokes 3D benchmark

Performance results (Apple M1, single-core):

	Poly_P0		Poly_P0P1nc	
	Full	Pred/corr	Full	Pred/corr
Hexa_4	52	0.55	64	0.65
Hexa_5	-	7.0	-	9.8
Tetra_3	1341	62.6	558	3.27
Tetra_6	-	827	-	118

• comparable convergence in time for both schemes \rightarrow 10-11 time steps at CFL=1000 for both

- P0 faster on hexa, P0P1nc faster on tetra
- solving the full system via direct solvers does not scale...

Conclusion

- Num. Schemes Multiphase Flows A. Gerschenfeld
- Introduction Search Applications Conclusion

- search for numerical schemes with "MAC-like" properties for multiphase flows
- strong constraints to allow the same pressure-reduction method as on Cartesian meshes:
 - **block-diagonal structure in mass/energy equations** \rightarrow easy
 - but also in momentum equations \rightarrow harder!
- two schemes implemented:
 - PolyMAC_P0 : based on MPFA-O
 - PolyMAC_P0P1nc : based on HMM
- when using CFL> 1, we need a direct solver to solve the (v, p) system → prediction/correction is still the best option (some schemes lead to a saddle-point in the correction step → KO) → this could be improved in the future!