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Introduction

Motivation
Development of the TrioMC code :

two-phase sodium flows (ρl/ρg ∼ 2000)

based on the TRUST open-source platform developed at CEA
(together with FLICA5, TrioCFD,...)

non-regular meshes: hexahedra, prisms, tetrahedra...
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Equations
Large kinematic and thermal disequilibria → need the Euler-Euler system:

(Mk)
∂αkρk

∂t +∇.(αkρk#vk) = Γk
(Qk)

∂αkρk$vk
∂t +∇.(αkρk#vk ⊗ #vk) = −αk∇p + #Fki + Γk#vki +∇.αkµk(∇#vk +

t ∇#vk)

(Ek) ∂αkρkek
∂t +∇.(αkρkek#vk) = qki + Γkhki +∇.(αkλk∇Tk)

equations : mass/momentum/energy conservation per-phase → 3N

unknowns : αk (
!

αk = 1), Tk , vk , p (single-pressure) → 3N

equations of state: ρk(p,Tk), ek(p,Tk)

transport properties: µk(p,Tk), λk(p,Tk)

closure laws: Γk (phase change), Fki (interfacial friction), qki (interfacial heat transfer)
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Cartesian meshes

An industrial solution method

1 spatial discretisation → use MAC scheme (finite-volume) :

scalar variables (αk , p, Tk) → cell averages : [p]c = 1
|c|

!
c
p(x)dV

vector variables (vk) → normal component averages: [vk ]f =
1
|f |

!
f "vk ḋ"S

2 time discretisation → semi-implicit:

(Mk)
α+

k ρ
+
k −α−

k ρ−
k

∆t +∇.(α−
k ρ

−
k v

+
k ) = Γ+k

(Qk) α−
k ρ

−
k

v+
k −v−

k

∆t +∇.(α−
k ρ

−
k v

−
k ⊗ v−

k ) = −α−
k ∇p+ + F+

ki + D[v−
k ] + ...

(Ek)
α+

k ρ
+
k e

+
k −α−

k ρ−
k e−k

∆t +∇.(α−
k ρ

−
k e

−
k v+

k ) = q+ki + q+kp + D[T−
k ] + ...

p → fully implicit
(Qk) → all scalar variables explicit, only local terms (Fki ) implicit
(Mk), (Ek) → local terms explicit, transport terms implicit
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Cartesian meshes
An industrial solution method

1 semi-implicit: time discretisation → why?
→ gives a block-diagonal Jacobian when solving Newton iterations:

"

#
∂M
∂α

∂M
∂T

∂M
∂$v

∂E
∂α

∂E
∂T

∂E
∂$v

0 0 ∂Q
∂$v

$

% .

"

#
δα
δT
δ#v

$

% =

"

#
δM
δE
δQ

$

%−

"

&#

∂M
∂p
∂E
∂p
∂Q
∂p

$

'% .δp

Solution method → pressure reduction :

inverse green block at each face → gives ∆v = Avδp + bv
inverse blue block at each cell → gives ∆α = Aαδp + bα, ∆T = AT δp + bT
inject into

"
αk = 1 → gives linear system in δp

homogeneous → no scaling/precision problems
similar to Poisson equation → multigrid preconditioners apply
avoids the (p, v) saddle-point!

limited by material CFL, but can be extended to CFL> 1 using prediction steps
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Challenges

Advantages/Disadvantages

+ all source terms (very strong) are implicit → very robust

+ staggered discretization → no low-Mach spurious modes

+ large reduction in final linear system → low cost

− MAC scheme limited to Cartesian meshes

− pressure reduction requires block-diagonal structure
→ constraint on potential alternative discretizations

⇒ can we find an alternative scheme applicable to polyhedral meshes?

CEA | 14/06/2022 | 6 / 25



Num. Schemes
Multiphase Flows

A. Gerschenfeld

Introduction

Search

Recipe

First scheme

PolyMAC P0

PolyMAC P0P1nc

Applications

Conclusion

Search

General recipe

1 choose a numerical scheme for scalar diffusion −∇.(Λ∇u) = s with a finite-volume
interpretation :

−
(

f∨c

|f |Fcf ([u]C ) =

)

c

sdV ,
(

c∨f

Fcf ([u]C ) = 0

2 use the fluxes Ffc to discretize:

the thermal diffusion term ∇.(αkλk∇Tk) in the energy equations;
the pressure gradient term −αk∇p in the momentum equtions

3 all other terms are easy, except for the momentum convection/diffusion terms
→ use tricks for these!
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First scheme
Start from Hybrid Mixed Mimetic schemes (Eymard, Droniou, Bonnelle, da Veiga,
Lipnikov, Manzini...)

unconditionally stable on star-shaped meshes

first formulation → mixed:

−∇.(Λ∇u) = f ⇒
*

#ϕ = −λ∇u
∇.#ϕ = s

⇒
*

M2(λ)[ϕ]f = [ϕ]f̄ = |f |([u]am(f ) − [u]av(f ))!
f∨c |f |[ϕ]cf = |c|[s]c

with M2(λ) a SPD matrix relating [ϕ]f to the dual face integral [ϕ]f̄ =
+ av(f )

am(f )
#ϕ.d#l
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First scheme

extended to Stokes by Bonnelle (then to Navier-Stokes by B. Koren et al.) using the
identity ∆#v = −∇ ∧ #ω with #ω = ∇∧ #v the vorticity:

*
∂$v
∂t = −∇p + ν∆#v
∇.#v = 0

⇒

,
-

.

∂$v
∂t +∇∧ #ω +∇p = #0

− 1
ν #ω +∇∧ #v = #0

∇.#v = 0

⇒

,
-

.

M2∂t [v ]F +M2RF [ω]E + G [p]C = 0
−M1(ν

−1)[ω]A + RAM2[v ]F = 0
D[v ]F = 0

with M1 another matrix relating edge dual to edge integrals of #ω and RA, RF discrete
curl operators around faces and edges:
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First scheme

,
-

.

M2∂t [v ]F +M2RF [ω]E + G [p]C = 0
−M1(ν

−1)[ω]A + RAM2[v ]F = 0
D[v ]F = 0

can this be solved by pressure reduction?

1 compute [ω−]E from [v−]F by solving M1(ν
−1)[ω]A = RAM2[v

−]F = 0

not block-diagonal
but only needed once per time-step

2 compute [v+]F from M2
[v+]F−[v−]F

∆t +M2RF [ω
−]E + G [p+]C = 0

→ not possible locally! Instead, must solve the saddle-point

/
M2

∆t G
−D 0

0/
[v+]F
[p+]C

0
=

/
M2

∆t [v
−]F −M2RF [ω

−]E
0

0

incompressible flow : constant system → can use direct solver
compressible/multiphase flow: variable matrix → must use iterative solver!
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First scheme: conclusion

many desirable properties: stability, symmetry (for Stokes),...

but two incompatibilities with pressure reduction:

auxiliary variables to solve diffusion (vorticities [ω]E )
→ inconvenient, but manageable
mass matrix in momentum equation
→ forces a saddle-point system → pressure reduction impossible

⇒ the search continues!
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Second scheme : avoiding pitfalls

start with a classical cel-centered diffusion scheme
→ MPFA-O (Aavatsmark)

x1 x2

x4x3

x1 x2

x4x3

•
•

•
•

x̄1

x̄4
x̄2x̄3

start from [u]c (value at cell)
for each (face, vertex) pair (f , v), introduce a variable ufv
in each cell, (uc , uf1v , uf2v ) define a gradient [∇u]cv
at each face around v , impose "nf .Λ[∇u]cv = "nf .[∇u]c′v
solve the local linear system on the (ufv ) around each vertex v
→ flux Ff = −|f |"nf .Λ∇u = Ff ([u]C )!

conditionally stable (but rather robust in practice)
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Second scheme: discretization

mass equation (Mk) → discretized in each cell c :

convective term : |c|[∇.αkρk"vk ]c =
"

f∨c |f |[αkρk ]f [vk ]cf
with [αkρk ]f chosen by a convection scheme (usually upwind)
other terms: local

mass equation (Mk) → discretized in each cell c :

convective term : same as in mass equation
diffusive term [∇.(αkλk∇Tk)]c : computed using MPFA-O fluxes
other terms: local

momentum equation (Qk) → discretized at faces (normal components):

pressure gradient −αk∇p : computed using MPFA-O fluxes
convective/diffusive terms: see next slide
all other terms: local

CEA | 14/06/2022 | 13 / 25



Num. Schemes
Multiphase Flows

A. Gerschenfeld

Introduction

Search

Recipe

First scheme

PolyMAC P0

PolyMAC P0P1nc

Applications

Conclusion

Search
Second scheme: discretization
How to discretize the momentum convection/diffusion terms without altering the linear
system structure?
→ introduce cell velocities [#v ]c :

1 interpolate [#v ]c from [v ]f :

at 1st order → using“magical identity”:

["vc ] =
1

|c|
#

f∨c

|f |[v ]cf ("xf − "xc)

at 2nd order (needed for diffusion) → possible with more neighbours

2 compute momentum convection/diffusion at cells:

[∇.(αkρk"vk ⊗ "vk)]c using a convection scheme on the ["v ]c
[∇.αkµk(∇"vk +

t ∇"vk)]c using MPFA-O fluxes

3 interpolate the needed face values by combining cell values :

[∇.(αkρk#vk ⊗ #vk)]f = µ#nf .[∇.(αkρk#vk ⊗ #vk)]am(f ) + (1− µ)#nf .[∇.(αkρk#vk ⊗ #vk)]av(f )
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Second scheme: properties

no auxiliary variables!
(except when using a prediction step → linear system in ([v ]f , [#v ]c)

no spurious oscillations despite using“collocated”momentum operators
→ the primary velocities are still the staggered [v ]F

diagonal mass matrix in the momentum equations
→ pressure reduction possible

Drawbacks:

conditional stability
→ alleviated by sacrificing precision for stability on deformed meshes

high numerical cost on tetrahedra
→ stencil in each cell extends to cells sharing one of its vertices (often ≳ 100)

⇒ scheme implemented as PolyMAC P0
But can the first scheme be fixed?
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Third scheme: back to HMM
HMM schemes have a second formulation (hybrid form) using face scalar unknowns instead
of fluxes to solve −∇.Λ∇u = s
→ using a SPD matrix W c

2 (Λ) in each cell:

−[Λ∇u]cf =
(

f ′∨c

W c
2ff ′(Λ)(uf ′ − uc)

→ the uf are determined by the equations [Λ∇u]am(f )f + [Λ∇u]av(f )f = 0, leading to the
(SPD) linear system *

−
!

f∨c |f |[Λ∇u]cf = |c|[s]c ∀c
[Λ∇u]am(f )f + [Λ∇u]av(f )f = 0 ∀f

CEA | 14/06/2022 | 16 / 25



Num. Schemes
Multiphase Flows

A. Gerschenfeld

Introduction

Search

Recipe

First scheme

PolyMAC P0

PolyMAC P0P1nc

Applications

Conclusion

Search

Third scheme: discretization

mass equation (Mk) : as usual

energy equation (Ek) : introduce face temperatures [Tk ]f to compute the diffusive
term [∇.(αkλk∇Tk)]c
momentum equation (Qk) → integrated at faces (normal components)

mass matrix is diagonal!
pressure gradient : introduce [p]f to compute [∇p]f
(system is closed using [∇p]cf + [∇p]c′f = 0)
convection term: computed at cells (using 1st-order interpolation), then projected
momentum difusion: computed using vorticity variables
using the identity ∇∧ (µ∇∧ "v) = ∇.(µt∇"v)−∇.(µ∇"v)
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Third scheme : properties

stable on star-shaped meshes → like the original HMM scheme

several auxiliary variables:

face temperatures [Tk ]f , vorticities [ωk ]e → computed once per time step
face pressures [p]f → included in the reduced pressure system

but pressure reduction is possible!

Main uses:

very deformed meshes (but PolyMAC P0 is hard to beat in practice...)

meshes consisting mainly in tetrahedra

implemented as PolyMAC P0P1nc (or“PolyMAC”)
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Two-phase sodium : KNS-37 L22 test

the reference for sodium boiling!

37 pin, electrically-heated reactor element
(∼ 700 KW)

loss of flow-type transient:

t = 0 : pump trip (t1/2 ∼ 2.5s)
t = 6.3s : local boiling
(does not obstruct flow)
t = 8.5s : generalized boiling
→ blockage : flow redistribution
t = 9.45s : dry-out
→ electrical power trip
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KNS-37 L22 : overall behavior, boiling zone
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KNS-37 L22: flowrate, pressure
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KNS-37 L22: pin temperature at 2/3rds + top of heated length
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Navier-Stokes 3D benchmark

proposed by M. Ndjinga for this symposium

3D manufactured solution (Poiseuille-like) for N-S:

#vana = x(1− x)y(1− y)#ez

transient simulation from #u = 0 at CFL = 103: need either

full ("v , p) system → saddle-ppint:
direct solvers (used here), augmented Lagrangian...
prediction-correction

1 prediction → !v∗ with ∇.!v∗ ∕= 0:
PolyMAC P0 : system in ([v∗]f , [!v

∗]c )
PolyMAC P0P1nc : system in ([v∗]f , [ω

∗]e)
system in → saddle-point!
but still solvable by iterative solvers (BCGS here)

2 correction → elliptic system on p+ to obtain ∇.!v+ : 0 :
PolyMAC P0 : system in ([p+]c )
PolyMAC P0P1nc : system in ([p+]c , [p+]f )
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Navier-Stokes 3D benchmark
Performance results (Apple M1, single-core):

Poly P0 Poly P0P1nc
Full Pred/corr Full Pred/corr

Hexa 4 52 0.55 64 0.65
Hexa 5 - 7.0 - 9.8
Tetra 3 1341 62.6 558 3.27
Tetra 6 - 827 - 118

comparable convergence in time for both schemes
→ 10-11 time steps at CFL=1000 for both

P0 faster on hexa, P0P1nc faster on tetra

solving the full system via direct solvers does not scale...
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search for numerical schemes with“MAC-like”properties for multiphase flows

strong constraints to allow the same pressure-reduction method as on Cartesian
meshes:

block-diagonal structure in mass/energy equations → easy
but also in momentum equations → harder!

two schemes implemented:

PolyMAC P0 : based on MPFA-O
PolyMAC P0P1nc : based on HMM

when using CFL> 1, we need a direct solver to solve the (#v , p) system
→ prediction/correction is still the best option
(some schemes lead to a saddle-point in the correction step → KO)
→ this could be improved in the future!
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