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r's Motivation
| Development of the TrioMC code :

m two-phase sodium flows (p;/pg ~ 2000)

m based on the TRUST open-source platform developed at CEA
(together with FLICAS, TrioCFD,...)

m non-regular meshes: hexahedra, prisms, tetrahedra...
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Equations
Large kinematic and thermal disequilibria — need the Euler-Euler system:

(M) Goupr 7 (ckprik) =Tk .
(9«) aakgm + V (kpVk @ V) = —axVp+ Fii + Tivig + Voo (Ve +F Vi)
(&) FHLE 1 V. (akprexvi) = qui + Tichii + V.(ak AV Ti)

equations : mass/momentum/energy conservation per-phase — 3N
unknowns : ayx (D" ax =1), Tk, vk, p (single-pressure) — 3N
equations of state: pk(p, Tk), ex(p, Tk)

transport properties: uk(p, Tk), Ac(p, Tk)

closure laws: T, (phase change), Fy; (interfacial friction), qi; (interfacial heat transfer)
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Cartesian meshes

An industrial solution method

spatial discretisation — use MAC scheme (finite-volume) :
m scalar variables (ak, p, Tk) — cell averages : [p]c = |—i‘ [ p(x)dVv

m vector variables (vx) — normal component averages: [vk]f = |17| J fvdS

time discretisation — semi-implicit:

ol pl—a; pr _
(M) ﬂitkpk + Ve o) =Ty
(Q) 0 pi Sate + V(o Pk v @ V) = —agVpt 4 A+ D[]+

o plel—a; pre” - _
(k) M—&—V.(ak Pr e Vi) zq,ﬁ-l-q,fp—i—D[Tk 1+ ...

At

m p — fully implicit
m (Qk) — all scalar variables explicit, only local terms (Fg;) implicit
m (M), (k) — local terms explicit, transport terms implicit
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Cartesian meshes

An industrial solution method

semi-implicit: time discretisation — why?
— gives a block-diagonal Jacobian when solving Newton iterations:

M  OM M OM

oM g oM oo oM

oo B s | = o |- £ s
9a T oV = dp -0p
0 0 <2 ov 5Q 99

<l
Q|
)

Solution method — pressure reduction :

m inverse green block at each face — gives Av = A,0p + by
m inverse blue block at each cell — gives Aa = A,0p + ba, AT = A1dp + bt
m inject into > ax = 1 — gives linear system in dp

m homogeneous — no scaling/precision problems

m similar to Poisson equation — multigrid preconditioners apply

® avoids the (p, v) saddle-point!

m limited by material CFL, but can be extended to CFL> 1 using prediction steps
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Challenges

Advantages/Disadvantages

+ all source terms (very strong) are implicit — very robust
+ staggered discretization — no low-Mach spurious modes
+ large reduction in final linear system — low cost

— MAC scheme limited to Cartesian meshes

— pressure reduction requires block-diagonal structure
— constraint on potential alternative discretizations

= can we find an alternative scheme applicable to polyhedral meshes?
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choose a numerical scheme for scalar diffusion —V.(AVu) = s with a finite-volume
interpretation :

Applications — Z |f|F5f([U]C) = /Sd\/ 72 Fcf([u]C) =0

Conclusion c
fVve cVf

use the fluxes Fg to discretize:
m the thermal diffusion term V.(au AV Tk) in the energy equations;
m the pressure gradient term —a,Vp in the momentum equtions
all other terms are easy, except for the momentum convection/diffusion terms
— use tricks for these!
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First scheme

Start from Hybrid Mixed Mimetic schemes (Eymard, Droniou, Bonnelle, da Veiga,
Lipnikov, Manzini...)

m unconditionally stable on star-shaped meshes
m first formulation — mixed:

o (hoy G=AVa [ MOl = (el = 1F1(blanr) — [olair)
V-(AV) f:'{ V.g=s :'{ S o [Flleler = cllsle

with M>(\) a SPD matrix relating [¢]r to the dual face integral [p]; = f:n‘;gg G.dl
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m extended to Stokes by Bonnelle (then to Navier-Stokes by B. Koren et al.) using the
identity AV = —V A& with & = V A V the vorticity:
§+VAJ+Vp
-154+vav

—Vp+vAv
=0

<{

ot
(&

sz’)t[v]p + MzRF[UJ]E + G[p]c

= —Ml(V7

Y[wla + RaMa[v]e

D[V]F

v.v
=0
=0
=0

(.
o ooy

with M another matrix relating edge dual to edge integrals of & and Ra, R discrete

curl operators around faces and edges:
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First scheme

M0 [v]F + MhRe[w]e + G[plc =0
7/\//1(1171)[(4)],4 + RAMz[V]F =0
D[V]F =0
can this be solved by pressure reduction?
compute [w™]g from [v™]f by solving Mi(v~1)[w]a = RaMa[v™]r =0
m not block-diagonal
m but only needed once per time-step
compute [vt]g from MZM]F;# + MyRe[w™]e+ G[pT]lc =0
— not possible locally! Instead, must solve the saddle-point

(% §)(k)- (8 peme)

m incompressible flow : constant system — can use direct solver
m compressible/multiphase flow: variable matrix — must use iterative solverl ...\ 14062022 |10/ 25
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First scheme: conclusion

m many desirable properties: stability, symmetry (for Stokes),...
m but two incompatibilities with pressure reduction:

m auxiliary variables to solve diffusion (vorticities [w]g)
— inconvenient, but manageable
® mass matrix in momentum equation
— forces a saddle-point system — pressure reduction impossible

= the search continues!

Search
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Second scheme : avoiding pitfalls

m start with a classical cel-centered diffusion scheme
— MPFA-O (Aavatsmark)

X1 X2

m start from [u]c (value at cell)

m for each (face, vertex) pair (f, v), introduce a variable ug,

m in each cell, (uc, ufyv, upy) define a gradient [Vu]e,

m at each face around v, impose Ar. A[Vule, = Ar.[Vu]ey

m solve the local linear system on the (us ) around each vertex v
— flux Ff = 7|f‘ﬁf./\Vu = Ff([U]C)!

m conditionally stable (but rather robust in practice)
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Second scheme: discretization

m mass equation (My) — discretized in each cell ¢ :
m convective term : |c|[V.akpeVi]c = D s |Fllakpr] e vi]er
with [aupk]r chosen by a convection scheme (usually upwind)
m other terms: local
m mass equation (My) — discretized in each cell ¢ :
m convective term : same as in mass equation
m diffusive term [V.(au AV T)]c : computed using MPFA-O fluxes
m other terms: local

m momentum equation (Qx) — discretized at faces (normal components):

m pressure gradient —axVp : computed using MPFA-O fluxes
m convective/diffusive terms: see next slide
m all other terms: local
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How to discretize the momentum convection/diffusion terms without altering the linear

system structure?
— introduce cell velocities [V]. :

interpolate [V]. from [v] :

m at 1°" order — using “magical identity":

v, _i Vf)?f—)?
7] = 1o 2 FI[vler = %)

fVve

m at 2" order (needed for diffusion) — possible with more neighbours

compute momentum convection/diffusion at cells:

m [V.(akpkVk ® Vi)]c using a convection scheme on the [V]c

B [V.oupn(Vk +F Vik)]c using MPFA-O fluxes

interpolate the needed face values by combining cell values :

[V.(akprvic ® Vi)l r = piie.[V.(akpkVic @ Vi) am(r)

+ (L = w)Ae.[V.(akpr Vi @ Vi)]av(r)
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Second scheme: properties
m no auxiliary variables!
(except when using a prediction step — linear system in ([v]¢, [V]c)

m no spurious oscillations despite using “collocated” momentum operators
— the primary velocities are still the staggered [v]r

m diagonal mass matrix in the momentum equations
— pressure reduction possible
Drawbacks:

m conditional stability
— alleviated by sacrificing precision for stability on deformed meshes

m high numerical cost on tetrahedra
— stencil in each cell extends to cells sharing one of its vertices (often 2 100)

= scheme implemented as PolyMAC_P0
But can the first scheme be fixed?
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Third scheme: back to HMM

HMM schemes have a second formulation (hybrid form) using face scalar unknowns instead
of fluxes to solve —V.AVu =5

— using a SPD matrix W5 (A) in each cell:

“IAVdle = 3 W (M) ur — ue)

f'Ve

— the ur are determined by the equations [AVu],m(r)r + [AVulay(r)r = 0, leading to the

(SPD) linear system
{ =2 rve IFlINV u]er = [c][s]e Ve
[Avu]am(f)f + [Avu]av(f)r’ =0 Vf
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Third scheme: discretization

m mass equation (M) : as usual

m energy equation (&) : introduce face temperatures [ Ty|r to compute the diffusive
term [V.(ax AV Ti)]c

m momentum equation (Qk) — integrated at faces (normal components)

mass matrix is diagonall!

pressure gradient : introduce [p]r to compute [Vp]r

(system is closed using [Vp]cr + [Vp]err = 0)

convection term: computed at cells (using 1*-order interpolation), then projected
momentum difusion: computed using vorticity variables

using the identity V A (uV A V) = V.(u'VV) — V.(uVV)
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Third scheme : properties

m stable on star-shaped meshes — like the original HMM scheme

m several auxiliary variables:

m face temperatures [T]s, vorticities [wk]e — computed once per time step
m face pressures [p]r — included in the reduced pressure system

m but pressure reduction is possible!
Main uses:
m very deformed meshes (but PolyMAC_PO is hard to beat in practice...)

m meshes consisting mainly in tetrahedra
implemented as PolyMAC_POP1nc (or “PolyMAC")
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Pump tank

Free surface
pump

e Cooling loop

Main loop

Heat exchanger

Applications

Two-phase sodium : KNS-37 L22 test

Wrapper tube
m the reference for sodium boiling!

m 37 pin, electrically-heated reactor element
(~ 700 KW)
m loss of flow-type transient:
m t=0: pump trip (t;/» ~ 2.5s)
m t =6.3s: local boiling
(does not obstruct flow)
m t = 8.5s : generalized boiling
— blockage : flow redistribution
m t =9.45s: dry-out
— electrical power trip

LE“

EZ0he

H
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KNS-37 L22: flowrate, pressure

Q (kgfs)

02

F603 (+0.5kg/s)

F602 ———

P (bar)

Applications
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Navier-Stokes 3D benchmark
m proposed by M. Ndjinga for this symposium

m 3D manufactured solution (Poiseuille-like) for N-S:

Vana = X(]- - X)Y(]- - y)é;

m transient simulation from & = 0 at CFL = 103: need either

m full (V,p) system — saddle-ppint:
direct solvers (used here), augmented Lagrangian...

m prediction-correction

prediction — V* with V.v* #£ 0:
PolyMAC_PO : system in ([v*]f, [V*]c)

PolyMAC_POP1nc :

system in ([v*]s, [w*]e)

— saddle-point!
but still solvable by iterative solvers (BCGS here)
correction — elliptic system on p* to obtain V.v* :0:
PolyMAC_PO : system in ([p™]¢)

PolyMAC_POP1nc :

system in ([pT]c, [pT]f)
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Navier-Stokes 3D benchmark
Performance results (Apple M1, single-core):

Poly_P0O Poly_POP1nc
Full  Pred/corr | Full Pred/corr
Hexa_4 52 0.55 | 64 0.65
Hexa_5 - 7.0 - 9.8
Tetra_3 | 1341 62.6 | 558 3.27
Tetra_6 - 827 - 118

m comparable convergence in time for both schemes
— 10-11 time steps at CFL=1000 for both

m PO faster on hexa, POP1nc faster on tetra

m solving the full system via direct solvers does not scale...
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meshes:
m block-diagonal structure in mass/energy equations — easy
m but also in momentum equations — harder!

two schemes implemented:

m PolyMAC_PO : based on MPFA-O
m PolyMAC_POP1nc : based on HMM

when using CFL> 1, we need a direct solver to solve the (V, p) system
— prediction/correction is still the best option

(some schemes lead to a saddle-point in the correction step — KO)
— this could be improved in the future!

m search for numerical schemes with “MAC-like” properties for multiphase flows
m strong constraints to allow the same pressure-reduction method as on Cartesian
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