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Lid driven cavity with Palabos on GPUs

Lattice Boltzmann method → accurate complex boundaries with a uniform Cartesian mesh.
▶ What can we do with accurate directional boundary conditions on uniform grids?

⇒ High-performance high-fidelity multi-GPU simulations on uniform Cartesian grids!
Example: porous media simulations with fully resolved geometries using Palabos (Latt et al., 2021)

https://palabos.unige.ch/class/summer-school/
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Academic example for accuracy benchmarking

We perform a test to calculate the accuracy of the permeability for a flow around an array of cylinders.
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The (forceless) lattice Boltzmann equation

BGK-LBE

fi (x + c i , t + 1) =

f̂i (x,t)︷ ︸︸ ︷
fi (x, t) −

ni
τ︸︷︷︸

n̂i

ni = fi − ei

TRT-LBE

f ±
i (x + c i , t + 1) =

f̂ ±
i (x,t)︷ ︸︸ ︷

f ±
i (x, t) −

n±
i

τ±︸︷︷︸
n̂±

i

Λ± = τ± − 1/2 , Λ = Λ+Λ−

collide: fi (x, t) → f̂i (x, t)
stream: f̂i (x, t) → fi (x + c i ∆t, t + ∆t)

ei = polynomial expansion of Maxwell-Boltzmann distribution
ei,1 = linear equilibrium (truncation at the first order)

if D2Q9 → i ∈ {0, . . . , 8}
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The Lattice

fi (x + c i , t + 1) =

f̂i (x,t)︷ ︸︸ ︷
fi (x, t) + n̂i the difference between populations have been exaggerated to easy the recognition
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Moments of the distribution function, solvability conditions

Macroscopic fields (without momentum and mass sources):

ρ = f +
0 + 2

Qm/2∑
i=1

f +
i , P = c2

l ρ , uα = 2
Qm/2∑
i=1

f −
i ci,α

Solvability conditions:

n̂+
0 + 2

Qm/2∑
i=1

n̂+
i = 0 , 2

Qm/2∑
i=1

n̂−
i ci,α = 0 .
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(Quasi-incompressible) equilibrium

ei = e+
i + e−

i

e+
i = wi ρ + wi ρ0IMa2

uα1 uα2 (ci,α1 ci,α2 − c2
l δα1α2 )

2c4
l

+ wi ρ0IMa4 O(Ma4) + . . .︸ ︷︷ . . .
e+
i,nl

e−
i = wi ρ0

ci,α1 uα1

c2
l︸ ︷︷ ︸

e−
i,l

+ wi ρ0IMa3 O(Ma3) + . . .︸ ︷︷ . . .
e−
i,nl

IMaj ∈ {0, 1} ∀ j ∈ N+

Stokes flow → the linear equilibrium (truncation) is sufficient
Navier-Stokes flow → we need at least 2nd order expansion.
The values of wi can be computed in two ways:
▶ from the Gauss-Hermite quadrature of the polynomial expansion of the Maxwell-Boltzmann
▶ from isotropy conditions.
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Solution for the nonequilibrium, Chapman-Enskog + Taylor

Perturbative expansion of f i :

fc,i = ei + ϵf (1)
c,i + ϵ2f (2)

c,i = ei + nc,i

Perturbative expansion of the operators, assuming diffusive scaling

∂t = ϵ2∂
(2)
t ∂α = ϵ∂

(1)
α + ϵ2∂

(2)
α ∀ α ∈ {x1, . . . , xD}

inject into the (directional) Taylor expansion of the TRT-LBE

fc,i + (ϵci,α∂
(1)
α + ϵ2ci,α∂

(2)
α + ϵ2∂

(2)
t )fc,i + (ϵci,α∂

(1)
α + ϵ2ci,α∂

(2)
α + ϵ2∂

(2)
t )2 fc,i

2
= fc,i −

n+
c,i

τ+ −
n−

c,i

τ− .

n±
c,i

τ± = −ci,α∂αe∓
i − ∂te±

i + Λ∓(ci,α∂α)2e±
i , (2)

▶ The solution is expressed as equilibrium and its derivative;
▶ Taking the moments ⇒ Navier-Stokes (or Stokes) equations.
▶ τ+ relates with viscosity, τ− is free for athermal incompressible flows
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Directional evolution equation at the boundary

LBE: fi (xFF, t + 1) = f̂i (xF, t + 1)
We consider compact or local scheme with max 3 populations (LI or ELI)
Advanced accuracy multireflection schemes need more populations

fi (xF, t +1) = β f̂̄i (xFF )+α̂f̂̄i (xF )+β̂ f̂i (xF )+E(xW , t̃)+N (xF, t) .

E(xW , t̃) = −α+
ϵ e+

ı̄ (xF, t) − α−
ϵ e−

ı̄ (xF, t) − α−
W e−

ı̄ (xW , t̃)

N (xF, t) = K̂+n̂+
ı̄ (xF, t) + K̂−n̂−

ı̄ (xF, t)

LBM directional boundaries: bibliography
Ginzburg and Adler (1994); Ginzburg and d’Humières (2003);
Ginzburg et al. (2008); Marson, Thorimbert, et al. (2021); Marson
(2022); Ginzburg et al. (2022)
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Uniform formulation: closure
1. Evolution equation at the boundary

fi = β f̂̄i (xFF ) + α̂f̂̄i (xF ) + β̂ f̂i (xF )
+ α+

ϵ e+
ı̄ (xF ) +α−

ϵ e−
ı̄ (xW ) + α−

W e−
ı̄ (xW )

−K̂+
ı̄ n̂+

ı̄ (xF ) −K̂−
ı̄ n̂−

ı̄ (xF )

2. Inject Taylor + CE + ‘±’ decomposition
▶ fi = ei + ni equilibrium/nonequilibrium
▶ fi = e+

i + n+
i + e−

i + n−
i

▶ ni = function(
∑

j ∂j ei ) (Chapman-Enskog)
▶ Taylor expansion

Why closure description
The eq. representation ⇒ analyze errors
introduced by the linear combination.

⇐⇒

3. Closure a[
α+e+

ı̄ +α−e−
ı̄

+ β+cı̄,α∂αe+
ı̄ +β−cı̄,α∂αe−

ı̄

+ γ+(cı̄,α∂α)2e+
ı̄ +γ−(cı̄,α∂α)2e−

ı̄

]t

xF

= α+
ϵ e+

ı̄ (xF ) +α−
ϵ e−

ı̄ (xF ) + α−
W e−

ı̄ (xW )

− K̂+
ı̄ n̂+

ı̄ (xF ) −K̂−
ı̄ n̂−

ı̄ (xF )

linear vel. + linear press. + parabolic vel. & press. +
closure corrections + ghost populations

closure coefficients are linear combinations of the
“geometrical” ones.
NB α− are free prefactors: α−

[
f −
i

]
xF

=

α−
[
f −
i + qci,α∂αf −

i + q2

2 (ci,α∂α)2f −
i + . . .

]
xW

aExtended starting from (Ginzburg & d’Humières, 2003)
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Uniform formulation: closure
1. Evolution equation at the boundary
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ı̄ (xF ) +α−
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W e−
ı̄ (xW )
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ı̄ (xF ) −K̂−
ı̄ n̂−

ı̄ (xF )
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i

▶ ni = function(
∑
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▶ Taylor expansion
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The eq. representation ⇒ analyze errors
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Elementary model for narrow gaps: Stokes channel flows

Meaning of the closure
▶ Moments of the CE expanded LBE = Navier-Stokes

⇒ We want that this to hold at boundaries
⇒ Taylor-CE-LBE → boundary ⇒ closure

Analysis of the closure with c/p-flows
▶ Identify and cancel errors introduced by the boundary
▶ Errors appear sequentially for increasingly complex flows
▶ Define elementary c/p-flows to test errors purge

⇒ cleaning the right error the elementary flow become exact
⇒ accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional ⇒ it is valid for any channel
inclination and any complex flow.

s.s. = steady state
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How to cancel errors locally

Linear case:

α+ = −1 + α̂ + β + β̂

α− = 1 + α̂ + β − β̂

β+ =
1
2

(α̂ − β̂ − β − 1) − α−Λ−

γ− = −β+Λ+ − β

α+
tot = α+ − α+

ϵ

α−
tot = α− − α−

ϵ − α−
W

β+
tot = β+ + K̂−

γ−
tot = γ− − Λ+K̂−︸ ︷︷ ︸

γ
−
K

−
q2

2
α−

W

coefficients (errors) depends on Λ±!

Standard (K̂−
1 ) correctiona ⇒ ELI = LI at s.s.

K−
1 such that γ−

K
def= γ− − Λ+K̂− = α−Λ

New correction K̂−
3

b⇒ ELI = LI at s.s.
▶ K−

3 such that γ−
K

def= γ− − Λ+K̂− = α−
W

q2

2
` parabolic velocity in Stokes flow!

New correction K̂−
4

c ⇒ ELI = LI at s.s.
K−

4 such that β+
tot = 0

� linear pressure in Stokes flow!
Resulting single-node schemes are parametrized!

a (Ginzburg et al., 2008)
b (Marson, 2022; Ginzburg et al., 2022)
c (Marson, 2022; Ginzburg et al., 2022)
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New schemes: Stokes flow classification

(Filippova & Hänel, 1997; Mei et al., 1999; Yu et al., 2003; Ginzburg & d’Humières, 2003; Ginzburg
et al., 2008; Marson, Thorimbert, et al., 2021; Zhao & Yong, 2017; Tao et al., 2018; Ginzburg, 2020;

Meng et al., 2020; Bouzidi et al., 2001; Marson, Silva, et al., 2021)
F. Marson Accurate boundary conditions on the lattice Boltzmann uniform Cartesian grid 14/06/2022 14 / 28
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Inclined channels

Scheme or Family Nodes c-stk-flow p-stk-flow param. c-nse-flow p-nse-flow
MRnse 3 ∼ 4 ✓ ✓ ✓ ✓ ✓

the parametrized and p-stk-flow schemes
PM={AVMR, EMR} 2 ∼ 3 ✓ ✓ ✓ ✓ ×
MR={MR1, MR1+} 2 ∼ 3 ✓ ✓ ✓ × ×
{IPLI, LI3} 1 ∼ 2 ✓ ✓ ✓ × ×
{CELI-IP, ELI3} 1 ✓ ✓ ✓ × ×

the parametrized schemes
LI1 1 ∼ 2 ✓ × ✓ × ×
ELI1 1 ✓ × ✓ × ×
LI4 1 ∼ 2 ✓ × ✓ × ×
ELI4 1 ✓ × ✓ × ×
HW 1 × × ✓ × ×

non-parametrized schemes
linear-interpolation based:

LI+0 1 ∼ 2 ✓ × × × ×
ELI0 1 ✓ × × × ×

quadratic-interpolation based:
BFL-QI3 2 ∼ 3 ✓ ✓ × × ×
BFL-QI 2 ∼ 3 ✓ × × × ×

equilibrium-interpolation based:
FH3 1 ✓ ✓ × × ×
FH0 1 ✓ × × × ×
MLS3 2 ✓ ✓ × × ×
MLS0 2 ✓ × × × ×
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Stability optimization

In the bulk
1. collision, with stability condition:∣∣1 − 1/τ+

∣∣ ≤ 1

2. streaming.

In the boundary
1. modified collision, with stability condition:∣∣1 ∓ β∓/τ±

∣∣ ≤ 1

2. modified streaming.

▶ accuracy for the steady state solution is the same for all α− (parametrized schemes);
▶ β− ⇒ α− controls the stability proprieties of the schemes!
▶ An optimal stability value for α−(Λ±) exists
▶ coefficients ∈ [−1, 1]: almost necessary condition, not sufficient with K−

F. Marson Accurate boundary conditions on the lattice Boltzmann uniform Cartesian grid 14/06/2022 16 / 28
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Stability: results

For K̂3 schemes, the steady state accuracy in p-flow is the same,
but stability is different for schemes with different α−

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

ELI- UQ3 CLI3

YLI3,BFL3,ELI- UL3,ELI- FL3

BFL- QI3 LI3( ) ELI3( )

1/8 1/6 1/4 1/3 1/2

α− controls the stability proprieties of the schemes!
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Stokes flow: circular Couette

Figure: R2 − R1 = 10 lu

F. Marson Accurate boundary conditions on the lattice Boltzmann uniform Cartesian grid 14/06/2022 18 / 28



Introduction The lattice Boltzmann equation Boundary closure and accuracy Classification Stability Results The End References

FakeTitle1

Stokes flow: circular Couette

Figure: R2 − R1 = 10 lu

F. Marson Accurate boundary conditions on the lattice Boltzmann uniform Cartesian grid 14/06/2022 18 / 28



Introduction The lattice Boltzmann equation Boundary closure and accuracy Classification Stability Results The End References

FakeTitle1

Stokes flow: circular Couette

Figure: R2 − R1 = 10 lu

F. Marson Accurate boundary conditions on the lattice Boltzmann uniform Cartesian grid 14/06/2022 18 / 28



Introduction The lattice Boltzmann equation Boundary closure and accuracy Classification Stability Results The End References

FakeTitle1

Stokes flow: circular Couette

Figure: R2 − R1 = 10 lu

F. Marson Accurate boundary conditions on the lattice Boltzmann uniform Cartesian grid 14/06/2022 18 / 28



Introduction The lattice Boltzmann equation Boundary closure and accuracy Classification Stability Results The End References

FakeTitle1

Stokes flow: circular Couette

Figure: R2 − R1 = 10 lu

F. Marson Accurate boundary conditions on the lattice Boltzmann uniform Cartesian grid 14/06/2022 18 / 28



Introduction The lattice Boltzmann equation Boundary closure and accuracy Classification Stability Results The End References

FakeTitle1

Stokes flow: circular Couette

Figure: R2 − R1 = 10 lu

F. Marson Accurate boundary conditions on the lattice Boltzmann uniform Cartesian grid 14/06/2022 18 / 28



Introduction The lattice Boltzmann equation Boundary closure and accuracy Classification Stability Results The End References

FakeTitle1

Stokes flow: results in arrays

k1, ϕ1
H

r

H

unitary cell

Fx

y

x

Figure: Schematic representation of the simulation domain for the array of cylinders configuration (Silva, 2018).
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Stokes flow: results in arrays

Figure: Permeability estimation error in an array of cylinders using darcy law. (a) and (b): dilute flow with solid
fraction c = 0.2. (a) cell resolution H2 = 332 lu2. (b) cell resolution H2 = 992 lu2.

(Ginzburg et al., 2022; Marson, 2022)
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Finite Re

Error as a function of grid Reynolds Re = ulb/νlb

▶ LBE with standard NSE equilibrium → inexact
solutions for c/p-nse-flows

▶ higher order errors appear in the closure
▶ results are non-parametrized
▶ find optimal scaling for Λ = Λ+Λ−
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Sandstone porous medium with Palabos on GPUs
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Thank you! Questions?

THANK YOU FOR YOUR ATTENTION! QUESTIONS?
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