Accurate curved Dirichlet boundaries for fluid flow simulations on the lattice Boltzmann uniform Cartesian grid

I. Ginzburg¹, G. Silva², <u>F. Marson³</u>, B. Chopard³, J. Latt³

 $^1 \mathrm{INRAE},$ Université Paris-Saclay, Paris, France

 $^2 \mathrm{Universit\acute{e}}$ de Évora, Évora, Portugal

 3 Université de Genève, Genève, Suisse

CANUM 2020 (2022)

14 June 2022

《曰》 《圖》 《臣》 《臣》

Introduction 00	The lattice Boltzmann equation	Boundary closure and accuracy 000	Classification 00	Stability 00	Results 00000	The End O	References
Outline							ERSITÉ ENÈVE

1 Introduction

- 2 The lattice Boltzmann equation
- **3** Boundary closure and accuracy
- 4 Classification

5 Stability

6 Results

7 The End

•

Boundary closure and accuracy

Classification

Lid driven cavity with Palabos on GPUs

The End

- $\dot{\nabla}$ Lattice Boltzmann method \rightarrow accurate complex boundaries with a uniform Cartesian mesh.
- What can we do with accurate directional boundary conditions on uniform grids?
 - \Rightarrow High-performance high-fidelity multi-GPU simulations on uniform Cartesian grids!

Example: porous media simulations with fully resolved geometries using Palabos (Latt et al., 2021)

https://palabos.unige.ch/class/summer-school/

We perform a test to calculate the accuracy of the permeability for a flow around an array of cylinders.

					(a)	🔊 I INIV	EDCITÉ
Introduction 00	The lattice Boltzmann equation	Boundary closure and accuracy 000	Classification 00	Stability 00	Results 00000	The End O	References

The (forceless) lattice Boltzmann equation

BGK-LBE $f_i(\mathbf{x} + \mathbf{c}_i, t+1) = \overbrace{f_i(\mathbf{x}, t) - \underbrace{\frac{n_i}{\tau}}_{\hat{h}_i}}^{\hat{f}_i(\mathbf{x}, t)}$

$$n_i = f_i - e_i$$

TRT-LBE

 $\begin{array}{l} \text{collide: } f_i(\mathbf{x},t) \to \hat{f}_i(\mathbf{x},t) \\ \text{stream: } \hat{f}_i(\mathbf{x},t) \to f_i(\mathbf{x}+\mathbf{c}_i\Delta t,t+\Delta t) \\ e_i = \text{polynomial expansion of Maxwell-Boltzmann distribution} \\ e_{i,1} = \text{linear equilibrium (truncation at the first order)} \\ \text{ if } D2Q9 \to i \in \{0,\ldots,8\} \end{array}$

 \bigtriangleup the difference between populations have been exaggerated to easy the recognition

Accurate boundary conditions on the lattice Boltzmann uniform Cartesian gri

lattice node

"populations" f_i

arrow representation

 f_i (precollision)

Internal off-lattice

boundary

0 0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0

0 0 0

0

0 _ - 0-

0 0

Accurate boundary conditions on the lattice Boltzmann uniform Cartesian gri

0 0

0

0

0

0

0 0 0 0

0

0 0

10

0

0 0 0 0

0 0

-ò- o o

1 q 14/06/2022 6 / 28

Macroscopic fields (without momentum and mass sources):

$$\rho = f_0^+ + 2\sum_{i=1}^{Q_m/2} f_i^+, \qquad P = c_i^2 \rho, \qquad u_\alpha = 2\sum_{i=1}^{Q_m/2} f_i^- c_{i,\alpha}$$

Solvability conditions:

$$\hat{n}^+_0 + 2\sum_{i=1}^{Q_m/2} \hat{n}^+_i = 0 \ , \qquad 2\sum_{i=1}^{Q_m/2} \hat{n}^-_i c_{i,\alpha} = 0 \ .$$

$$e_i^- = \underbrace{w_i \rho_0}_{e_{i,1}^-} \underbrace{\frac{c_{i,\alpha_1} u_{\alpha_1}}{c_i^2}}_{\substack{e_{i,1}^-}} + \underbrace{w_i \rho_0 I_{\operatorname{Ma}^3} \mathcal{O}(\operatorname{Ma}^3) + \dots}_{\substack{e_{i,\mathrm{nl}}^-}} \cdots \\ I_{\operatorname{Ma}^j} \in \{0,1\} \quad \forall j \in \mathbb{N}^+$$

Stokes flow \rightarrow the linear equilibrium (truncation) is sufficient Navier-Stokes flow \rightarrow we need at least 2nd order expansion.

The values of w_i can be computed in two ways:

- ▶ from the Gauss-Hermite quadrature of the polynomial expansion of the Maxwell-Boltzmann
- from isotropy conditions.

Stokes flow \rightarrow the linear equilibrium (truncation) is sufficient Navier-Stokes flow \rightarrow we need at least 2nd order expansion.

The values of w_i can be computed in two ways:

- ▶ from the Gauss-Hermite quadrature of the polynomial expansion of the Maxwell-Boltzmann
- from isotropy conditions.

 $M_{\rm al} \in \{0,1\}$ v $j \in \mathbb{N}$

Stokes flow \rightarrow the linear equilibrium (truncation) is sufficient

Navier-Stokes flow \rightarrow we need at least 2nd order expansion. The values of w_i can be computed in two ways:

- ▶ from the Gauss-Hermite quadrature of the polynomial expansion of the Maxwell-Boltzmann
- from isotropy conditions.

Perturbative expansion of f_i :

$$f_{\mathsf{c},i} = e_i + \epsilon f_{\mathsf{c},i}^{(1)} + \epsilon^2 f_{\mathsf{c},i}^{(2)} = e_i + n_{c,i}$$

Perturbative expansion of the operators, assuming diffusive scaling

$$\partial_t = \epsilon^2 \partial_t^{(2)} \qquad \partial_\alpha = \epsilon \partial_\alpha^{(1)} + \epsilon^2 \partial_\alpha^{(2)} \qquad \forall \ \alpha \in \{x_1, \dots, x_D\}$$

inject into the (directional) Taylor expansion of the TRT-LBE

$$f_{\mathsf{c},i} + (\epsilon c_{i,\alpha} \partial_{\alpha}^{(1)} + \epsilon^2 c_{i,\alpha} \partial_{\alpha}^{(2)} + \epsilon^2 \partial_t^{(2)}) f_{\mathsf{c},i} + (\epsilon c_{i,\alpha} \partial_{\alpha}^{(1)} + \epsilon^2 c_{i,\alpha} \partial_{\alpha}^{(2)} + \epsilon^2 \partial_t^{(2)})^2 \frac{f_{\mathsf{c},i}}{2} = f_{\mathsf{c},i} - \frac{n_{\mathsf{c},i}^+}{\tau^+} - \frac{n_{\mathsf{c},i}^-}{\tau^-}.$$

$$\frac{n_{c,i}^{\pm}}{\tau^{\pm}} = -c_{i,\alpha}\partial_{\alpha}e_{i}^{\mp} - \partial_{t}e_{i}^{\pm} + \Lambda^{\mp}(c_{i,\alpha}\partial_{\alpha})^{2}e_{i}^{\pm}, \qquad (2)$$

- The solution is expressed as equilibrium and its derivative;
- Taking the moments \Rightarrow Navier-Stokes (or Stokes) equations.
- \blacktriangleright τ^+ relates with viscosity, τ^- is free for athermal incompressible flows

LBE: $f_i(x_{\rm FF}, t+1) = \hat{f}_i(x_{\rm F}, t+1)$

We consider compact or local scheme with max 3 populations (LI or ELI) Advanced accuracy multireflection schemes need more populations

 $f_i(\mathbf{x}_{\mathrm{F}}, t+1) = \beta \hat{f}_i(x_{FF}) + \hat{\alpha} \hat{f}_i(\mathbf{x}_F) + \hat{\beta} \hat{f}_i(\mathbf{x}_F) + \mathcal{E}(x_W, \tilde{t}) + \mathcal{N}(\mathbf{x}_{\mathrm{F}}, t) .$

$$egin{aligned} &\mathcal{E}(\mathbf{x}_W, ilde{t}) = -lpha_e^+ e^+_{ au}(\mathbf{x}_{\mathrm{F}}, t) - lpha_e^- e^-_{ au}(\mathbf{x}_{\mathrm{F}}, t) - lpha_W^- e^-_{ au}(\mathbf{x}_W, ilde{t}) \ &\mathcal{N}(\mathbf{x}_{\mathrm{F}}, t) = \hat{\mathcal{K}}^+ \hat{h}^+_{ au}(\mathbf{x}_{\mathrm{F}}, t) + \hat{\mathcal{K}}^- \hat{h}^-_{ au}(\mathbf{x}_{\mathrm{F}}, t) \end{aligned}$$

LBM directional boundaries: bibliography

LBE: $f_i(\boldsymbol{x}_{\mathrm{FF}}, t+1) = \hat{f}_i(\boldsymbol{x}_{\mathrm{F}}, t+1)$

We consider compact or local scheme with max 3 populations (LI or ELI) Advanced accuracy multireflection schemes need more populations

 $f_i(\mathbf{x}_{\mathrm{F}}, t+1) = \beta \hat{f}_i(x_{FF}) + \hat{\alpha} \hat{f}_i(\mathbf{x}_F) + \hat{\beta} \hat{f}_i(x_F) + \mathcal{E}(x_W, \tilde{t}) + \mathcal{N}(x_{\mathrm{F}}, t) .$

$$\begin{aligned} \mathcal{E}(\mathbf{x}_W,\tilde{t}) &= -\alpha_e^+ e_{\tilde{t}}^+(\mathbf{x}_{\mathrm{F}},t) - \alpha_e^- e_{\tilde{t}}^-(\mathbf{x}_{\mathrm{F}},t) - \alpha_W^- e_{\tilde{t}}^-(\mathbf{x}_W,\tilde{t}) \\ \mathcal{N}(\mathbf{x}_{\mathrm{F}},t) &= \hat{K}^+ \hat{n}_{\tilde{t}}^+(\mathbf{x}_{\mathrm{F}},t) + \hat{K}^- \hat{n}_{\tilde{t}}^-(\mathbf{x}_{\mathrm{F}},t) \end{aligned}$$

LBM directional boundaries: bibliography

LBE: $f_i(\mathbf{x}_{\rm FF}, t+1) = \hat{f}_i(\mathbf{x}_{\rm F}, t+1)$

We consider compact or local scheme with max 3 populations (LI or ELI) Advanced accuracy multireflection schemes need more populations

 $f_i(\mathbf{x}_{\rm F},t+1) = \beta \hat{f}_i(\mathbf{x}_{FF}) + \hat{\alpha} \hat{f}_i(\mathbf{x}_F) + \hat{\beta} \hat{f}_i(\mathbf{x}_F) + \mathcal{E}(\mathbf{x}_W,\tilde{t}) + \mathcal{N}(\mathbf{x}_{\rm F},t) \ .$

$$\begin{split} \mathcal{E}(\mathbf{x}_W,\tilde{t}) &= -\alpha_e^+ e_i^+(\mathbf{x}_{\mathrm{F}},t) - \alpha_e^- e_i^-(\mathbf{x}_{\mathrm{F}},t) - \alpha_W^- e_i^-(\mathbf{x}_W,\tilde{t}) \\ \mathcal{N}(\mathbf{x}_{\mathrm{F}},t) &= \hat{K}^+ \hat{n}_i^+(\mathbf{x}_{\mathrm{F}},t) + \hat{K}^- \hat{n}_i^-(\mathbf{x}_{\mathrm{F}},t) \end{split}$$

LBM directional boundaries: bibliography

LBE: $f_i(\mathbf{x}_{FF}, t+1) = \hat{f}_i(\mathbf{x}_F, t+1)$ We consider compact or local scheme with max 3 populations (LI or ELI) Advanced accuracy multireflection schemes need more populations

 $f_i(\mathbf{x}_{\rm F},t+1) = \beta \hat{f}_i(\mathbf{x}_{FF}) + \hat{\alpha} \hat{f}_i(\mathbf{x}_F) + \hat{\beta} \hat{f}_i(\mathbf{x}_F) + \mathcal{E}(\mathbf{x}_W,\tilde{t}) + \mathcal{N}(\mathbf{x}_{\rm F},t) \; .$

$$\begin{aligned} \mathcal{E}(\mathbf{x}_{W},\tilde{t}) &= -\alpha_{\epsilon}^{+} \mathbf{e}_{\tilde{\imath}}^{+}(\mathbf{x}_{\mathrm{F}},t) - \alpha_{\epsilon}^{-} \mathbf{e}_{\tilde{\imath}}^{-}(\mathbf{x}_{\mathrm{F}},t) - \alpha_{W}^{-} \mathbf{e}_{\tilde{\imath}}^{-}(\mathbf{x}_{W},\tilde{t}) \\ \mathcal{N}(\mathbf{x}_{\mathrm{F}},t) &= \hat{\kappa}^{+} \hat{n}_{\tau}^{+}(\mathbf{x}_{\mathrm{F}},t) + \hat{\kappa}^{-} \hat{n}_{\tau}^{-}(\mathbf{x}_{\mathrm{F}},t) \end{aligned}$$

LBM directional boundaries: bibliography

LBE: $f_i(\mathbf{x}_{FF}, t+1) = \hat{f}_i(\mathbf{x}_F, t+1)$ We consider compact or local scheme with max 3 populations (LI or ELI) Advanced accuracy multireflection schemes need more populations

 $f_i(\mathbf{x}_{\mathrm{F}}, t+1) = \beta \hat{f}_i(\mathbf{x}_{\mathrm{FF}}) + \hat{\alpha} \hat{f}_i(\mathbf{x}_{\mathrm{F}}) + \hat{\beta} \hat{f}_i(\mathbf{x}_{\mathrm{F}}) + \mathcal{E}(\mathbf{x}_{W}, \tilde{t}) + \mathcal{N}(\mathbf{x}_{\mathrm{F}}, t) .$

$$\begin{split} \mathcal{E}(\mathbf{x}_W,\tilde{t}) &= -\alpha_e^+ e_i^+(\mathbf{x}_{\mathrm{F}},t) - \alpha_e^- e_i^-(\mathbf{x}_{\mathrm{F}},t) - \alpha_W^- e_i^-(\mathbf{x}_W,\tilde{t}) \\ \mathcal{N}(\mathbf{x}_{\mathrm{F}},t) &= \hat{K}^+ \hat{n}_{\bar{\imath}}^+(\mathbf{x}_{\mathrm{F}},t) + \hat{K}^- \hat{n}_{\bar{\imath}}^-(\mathbf{x}_{\mathrm{F}},t) \end{split}$$

LBM directional boundaries: bibliography

	y closure and accuracy	OO	00	00000	O O	References
Uniform formulation: closure					UNIV DE G	ERSITÉ ENÈVE
1. Evolution equation at the boundary		3. Closure ^a				
$\begin{cases} f_{i} = \beta \hat{f}_{i}(\mathbf{x}_{FF}) + \hat{\alpha} \hat{f}_{i}(\mathbf{x}_{F}) + \hat{\beta} \hat{f}_{i}(\mathbf{x}_{F}) \\ + \alpha_{\epsilon}^{+} e_{i}^{+}(\mathbf{x}_{F}) + \alpha_{\epsilon}^{-} e_{i}^{-}(\mathbf{x}_{W}) + \alpha_{W}^{-} e_{i}^{-} \\ - \hat{\kappa}_{i}^{+} \hat{n}_{i}^{+}(\mathbf{x}_{F}) - \hat{\kappa}_{i}^{-} \hat{n}_{i}^{-}(\mathbf{x}_{F}) \end{cases}$	$(\mathbf{x}_W) \iff$	$\left[egin{array}{c} lpha^+ e^+_{ar \imath} \ + eta^+ c_{ar \imath,lpha} \partial_lpha \ + \gamma^+ (c_{ar \imath,lpha} \partial_ar lpha) \end{array} ight.$	$(\alpha_{\alpha} e^+_{\overline{\imath}})^2 e^+_{\overline{\imath}}$	$+\alpha^{-}e_{\bar{\imath}}^{-}$ $+\beta^{-}c_{\bar{\imath},\alpha}\delta^{-}$ $+\gamma^{-}(c_{\bar{\imath},\alpha})$	$\partial_{lpha} e_{\overline{i}}^{-}$ $\partial_{lpha})^{2} e_{\overline{i}}^{-} \Big]^{t}$	

2. Inject Taylor + CE + ' \pm ' decomposition

- ▶ $f_i = e_i + n_i$ equilibrium/nonequilibrium
- $f_i = e_i^+ + n_i^+ + e_i^- + n_i^-$
- ▶ $n_i = \text{function}(\sum_i \partial^j e_i)$ (Chapman-Enskog)
- Taylor expansion

^{*} Why closure description

The eq. representation \Rightarrow analyze errors introduced by the linear combination.

linear vel. + linear press. + parabolic vel. & press. + closure corrections + ghost populations

 $-\hat{K}_{z}^{+}\hat{n}_{z}^{+}(x_{F}) -\hat{K}_{z}^{-}\hat{n}_{z}^{-}(x_{F})$

 $= \alpha_{\epsilon}^{+} e_{\overline{z}}^{+} (\mathbf{x}_{F}) \qquad + \alpha_{\epsilon}^{-} e_{\overline{z}}^{-} (\mathbf{x}_{F}) + \alpha_{W}^{-} e_{\overline{z}}^{-} (\mathbf{x}_{W})$

closure coefficients are linear combinations of the "geometrical" ones. NB α^- are free prefactors: $\alpha^- [f_i^-]_{x_F} = \alpha^- [f_i^- + qc_{i,\alpha}\partial_\alpha f_i^- + \frac{q^2}{2}(c_{i,\alpha}\partial_\alpha)^2 f_i^- + \dots]_{x_W}$

Introduction 00	The lattice Boltzmann equation	Boundary closure and OO	accuracy	Classification 00	Stability 00	Results 00000	The End O	References
Uniform	formulation: closure	9					UNIV DE G	ERSITÉ ENÈVE
1. Evolutio	on equation at the bou	Indary		3. Closure	а			
$\begin{cases} f_i = \beta \hat{f}_i \\ + \alpha_{\epsilon}^+ \\ -\hat{K}_i^+ i \end{cases}$	$\begin{aligned} \hat{\mathbf{x}}_{FF} &+ \hat{\alpha}\hat{f}_{i}(\mathbf{x}_{F}) + \hat{\beta}\hat{f}_{i}(\mathbf{x}_{F}) \\ e_{i}^{+}(\mathbf{x}_{F}) &+ \alpha_{\epsilon}^{-}e_{i}^{-}(\mathbf{x}_{W}) + \\ \hat{n}_{i}^{+}(\mathbf{x}_{F}) &- \hat{K}_{i}^{-}\hat{n}_{i}^{-}(\mathbf{x}_{F}) \end{aligned}$) $\alpha_W^- e_{\bar{\imath}}^-(\mathbf{x}_W)$	\Leftrightarrow	$\begin{bmatrix} \alpha^+ e_i^+ \\ + \beta^+ c_{\bar{i},\alpha} \\ + \gamma^+ (c_{\bar{i},\alpha} \end{bmatrix}$		$+\alpha^{-}e_{\bar{i}}^{-}$ $+\beta^{-}c_{\bar{i},\alpha}\dot{a}$ $+\gamma^{-}(c_{\bar{i},\alpha}\dot{a})$	$\partial_{lpha} e_{\overline{i}}^{-}$ $\partial_{lpha})^2 e_{\overline{i}}^{-} \Big]^{t}$	
2. Inject T	Taylor $+$ CE $+$ ' \pm ' dec	omposition		$=lpha_{\epsilon}^{+}e_{\overline{\imath}}^{+}($	(x _F)	$+\alpha_{\epsilon}^{-}e_{\overline{i}}^{-}(z)$	$(x_F) + \alpha_W^- e$	$\frac{1}{\overline{i}}(\mathbf{x}_W)$
\blacktriangleright $f_i = e_i$ -	+ n _i equilibrium/nonequili	brium				$-\hat{K}_{\bar{i}}^{-}\hat{n}_{\bar{i}}^{-}($		
$ f_i = e_i^+ $ $ n_i = fur$	$+ n_i^+ + e_i^- + n_i^ \mathrm{nction}(\sum_i \partial^j e_i)$ (Chapma	n-Enskog)		linear vel. + closure correc	linear pres tions + g			

Taylor expansion

$\dot{\nabla}$ Why closure description

The eq. representation \Rightarrow analyze errors introduced by the linear combination.

closure coefficients are linear combinations of the "geometrical" ones. NB α^- are free prefactors: $\alpha^- [f_i^-]_{x_F} = \alpha^- [f_i^- + qc_{i,\alpha}\partial_\alpha f_i^- + \frac{q^2}{2}(c_{i,\alpha}\partial_\alpha)^2 f_i^- + \dots]_{x_W}$

Introduction 00	The lattice Boltzmann equation 000000	Boundary closure a •00	nd accuracy	Classificat 00	ion Stability OO	Results 00000	The End O	References
Uniform	formulation: closur	e					DE G	ERSITÉ ENÈVE
1. Evolution	on equation at the bo	undary		3. Clos	sure ^a			
$\begin{cases} f_i = \beta \hat{f}_i \\ + \alpha_{\epsilon}^+ \\ - \hat{K}_i^+ \end{cases}$	$\begin{aligned} \mathbf{x}_{FF} &+ \hat{\alpha}\hat{f}_{i}(\mathbf{x}_{F}) + \hat{\beta}\hat{f}_{i}(\mathbf{x}_{F}) \\ \hat{\sigma}_{i}^{+}(\mathbf{x}_{F}) &+ \alpha_{\epsilon}^{-}e_{i}^{-}(\mathbf{x}_{W}) \\ \hat{n}_{i}^{+}(\mathbf{x}_{F}) &- \hat{\kappa}_{i}^{-}\hat{n}_{i}^{-}(\mathbf{x}_{F}) \end{aligned}$	$+ \alpha_W^- e_i^-(\mathbf{x}_W)$	\Leftrightarrow	$\begin{bmatrix} \alpha^{-} \\ + \beta^{-} \\ + \gamma^{-} \end{bmatrix}$	$+ e_{\overline{i}}^+ e_{\overline{i}}^+ c_{\overline{i},\alpha} \partial_{\alpha} e_{\overline{i}}^+ (c_{\overline{i},\alpha} \partial_{\alpha})^2 e_{\overline{i}}^+$	$+ \alpha^{-} e_{\overline{i}}^{-}$ $+ \beta^{-} c_{\overline{i},\alpha} e_{\overline{i}}$ $+ \gamma^{-} (c_{\overline{i},\alpha})$	$\partial_{lpha} e_{\overline{i}}^{-}$ $(\partial_{lpha})^2 e_{\overline{i}}^{-} \Big]^t$	
2. Inject T • $f_i = e_i$	⁻ aylor + CE + '±' dea + <i>n</i> _i equilibrium/nonequil	composition ibrium		= α - <i>κ</i>	$e_{\epsilon}^{+}e_{\overline{i}}^{+}(\boldsymbol{x}_{F})$ $e_{\overline{i}}^{+}\hat{n}_{\overline{i}}^{+}(\boldsymbol{x}_{F})$	$+ \alpha_{\epsilon}^{-} e_{\overline{i}}^{-} (z_{\overline{i}})$ $- \hat{k}_{\overline{i}}^{-} \hat{n}_{\overline{i}}^{-} (z_{\overline{i}})$	$(x_F) + \alpha_W^- \epsilon_{(X_F)}$	F ₽ _ī (x _W)
$f_i = e_i^+$ $n_i = fu$	$+ n_i^+ + e_i^- + n_i^-$ nction $(\sum_i \partial^j e_i)$ (Chapm	an-Enskog)		linear ve	I. + linear pre	ess. + parab ghost popula		

Taylor expansion

\hat{V} Why closure description

The eq. representation \Rightarrow analyze errors introduced by the linear combination.

closure coefficients are linear combinations of the "geometrical" ones. NB α^- are free prefactors: $\alpha^- [f_i^-]_{x_F} = \alpha^- [f_i^- + qc_{i,\alpha}\partial_{\alpha}f_i^- + \frac{q^2}{2}(c_{i,\alpha}\partial_{\alpha})^2f_i^- + \dots]_{x_W}$

00	000000	OO	ind accuracy	00	ation	00	00000	O End	References
Uniform t	formulation: closure	9							RSITÉ NÈVE
. Evolution	n equation at the bou	undary		3. Clo	osure ^a				
$\left\{ egin{array}{ll} f_{i} = & eta \hat{f}_{i}\left(x \ + & lpha_{\epsilon}^{+}e \ - \hat{K}_{\overline{i}}^{+}\hat{n}_{\overline{i}} \end{array} ight.$	$\begin{aligned} \hat{\mathbf{x}}_{FF} &+ \hat{\alpha}\hat{f}_{i}\left(\mathbf{x}_{F}\right) + \hat{\beta}\hat{f}_{i}\left(\mathbf{x}_{F}\right) \\ \hat{z}^{+}\left(\mathbf{x}_{F}\right) &+ \alpha_{\epsilon}^{-}e_{i}^{-}\left(\mathbf{x}_{W}\right) + \\ \hat{z}^{+}\left(\mathbf{x}_{F}\right) &- \hat{K}_{i}^{-}\hat{n}_{i}^{-}\left(\mathbf{x}_{F}\right) \end{aligned}$) $\alpha_W^- e_{\bar{i}}^-(\mathbf{x}_W)$	\Leftrightarrow		$x^{+}e_{\overline{i}}^{+}$ $\beta^{+}c_{\overline{i},\alpha}\partial_{\alpha}$ $\gamma^{+}(c_{\overline{i},\alpha}\delta$	$(\alpha e_{\overline{i}}^+)^2 e_{\overline{i}}^+$	$+\alpha^{-}e_{\bar{i}}^{-}$ $+\beta^{-}c_{\bar{i},\alpha}\dot{c}$ $+\gamma^{-}(c_{\bar{i},\alpha})$	$\partial_{\alpha} e_{\overline{i}}^{-}$ $\partial_{\alpha} e_{\overline{i}}^{-} \Big]^{t}$	
. Inject Ta	ylor $+$ CE $+$ ' \pm ' dec	omposition		=	$\alpha_{\epsilon}^+ e_{\overline{i}}^+ (x_I$	=)	$+ \alpha_{\epsilon}^{-} e_{\overline{i}}^{-} (\lambda_{\epsilon})$	$(x_F) + \alpha_W^- e_{\overline{i}}$	(\mathbf{x}_W)
\blacktriangleright $f_i = e_i +$	n_i equilibrium/nonequili	brium					$-\hat{K}_{z}^{-}\hat{n}_{z}^{-}(z)$		

linear vel. + linear press. + parabolic vel. & press. closure corrections + ghost populations

closure coefficients are linear combinations of the "geometrical" ones. NB α^- are free prefactors: $\alpha^- [f_i^-]_{x_F} = \alpha^- [f_i^- + qc_{i,\alpha}\partial_\alpha f_i^- + \frac{q^2}{2}(c_{i,\alpha}\partial_\alpha)^2 f_i^- + \dots]_{x_W}$

^aExtended starting from (Ginzburg & d'Humières, 2003)

[™] Why closure description

▶ $f_i = e_i^+ + n_i^+ + e_i^- + n_i^-$

Taylor expansion

The eq. representation \Rightarrow analyze errors introduced by the linear combination.

▶ $n_i = \text{function}(\sum_i \partial^j e_i)$ (Chapman-Enskog)

THE REAL PROFESSION

OO	000000	Boundary closure and accuracy	OO	OO	00000	O C	References
Uniform	formulation: closur	e				DINIV	'ERSITÉ ENÈVE
1. Evolutio	on equation at the bo	undary	3. Closure	а			
$\begin{cases} f_i = \beta \hat{f}_i (\\ + \alpha_{\epsilon}^+ \\ - \hat{K}_i^+ \hat{r} \end{cases}$	$\begin{aligned} \mathbf{x}_{FF} &+ \hat{\alpha} \hat{f}_{i} \left(\mathbf{x}_{F} \right) + \hat{\beta} \hat{f}_{i} \left(\mathbf{x}_{F} \right) \\ \mathbf{e}_{i}^{+} \left(\mathbf{x}_{F} \right) &+ \alpha_{\epsilon}^{-} \mathbf{e}_{i}^{-} \left(\mathbf{x}_{W} \right) + \\ \alpha_{i}^{+} \left(\mathbf{x}_{F} \right) &- \hat{K}_{i}^{-} \hat{n}_{i}^{-} \left(\mathbf{x}_{F} \right) \end{aligned}$) $\alpha_W^- e_i^-(\mathbf{x}_W) \iff$	$egin{array}{l} lpha^+ e^+_{\overline{\imath}} \ + eta^+ c_{\overline{\imath},c} \ + \gamma^+ (c_{\overline{\imath},c}) \end{array}$	$_{lpha}\partial_{lpha} e^+_{\overline{\imath}} \ _{lpha}\partial_{lpha})^2 e^+_{\overline{\imath}}$	$+\alpha^{-}e_{\overline{i}}^{-}$ $+\beta^{-}c_{\overline{i},\alpha}\delta$ $+\gamma^{-}(c_{\overline{i},\alpha})$	$\partial_{lpha} e_{\overline{\imath}}^{-}$ $\partial_{lpha})^{2} e_{\overline{\imath}}^{-} \Big]^{t}$	
2. Inject T	aylor + CE + \pm dec	omposition	$= lpha_{\epsilon}^+ e_{\overline{i}}^+$	(x _F)	$+\alpha_{\epsilon}^{-}e_{\bar{\imath}}^{-}(\imath)$	$(\kappa_F) + \alpha_W^- \epsilon$	$F_{\overline{\tau}}(\mathbf{x}_W)$

▶ $f_i = e_i + n_i$ equilibrium/nonequilibrium

THE REAL PROFESSION

- $f_i = e_i^+ + n_i^+ + e_i^- + n_i^-$
- ▶ $n_i = \text{function}(\sum_i \partial^j e_i)$ (Chapman-Enskog)
- Taylor expansion

Why closure description

The eq. representation \Rightarrow analyze errors introduced by the linear combination.

linear vel. + linear press. + parabolic vel. & press. + closure corrections + ghost populations

 $-\hat{K}^{\dagger}\hat{n}^{\dagger}(\boldsymbol{x}_{F}) \qquad -\hat{K}^{-}_{T}\hat{n}^{-}_{T}(\boldsymbol{x}_{F})$

closure coefficients are linear combinations of the "geometrical" ones. NB α^- are free prefactors: $\alpha^- [f_i^-]_{\mathbf{x}_F} = \alpha^- [f_i^- + qc_{i,\alpha}\partial_\alpha f_i^- + \frac{q^2}{2}(c_{i,\alpha}\partial_\alpha)^2 f_i^- + \dots]_{\mathbf{x}_W}$

	OO	000000	●OO	curacy	OO		00000	O C	References
	Uniform f	formulation: closure						DINIV	ERSITÉ ENÈVE
1	. Evolution	n equation at the bou	ndary		3. Closure ⁴	1			
ł	$\left\{egin{array}{ll} f_i &=& eta \hat{f}_{ar{i}}\left(\mathbf{x} \ +& lpha_{\epsilon}^+ e_{ar{i}} \ -\hat{K}_{ar{i}}^+ \hat{n}_{ar{i}}^- \end{array} ight.$	$\begin{aligned} \hat{x}_{FF} &+ \hat{\alpha}\hat{f}_{i}\left(\mathbf{x}_{F}\right) + \hat{\beta}\hat{f}_{i}\left(\mathbf{x}_{F}\right) \\ \hat{z}_{i}^{+}\left(\mathbf{x}_{F}\right) &+ \alpha_{\epsilon}^{-}e_{i}^{-}\left(\mathbf{x}_{W}\right) + \\ \hat{z}_{i}^{+}\left(\mathbf{x}_{F}\right) &- \hat{K}_{i}^{-}\hat{n}_{i}^{-}\left(\mathbf{x}_{F}\right) \end{aligned}$	$\alpha_W^- e_{\bar{\imath}}^-(\mathbf{x}_W)$	\Rightarrow	$egin{array}{l} lpha^+ e^+_{ar i} \ + eta^+ c_{ar i,lpha} \ + \gamma^+ (c_{ar i,lpha}) \end{array}$	$\partial_lpha e^+_{\overline{\imath}} \ _{_{\scriptstyle lpha}} \partial_lpha)^2 e^+_{\overline{\imath}}$	$+ \alpha^{-} e_{\overline{i}}^{-}$ $+ \beta^{-} c_{\overline{i},\alpha} \delta^{-}$ $+ \gamma^{-} (c_{\overline{i},\alpha})$	$\partial_{lpha} e_{\overline{i}}^{-}$ $\partial_{lpha})^{2} e_{\overline{i}}^{-} \Big]^{t}$	
2	. Inject Ta	ylor + CE + ' \pm ' dec	omposition		$= \alpha_{\epsilon}^{+} e_{\overline{i}}^{+} ($	x _F)	$+\alpha_{\epsilon}^{-}e_{\bar{i}}^{-}(x)$	$(\epsilon_F) + \alpha_W^- e_i$	$\frac{1}{2}(\mathbf{x}_W)$

• $f_i = e_i + n_i$ equilibrium/nonequilibrium

THE REAL PROFESSION

- $f_i = e_i^+ + n_i^+ + e_i^- + n_i^-$
- ▶ $n_i = \text{function}(\sum_i \partial^j e_i)$ (Chapman-Enskog)
- Taylor expansion

[™] Why closure description

The eq. representation \Rightarrow analyze errors introduced by the linear combination.

linear vel. + linear press. + parabolic vel. & press. + closure corrections + ghost populations

 $-\hat{K}_{z}^{+}\hat{n}_{z}^{+}(\mathbf{x}_{E}) -\hat{K}_{z}^{-}\hat{n}_{z}^{-}(\mathbf{x}_{E})$

closure coefficients are linear combinations of the "geometrical" ones. NB α^- are free prefactors: $\alpha^- [f_i^-]_{x_F} = \alpha^- [f_i^- + qc_{i,\alpha}\partial_\alpha f_i^- + \frac{q^2}{2}(c_{i,\alpha}\partial_\alpha)^2 f_i^- + \dots]_{x_W}$

^aExtended starting from (Ginzburg & d'Humières, 2003)

T1 E 1

OO	000000	Boundary closure and accuracy	OO	OO	00000	O C	Reterences
Uniform	formulation: closure	2				UNIV	ERSITÉ ENÈVE
1. Evolutio	on equation at the bou	Indary	3. Closure	а			
$\begin{cases} f_i = \beta \hat{f}_i (+ \alpha_{\epsilon}^+) \\ -\hat{K}_i^+ \hat{f} \end{cases}$	$\mathbf{x}_{FF}) + \hat{\alpha}\hat{f}_{i}(\mathbf{x}_{F}) + \hat{\beta}\hat{f}_{i}(\mathbf{x}_{F})$ $e_{i}^{+}(\mathbf{x}_{F}) + \alpha_{\epsilon}^{-}e_{i}^{-}(\mathbf{x}_{W}) + \alpha_{\epsilon}^{-}(\mathbf{x}_{F})$ $h_{i}^{+}(\mathbf{x}_{F}) - \hat{K}_{i}^{-}\hat{n}_{i}^{-}(\mathbf{x}_{F})$	$\alpha_W^- e_i^-(\mathbf{x}_W) \iff$	$\begin{bmatrix} \alpha^+ e_{\overline{\imath}}^+ \\ + \beta^+ c_{\overline{\imath}, c_{\overline{\imath}}} \\ + \gamma^+ (c_{\overline{\imath}, c_{\overline{\imath}}}) \end{bmatrix}$	$_{\alpha}\partial_{lpha}e^+_{\overline{\imath}}$ $_{\alpha}\partial_{lpha})^2e^+_{\overline{\imath}}$	$+\alpha^{-}e_{\bar{\imath}}^{-}$ $+\beta^{-}c_{\bar{\imath},\alpha}\delta^{-}$ $+\gamma^{-}(c_{\bar{\imath},\alpha}\delta^{-})$	$\partial_{\alpha} e_{\overline{i}}^{-}$ $(\partial_{\alpha})^{2} e_{\overline{i}}^{-} \Big]^{t}$	
2. Inject T	aylor + CE + ' \pm ' dec	omposition	$=lpha_{\epsilon}^{+}e_{ar{\imath}}^{+}$	(x _F)	$+\alpha_{\epsilon}^{-}e_{\bar{i}}^{-}(x)$	$(\mathbf{x}_F) + \alpha_W^- \epsilon$	$\bar{z}_{\bar{i}}(x_W)$

- $f_i = e_i + n_i$ equilibrium/nonequilibrium
- $f_i = e_i^+ + n_i^+ + e_i^- + n_i^-$
- ▶ $n_i = \text{function}(\sum_i \partial^j e_i)$ (Chapman-Enskog)
- Taylor expansion

^{*} Why closure description

The eq. representation \Rightarrow analyze errors introduced by the linear combination.

linear vel. + linear press. + parabolic vel. & press. + closure corrections + ghost populations

 $-\hat{K}_{z}^{+}\hat{n}_{z}^{+}(\mathbf{x}_{F})$ $-\hat{K}_{z}^{-}\hat{n}_{z}^{-}(\mathbf{x}_{F})$

closure coefficients are linear combinations of the "geometrical" ones. NB α^- are free prefactors: $\alpha^- [f_i^-]_{x_F} = \alpha^- [f_i^- + qc_{i,\alpha}\partial_{\alpha}f_i^- + \frac{q^2}{2}(c_{i,\alpha}\partial_{\alpha})^2f_i^- + \dots]_{x_W}$

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- \Rightarrow We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

s.s. = steady state

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
 - \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

s.s. = steady state

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

s.s. = steady state

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

s.s. = steady state

F. Marson

14/06/2022 12 / 28

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- Define elementary c/p-flows to test errors purge
 ⇒ cleaning the right error the elementary flow become exact
- \Rightarrow accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

s.s. = steady state

F. Marson

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- ▶ Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact

accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

					6		EDCITÉ
Introduction 00	The lattice Boltzmann equation 000000	Boundary closure and accuracy OOO	Classification 00	Stability 00	Results 00000	The End O	References

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- ▶ Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- \Rightarrow accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

s.s. = steady state

🐨 DE GENÈVE

					6		EDCITÉ
Introduction 00	The lattice Boltzmann equation 000000	Boundary closure and accuracy OOO	Classification 00	Stability 00	Results 00000	The End O	References

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- ▶ Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- \Rightarrow accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

s.s. = steady state

🐨 DE GENÈVE

					6	<u>ت</u> ه ۲ ا	EDCITÉ
Introduction 00	The lattice Boltzmann equation 000000	Boundary closure and accuracy OOO	Classification 00	Stability 00	Results 00000	The End O	References

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- ▶ Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- \Rightarrow accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- ▶ Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- \Rightarrow accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

s.s. = steady state

					6		EDCITÉ
Introduction 00	The lattice Boltzmann equation 000000	Boundary closure and accuracy OOO	Classification 00	Stability 00	Results 00000	The End O	References

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- ▶ Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- \Rightarrow accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

						*~	
Introduction 00	The lattice Boltzmann equation	Boundary closure and accuracy OOO	Classification 00	Stability 00	Results 00000	The End O	References

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- \Rightarrow We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- ▶ Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- \Rightarrow accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

Meaning of the closure

- Moments of the CE expanded LBE = Navier-Stokes
- $\Rightarrow\,$ We want that this to hold at boundaries
- \Rightarrow Taylor-CE-LBE \rightarrow boundary \Rightarrow closure

Analysis of the closure with c/p-flows

- Identify and cancel errors introduced by the boundary
- Errors appear sequentially for increasingly complex flows
- ▶ Define elementary c/p-flows to test errors purge ⇒ cleaning the right error the elementary flow become exact
- \Rightarrow accuracy in porous media (Khirevich et al., 2015)

The boundary model is directional \Rightarrow it is valid for any channel inclination and any complex flow.

s.s. = steady state

00	000000	000	00	00	00000	O	References
How to	cancel errors locally					UNIV DE G	'ERSITÉ ENÈVE

Developed and a second second

Linear case:

 $\begin{aligned} \alpha^{+} &= -1 + \hat{\alpha} + \beta + \hat{\beta} \\ \alpha^{-} &= 1 + \hat{\alpha} + \beta - \hat{\beta} \\ \beta^{+} &= \frac{1}{2} (\hat{\alpha} - \hat{\beta} - \beta - 1) - \alpha^{-} \Lambda^{-} \\ \gamma^{-} &= -\beta^{+} \Lambda^{+} - \beta \end{aligned}$

The lastice Delegences second

$$\begin{split} \alpha^+_{\rm tot} &= \alpha^+ - \alpha^+_{\epsilon} \\ \alpha^-_{\rm tot} &= \alpha^- - \alpha^-_{\epsilon} - \alpha^-_W \\ \beta^+_{\rm tot} &= \beta^+ + \hat{K}^- \\ \gamma^-_{\rm tot} &= \underbrace{\gamma^- - \Lambda^+ \hat{K}^-}_{\gamma^-_K} - \frac{q^2}{2} \alpha^-_W \end{split}$$

coefficients (errors) depends on Λ^{\pm} !

 $\begin{array}{l} \mbox{Standard } (\hat{K}_1^-) \mbox{ correction}^a \Rightarrow \mbox{ELI} = \mbox{LI} \mbox{ at s.s.} \\ \mbox{\mathcal{K}_1^- such that $\gamma_{\mathcal{K}}^-$} \stackrel{\rm def}{=} \gamma^- - \Lambda^+ \hat{\mathcal{K}}^- = \alpha^- \Lambda \\ \end{array}$

New correction $\hat{K}_3^- \xrightarrow{b} = ELI = LI$ at s.s.

- $\blacktriangleright K_3^- \text{ such that } \gamma_K^- \stackrel{\text{def}}{=} \gamma^- \Lambda^+ \hat{K}^- = \alpha_W^- \frac{q^2}{2}$
 - parabolic velocity in Stokes flow!

New correction $\hat{K}_4^- \, \, ^c \Rightarrow \mathsf{ELI} = \mathsf{LI}$ at s.s.

 ζ_4^- such that $\beta_{tot}^+ = 0$ f linear pressure in Stokes flow! Resulting single-node schemes are parametrized

^a (Ginzburg et al., 2008)

- ^b🖽 (Marson, 2022; Ginzburg et al., 2022)
- ^c**Q**(Marson, 2022; Ginzburg et al., 2022)

Introduction 00	The lattice Boltzmann equation	Boundary closure and accuracy	Classification 00	Stability 00	Results 00000	The End O	References
How to	cancel errors locally					UNIV DE G	ERSITÉ ENÈVE
Linear cas	e:						
$lpha^+=\ -lpha^-=\ 1$	$\begin{aligned} -1 + \hat{\alpha} + \beta + \beta \\ + \hat{\alpha} + \beta - \hat{\beta} \end{aligned}$						
$eta^+=rac{1}{2}$	$(\hat{lpha} - \hat{eta} - eta - 1) - lpha^- \Lambda^-$	New correction	on $\hat{K}_3^ ^b$ \Rightarrow	ELI = LI	at s.s.		
$\gamma^{-} = -$	$\beta^+ \Lambda^+ - \beta$	$\blacktriangleright K_3^-$ such t	hat $\gamma_{\kappa}^{-}\stackrel{\mathrm{def}}{=}\gamma^{-}$	$-\Lambda^+\hat{K}^-$	$= \alpha_W^- \frac{q^2}{2}$		

$$\begin{split} & \alpha^+_{\rm tot} = \alpha^+ - \alpha^+_{\varepsilon} \\ & \alpha^-_{\rm tot} = \alpha^- - \alpha^-_{\varepsilon} - \alpha^-_W \\ & \beta^+_{\rm tot} = \beta^+ + \hat{K}^- \\ & \gamma^-_{\rm tot} = \underbrace{\gamma^- - \Lambda^+ \hat{K}^-}_{\gamma^-_K} - \frac{q^2}{2} \alpha^-_W \end{split}$$

coefficients (errors) depends on Λ^{\pm} !

New correction $\hat{K}^- \hookrightarrow \mathsf{FU} = \mathsf{U}$ at s

parabolic velocity in Stokes flow!

 ζ_4^- such that $\beta_{tot}^+ = 0$ / linear pressure in Stokes flow! Resulting single-node schemes are parametrized

^aΩΩ ^bΩ (Marson, 2022; Ginzburg et al., 2022) ^aΩ Marson, 2022: Ginzburg et al., 2022)

Introduction 00	The lattice Boltzmann equation	Boundary closure and accuracy ○○●	Classification 00	Stability 00	Results 00000	The End O	Reference
How to	cancel errors locally					UNIV DE G	ERSITÉ ENÈVE
Linear cas	e:						
$\alpha^+=~-$	$-1 + \hat{\boldsymbol{\alpha}} + \boldsymbol{\beta} + \hat{\boldsymbol{\beta}}$						
$\alpha^- = 1$	$+ \hat{\alpha} + \beta - \hat{\beta}$						
$eta^+=rac{1}{2}($	$(\hat{lpha} - \hat{eta} - eta - 1) - lpha^- \Lambda^-$						
$\gamma^{-} = -$	$\beta^+ \Lambda^+ - eta$						
$lpha_{ m tot}^+ =$	$= lpha^+ - lpha_\epsilon^+$		<u> </u>				

 $\begin{aligned} \alpha_{\text{tot}}^{-} &= \alpha^{-} - \alpha_{\epsilon}^{-} - \alpha_{W}^{-} \\ \beta_{\text{tot}}^{+} &= \beta^{+} + \hat{K}^{-} \\ \gamma_{\text{tot}}^{-} &= \underbrace{\gamma^{-} - \Lambda^{+} \hat{K}^{-}}_{\gamma_{K}^{-}} - \frac{q^{2}}{2} \alpha_{W}^{-} \end{aligned}$

coefficients (errors) depends on Λ^{\pm} !

New correction $\hat{K}_4^- \ ^c \Rightarrow \mathsf{ELI} = \mathsf{LI}$ at s.s.

$$\begin{split} &K_4^- \text{ such that } \beta_{tot}^+ = 0 \\ & \neq \\ & \text{ linear pressure in Stokes flow!} \\ & \text{Resulting single-node schemes are parametrized!} \end{split}$$

^aCC ^bCC (Marson, 2022; Ginzburg et al., 2022) ^cCC (Marson, 2022; Ginzburg et al., 2022)

(Filippova & Hänel, 1997; Mei et al., 1999; Yu et al., 2003; Ginzburg & d'Humières, 2003; Ginzburg et al., 2008; Marson, Thorimbert, et al., 2021; Zhao & Yong, 2017; Tao et al., 2018; Ginzburg, 2020; Meng et al., 2020; Bouzidi et al., 2001; Marson, Silva, et al., 2021)

Introduction 00	The lattice Boltzmann equation	Boundary closure and accuracy 000	Classification O •	Stability 00

Results The End

References

Inclined channels

Scheme or Family	Nodes	c-stk-flow	p-stk-flow	param.	c-nse-flow	p-nse-flow
MR _{nse}	$3\sim4$	√	\checkmark	~	√	~
	the	parametrized	and p-stk-flo	w schemes	5	
PM={AVMR, EMR}	$2 \sim 3$	√	√	 ✓ 	√	×
$MR = \{MR1, MR1^+\}$	$2 \sim 3$	\checkmark	\checkmark	✓	×	×
{IPLI, LI ₃ }	$1 \sim 2$	\checkmark	\checkmark	\checkmark	×	×
$\{CELI-IP, ELI_3\}$	1	\checkmark	\checkmark	\checkmark	×	×
		the paran	netrized scher	nes		
LI1	$1\sim 2$	~	×	√	×	×
ELI ₁	1	✓	×	✓	×	×
LI ₄	$1 \sim 2$	✓	×	✓	×	×
ELI4	1	✓	×	✓	×	×
HW	1	×	×	\checkmark	×	×
		non-paran	netrized sche	mes		
		linear-inte	erpolation bas	sed:		
LI ⁺	$1 \sim 2$	~	×	×	×	×
ELI ₀	1	√	×	×	×	×
		quadratic-ir	nterpolation b	ased:		
BFL-QI ₃	$2 \sim 3$	√	\checkmark	×	×	×
BFL-QI	2~3	√	×	×	×	×
		equilibrium-i	nterpolation	based:		
FH_3	1	√	\checkmark	×	×	×
FH_0	1	√	×	×	×	×
MLS ₃	2	✓	\checkmark	×	×	×
MLS ₀	2	 ✓ 	×	×	×	×

Introduction	The lattice Boltzmann equation	Boundary closure and accuracy	Classification	Stability	Results	The End	References
00	000000	000	00	•O	00000	O	
Stabili	ity optimization						ERSITÉ ENÈVE

In the bulk

1. collision, with stability condition:

$$\left|1-1/ au^+
ight|\leq 1$$

2. streaming.

In the boundary

- 1. modified collision, with stability condition:
 - $\left|1\mp \beta^{\mp}/ au^{\pm}
 ight|\leq 1$

2. modified streaming.

- > accuracy for the steady state solution is the same for all α^- (parametrized schemes);
- ▶ $\beta^- \Rightarrow \alpha^-$ controls the stability proprieties of the schemes!
- An optimal stability value for $\alpha^-(\Lambda^{\pm})$ exists
- coefficients $\in [-1, 1]$: almost necessary condition, not sufficient with K^-

For \hat{K}_3 schemes, the steady state accuracy in p-flow is the same, but stability is different for schemes with different α^-

 α^- controls the stability proprieties of the schemes!

Introduction 00	The lattice Boltzmann equation	Boundary closure and accuracy	Classification 00	Stability 00	Results •0000	The End O	References
Stokes f	low: circular Couett	e					ERSITÉ

					Â		EDCITÉ
Introduction 00	The lattice Boltzmann equation 000000	Boundary closure and accuracy 000	Classification 00	Stability 00	Results 00000	The End O	References

Stokes flow: circular Couette

Introduction 00	The lattice Boltzmann equation 000000	Boundary closure and accuracy	Classification 00	Stability 00	Results 00000	The End O	References
Stokes f	low: circular Couett	e					ERSITÉ ENÈVE

C 1 (1					(A	🔊 UNIV	ERSITÉ
Introduction 00	The lattice Boltzmann equation 000000	Boundary closure and accuracy 000	Classification 00	Stability 00	Results •0000	The End O	References

Stokes flow: circular Couette

C 1 (1	· · · ·				(A	🔊 UNIV	ERSITÉ
Introduction 00	The lattice Boltzmann equation 000000	Boundary closure and accuracy	Classification 00	Stability OO	Results •0000	The End O	References

Stokes flow: circular Couette

C 1 (1	1. · · ·				(A	🔊 UNIV	ERSITÉ
Introduction 00	The lattice Boltzmann equation 000000	Boundary closure and accuracy	Classification 00	Stability OO	Results 0●000	The End O	References

Stokes flow: results in arrays

Figure: Schematic representation of the simulation domain for the array of cylinders configuration (Silva, 2018).

Figure: Permeability estimation error in an array of cylinders using darcy law. (a) and (b): dilute flow with solid fraction c = 0.2. (a) cell resolution $H^2 = 33^2 \ln^2$. (b) cell resolution $H^2 = 99^2 \ln^2$.

(Ginzburg et al., 2022; Marson, 2022)

F. Marson

Figure: Permeability estimation error in an array of cylinders using darcy law. (a) and (b): dilute flow with solid fraction c = 0.2. (a) cell resolution $H^2 = 33^2 \ln^2$. (b) cell resolution $H^2 = 99^2 \ln^2$.

(Ginzburg et al., 2022; Marson, 2022)

F. Marson

Stokes flow: results in arrays

Figure: Permeability estimation error in an array of cylinders using darcy law. (a) and (b): dilute flow with solid fraction c = 0.2. (a) cell resolution $H^2 = 33^2 \ln^2$. (b) cell resolution $H^2 = 99^2 \ln^2$.

(Ginzburg et al., 2022; Marson, 2022)

Figure: Permeability estimation error in an array of cylinders using darcy law. (a) and (b): dilute flow with solid fraction c = 0.2. (a) cell resolution $H^2 = 33^2 \ln^2$. (b) cell resolution $H^2 = 99^2 \ln^2$.

(Ginzburg et al., 2022; Marson, 2022)

F. Marson

Figure: Permeability estimation error in an array of cylinders using darcy law. (a) and (b): dilute flow with solid fraction c = 0.2. (a) cell resolution $H^2 = 33^2 \ln^2$. (b) cell resolution $H^2 = 99^2 \ln^2$.

(Ginzburg et al., 2022; Marson, 2022)

F. Marson

	Introduction 00	The lattice Boltzmann equation	Boundary closure and accuracy	Classification 00	Stability 00	Results 00000	The End O	References
Finite Re								ERSITÉ ENÈVE

Error as a function of grid Reynolds $\text{Re} = u_{lb}/\nu_{lb}$

- \blacktriangleright LBE with standard NSE equilibrium \rightarrow inexact solutions for c/p-nse-flows
- higher order errors appear in the closure
- results are non-parametrized
- find optimal scaling for $\Lambda = \Lambda^+ \Lambda^-$

Sandstone porous medium with Palabos on GPUs

Introduction 00	The lattice Boltzmann equation	Boundary closure and accuracy	Classification 00	Stability OO	Results 00000	The End	References
Thank yo	ou! Questions?						ERSITÉ ENÈVE

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

Acknowledgments

- Bouzidi, M., Firdaouss, M., & Lallemand, P. (2001, October). Momentum transfer of a Boltzmann-lattice fluid with boundaries. *Physics of Fluids*, 13(11), 3452–3459. Retrieved 2019-10-18, from https://aip.scitation.org/doi/abs/10.1063/1.1399290 (695 citations (Crossref) [2021-05-13]) doi: 10.1063/1.1399290
- Filippova, O., & Hänel, D. (1997, September). Lattice-Boltzmann simulation of gas-particle flow in filters. Computers & Fluids, 26(7), 697-712. Retrieved 2020-06-25, from http://www.sciencedirect.com/science/article/pii/S0045793097000091 (162 citations (Crossref) [2021-05-08]) doi: 10.1016/S0045-7930(97)00009-1
- Ginzburg, I. (2020, September). Steady-state two-relaxation-time lattice Boltzmann formulation for transport and flow, closed with the compact multi-reflection boundary and interface-conjugate schemes. Journal of Computational Science, 101215. Retrieved 2021-04-29, from https://www.sciencedirect.com/science/article/pii/S1877750320305159 (4 citations (Crossref) [2021-09-30]) doi: 10.1016/j.jocs.2020.101215
- Ginzburg, I., & Adler, P. M. (1994, February). Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. *Journal de Physique II*, 4(2), 191–214. Retrieved 2019-10-31, from http://www.edpsciences.org/10.1051/jp2:1994123 (204 citations (Crossref) [2021-05-08]) doi: 10.1051/jp2:1994123

Reference	ces II				(ERSITÉ
Introduction	The lattice Boltzmann equation	Boundary closure and accuracy	Classification	Stability 00	Results	The End O	References

- Ginzburg, I., & d'Humières, D. (2003, December). Multireflection boundary conditions for lattice Boltzmann models. *Physical Review E*, 68(6), 066614. Retrieved 2019-10-19, from https://link.aps.org/doi/10.1103/PhysRevE.68.066614 (344 citations (Crossref) [2021-09-01]) doi: 10.1103/PhysRevE.68.066614
- Ginzburg, I., Silva, G., Marson, F., Chopard, B., & Latt, J. (2022). Unified directional parabolic-accurate Lattice Boltzmann boundary schemes for grid-rotated narrow gaps and curved walls in creeping and inertial fluid flows. *Physical Review E (submitted)*, 51.
- Ginzburg, I., Verhaeghe, F., & d'Humières, D. (2008). Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions. Commun. Comput. Phys., 3(2), 427–478. Retrieved from

https://global-sci.org/intro/article_detail/cicp/7862.html

Khirevich, S., Ginzburg, I., & Tallarek, U. (2015, January). Coarse- and fine-grid numerical behavior of MRT/TRT lattice-Boltzmann schemes in regular and random sphere packings. *Journal of Computational Physics*, 281, 708–742. Retrieved 2019-10-29, from http://www.sciencedirect.com/science/article/pii/S0021999114007207 (83 citations (Crossref) [2021-09-30]) doi: 10.1016/j.jcp.2014.10.038

- Latt, J., Malaspinas, O., Kontaxakis, D., Parmigiani, A., Lagrava, D., Brogi, F., ... Chopard, B. (2021, January). Palabos: Parallel Lattice Boltzmann Solver. Computers & Mathematics with Applications, 81, 334–350. Retrieved 2021-01-22, from http://www.sciencedirect.com/science/article/pii/S0898122120301267 (47 citations (Crossref) [2022-01-18]) doi: 10.1016/j.camwa.2020.03.022
- Marson, F. (2022). Directional lattice Boltzmann boundary conditions. , 109.
- Marson, F., Silva, G., Chopard, B., Latt, J., & Ginzburg, I. (2021). Directional LBM boundary conditions: unified formulation and extension to local parabolic schemes.
- Marson, F., Thorimbert, Y., Chopard, B., Ginzburg, I., & Latt, J. (2021, May). Enhanced single-node lattice Boltzmann boundary condition for fluid flows. *Physical Review E*, 103(5), 053308. Retrieved 2021-05-22, from https://link.aps.org/doi/10.1103/PhysRevE.103.053308 (1 citations (Crossref) [2022-01-22] Publisher: American Physical Society) doi: 10.1103/PhysRevE.103.053308
- Mei, R., Luo, L.-S., & Shyy, W. (1999, November). An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method. *Journal of Computational Physics*, 155(2), 307–330. Retrieved 2019-06-17, from http://www.sciencedirect.com/science/article/pii/S0021999199963349 (377 citations (Crossref) [2021-05-08]) doi: 10.1006/jcph.1999.6334

- Meng, X., Wang, L., Zhao, W., & Yang, X. (2020, July). Simulating flow in porous media using the lattice Boltzmann method: Intercomparison of single-node boundary schemes from benchmarking to application. Advances in Water Resources, 141, 103583. Retrieved 2020-09-17, from http://www.sciencedirect.com/science/article/pii/S0309170819305755 (2 citations (Crossref) [2021-07-01]) doi: 10.1016/j.advwatres.2020.103583
- Silva, G. (2018, August). Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries. *Physical Review E*, 98(2), 023302. Retrieved 2019-07-15, from https://link.aps.org/doi/10.1103/PhysRevE.98.023302 (11 citations (Crossref) [2021-05-08]) doi: 10.1103/PhysRevE.98.023302
- Tao, S., He, Q., Chen, B., Yang, X., & Huang, S. (2018, October). One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles. *Computers & Mathematics with Applications*, 76(7), 1593–1607. Retrieved 2021-05-18, from https://www.sciencedirect.com/science/article/pii/S089812211830378X (18 citations (Crossref) [2021-10-02]) doi: 10.1016/j.camwa.2018.07.013
- Yu, D., Mei, R., & Shyy, W. (2003). A Unified Boundary Treatment in Lattice Boltzmann Method. 41st Aerospace Sciences Meeting and Exhibit. Retrieved 2019-08-22, from https://arc.aiaa.org/doi/abs/10.2514/6.2003-953 (33 citations (Crossref) [2022-01-27]) doi: 10.2514/6.2003-953

Introduction 00	The lattice Boltzmann equation	Boundary closure and accuracy	Classification 00	Stability 00	Results 00000	The End O	References
Referenc	ces V						'ERSITÉ ENÈVE

Zhao, W., & Yong, W.-A. (2017, January). Single-node second-order boundary schemes for the lattice Boltzmann method. Journal of Computational Physics, 329, 1–15. Retrieved 2019-06-25, from http://www.sciencedirect.com/science/article/pii/S0021999116305575 (29 citations (Crossref) [2021-10-02]) doi: 10.1016/j.jcp.2016.10.049