Wave Propagation in presence of a Periodic Halfspace

Case where the slope of the interface is arbitrary

Pierre Amenoagbadji Sonia Fliss Patrick Joly

POEMS – UMR 7231 CNRS - INRIA - ENSTA Paris - IPP 45eme Congrès National d'Analyse Numérique – June 2022

Outline

2 Quasiperiodic functions

3 The lifting approach

4 Numerical results

Conclusion

Motivation

Overall objective

Mathematical and numerical analysis and simulation of some wave propagation phenomena arising in acoustics, elastodynamics and electromagnetism in presence of heterogeneous media.

Periodic media

Media whose geometry or physical properties can be represented as periodic functions

Composite materials in mechanics

Motivation

Overall objective

Mathematical and numerical analysis and simulation of some wave propagation phenomena arising in acoustics, elastodynamics and electromagnetism in presence of heterogeneous media.

Periodic media

Media whose geometry or physical properties can be represented as periodic functions

Photonic crystals in optics

Composite materials in mechanics

Typical model

Time-harmonic wave equation

The total field *u*_t satisfies the **Helmholtz** equation:

div
$$\mathbf{A}_t \nabla \mathbf{u}_t - \rho_t \, \omega^2 \, \mathbf{u}_t = 0$$
, in \mathbb{R}^2

where

Typical model

Time-harmonic wave equation

The total field *u*_t satisfies the **Helmholtz** equation:

div
$$\mathbf{A}_t \nabla \boldsymbol{u}_t - \rho_t \, \omega^2 \, \boldsymbol{u}_t = 0, \quad \text{in} \quad \mathbb{R}^2$$

where

$$\boldsymbol{u_t} = \begin{cases} u_i + u_r & \text{in } \Omega_- \\ \\ u_d & \text{in } \Omega_+ \end{cases}$$

A first step is to understand the half-space periodic problem.

In this presentation

Helmholtz equation with Dirichlet boundary condition

We wish to **compute** $\mathbf{u} \in H^1(\Omega_+), \Omega_+ := \{x_1 \tan \alpha - x_2 > 0\}$, the unique solution of

$$-\operatorname{div} \mathbf{A} \nabla \boldsymbol{u} - \rho \, \omega^2 \, \boldsymbol{u} = 0, \quad x \in \Omega_+$$
$$\boldsymbol{u} = \varphi, \quad x \in \partial \Omega_+$$
$$(\mathscr{P})$$

where • $\Im \mathfrak{m} \omega > 0$

- $\mathbf{A} \in \mathscr{C}^0(\mathbb{R}^2; \mathbb{R}^{2 \times 2})$ and $\rho \in \mathscr{C}^0(\mathbb{R}^2)$ are 1-periodic, bounded and coercive
- The Dirichlet data φ belongs to $H^{1/2}(\partial \Omega_+)$.

Current methods

Current methods

Procedure in the rational case

- 1. Apply Floquet-Bloch transform in the direction of the boundary
- 2. Solve a family of waveguide problems parameterized by the Floquet variable

Current methods and limitations

When $\tan \alpha$ is rational

The medium is **periodic along the interface**

Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

But the domain size **increases** with the **denominator** of $\tan \alpha$.

 $\tan \alpha = 1/2$

Procedure in the rational case

- 1. Apply Floquet-Bloch transform in the direction of the boundary
- 2. Solve a family of waveguide problems parameterized by the Floquet variable

Current methods and limitations

When $\tan \alpha$ is rational

The medium is periodic along the interface

Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

But the domain size **increases** with the **denominator** of $\tan \alpha$.

$$\tan \alpha = 1/3$$

Procedure in the rational case

- 1. Apply Floquet-Bloch transform in the direction of the boundary
- 2. Solve a family of waveguide problems parameterized by the Floquet variable

Current methods and limitations

When $\tan \alpha$ is rational

The medium is periodic along the interface

Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

But the domain size **increases** with the **denominator** of $\tan \alpha$.

When $\tan \alpha$ is **irrational**

The medium is **no longer** periodic along the interface

But it still has a so-called **quasiperiodic** structure.

Outline

2 Quasiperiodic functions

3 The lifting approach

4 Numerical results

Conclusion

A function $\mu_{\theta} : \mathbb{R} \to \mathbb{C}$ is said to be **quasiperiodic** of order 2 if there exists $\theta \in (0, \pi/2)$ and a continuous function $\mu_p : \mathbb{R}^2 \to \mathbb{C}$, 1-periodic in each variable, such that

$$\forall x \in \mathbb{R}, \quad \mu_{\theta}(x) = \mu_p(x \, \cos \theta, x \, \sin \theta) = \mu_p(\vec{e}_{\theta} \, x), \quad \vec{e}_{\theta} := (\cos \theta, \sin \theta).$$

 \vec{e}_{θ}

A function $\mu_{\theta} : \mathbb{R} \to \mathbb{C}$ is said to be **quasiperiodic** of order 2 if there exists $\theta \in (0, \pi/2)$ and a continuous function $\mu_p : \mathbb{R}^2 \to \mathbb{C}$, 1-periodic in each variable, such that

$$\forall x \in \mathbb{R}, \quad \mu_{\theta}(x) = \mu_p(x \, \cos \theta, x \, \sin \theta) = \mu_p(\vec{e}_{\theta} \, x), \quad \vec{e}_{\theta} := (\cos \theta, \sin \theta).$$

A function $\mu_{\theta} : \mathbb{R} \to \mathbb{C}$ is said to be **quasiperiodic** of order 2 if there exists $\theta \in (0, \pi/2)$ and a continuous function $\mu_p : \mathbb{R}^2 \to \mathbb{C}$, 1-periodic in each variable, such that

$$\forall x \in \mathbb{R}, \quad \mu_{\theta}(x) = \mu_p(x \cos \theta, x \sin \theta) = \mu_p(\vec{e}_{\theta} x), \quad \vec{e}_{\theta} := (\cos \theta, \sin \theta).$$

A function $\mu_{\theta} : \mathbb{R} \to \mathbb{C}$ is said to be **quasiperiodic** of order 2 if there exists $\theta \in (0, \pi/2)$ and a continuous function $\mu_p : \mathbb{R}^2 \to \mathbb{C}$, 1-periodic in each variable, such that

$$\forall x \in \mathbb{R}, \quad \mu_{\theta}(x) = \mu_p(x \cos \theta, x \sin \theta) = \mu_p(\vec{e}_{\theta} x), \quad \vec{e}_{\theta} := (\cos \theta, \sin \theta).$$

[©] Pierre Amenoagbadji Sonia Fliss Patrick Joly

Quasiperiodic structure

Define $\forall z = (z_1, z_2, z_3) \in \mathbb{R}^3$, $\mathbf{A}_p(z) = \mathbf{A}(z_1 + z_3, z_2)$ and $\rho_p(z) = \rho(z_1 + z_3, z_2)$

---- **>** z₂

- The tensor \mathbf{A}_p and the coefficient ρ_p are lifts of \mathbf{A} and ρ .
- A_p and ρ_p represent a 1-periodic medium in all directions.

21 +

A hidden quasiperiodicity property

Quasiperiodic structure

 $\text{Define} \quad \forall \; z = (z_1, z_2, z_3) \in \mathbb{R}^3, \quad \mathbf{A}_p(z) = \mathbf{A}(z_1 + \textbf{z_3}, z_2) \quad \text{and} \quad \rho_p(z) = \rho(z_1 + \textbf{z_3}, z_2)$

and consider the matrix

$$C = \begin{pmatrix} 1 & -\tan\alpha \\ 0 & 1 \\ 0 & \tan\alpha \end{pmatrix}$$

Quasiperiodic structure

 $\text{Define} \quad \forall \; z = (z_1, z_2, z_3) \in \mathbb{R}^3, \quad \mathbf{A}_p(z) = \mathbf{A}(z_1 + \mathbf{z_3}, z_2) \quad \text{and} \quad \rho_p(z) = \rho(z_1 + \mathbf{z_3}, z_2)$

and consider the matrix

$$\mathbf{C} = \begin{pmatrix} 1 & -\tan\alpha\\ 0 & 1\\ 0 & \tan\alpha \end{pmatrix}$$

Then one shows that

$$\begin{array}{rcl} x \in \Omega_+ & \Longleftrightarrow & \mathbf{C}x \in \{(z_1, z_2, z_3) \in \mathbb{R}^3, \ z_1 > 0\} \\ x \in \partial \Omega_+ & \Longleftrightarrow & \mathbf{C}x \in \{(z_1, z_2, z_3) \in \mathbb{R}^3, \ z_1 = 0\} \end{array}$$

Quasiperiodic structure

State of the art

Lifting approach

Lift the PDE into a non-elliptic PDE with periodic coefficients

• Has been used only in the context of homogenization

Bouchitté, Guenneau, Zolla, 2010 Gérard-Varet, Masmoudi, 2010 Blanc, Le Bris, Lions, 2015

State of the art and goal

Lifting approach

Lift the PDE into a non-elliptic PDE with periodic coefficients

• Has been used only in the context of homogenization

Bouchitté, Guenneau, Zolla, 2010 Gérard-Varet, Masmoudi, 2010 Blanc, Le Bris, Lions, 2015

Goal of this work

Analysis of wave propagation in quasiperiodicity-induced situations

• 1D Helmholtz equation with quasiperiodic coefficients

A, Fliss, Joly, In progress

• Periodic half-space problem

Outline

3 The lifting approach

4 Numerical results

Conclusion

The lifting approach

Helmholtz equation with Dirichlet boundary condition

We wish to **compute** $\boldsymbol{u} \in H^1(\Omega_+)$, the unique solution of

$$-\operatorname{div} \mathbf{A} \nabla \boldsymbol{u} - \rho \, \omega^2 \, \boldsymbol{u} = 0, \quad x \in \Omega_+$$
$$\boldsymbol{u} = \varphi, \quad x \in \partial \Omega_+$$
$$(\mathscr{P})$$

where $\forall \ x \in \Omega_+, \quad \mathbf{A}(x) = \mathbf{A}_p(\mathbf{C}x) \quad \text{and} \quad \rho(x) = \rho_p(\mathbf{C}x) \text{ with}$

$$\forall z = (z_1, z_2, z_3) \in \mathbb{R}^3, \quad \mathbf{A}_p(z) = \mathbf{A}(z_1 + z_3, z_2), \quad \rho_p(z) = \rho(z_1 + z_3, z_2),$$

and where

$$\mathbf{C} = \begin{pmatrix} 1 & -\tan\alpha\\ 0 & 1\\ 0 & \tan\alpha. \end{pmatrix} \quad \text{satisfies} \quad x \in \Omega_+ \iff \mathbf{C}x \in \mathbb{R}^3_+ := \{z_1 > 0\}$$

The core idea

Seek u as the trace of a function $U : \mathbb{R}^3_+ \to \mathbb{C}$ along the half-plane $\{\mathbf{C}x, x \in \Omega_+\}$, that is,

$$\boldsymbol{u}(x) = \boldsymbol{U}(\mathbf{C}\,x).$$

Using the ansatz $u(x) = U(\mathbf{C} x)$ and the rule $\nabla u(x) = \left[{}^{t}\mathbf{C}\nabla U \right](\mathbf{C} x)$, it is natural to introduce

 $-\operatorname{div} \mathbf{A} \nabla \boldsymbol{u} - \rho \, \omega^2 \, \boldsymbol{u} = 0, \quad x \in \Omega_+,$ $\boldsymbol{u} = \varphi, \quad x \in \partial \Omega_+$

Using the ansatz $u(x) = U(\mathbf{C} x)$ and the rule $\nabla u(x) = \left[{}^{t}\mathbf{C}\nabla U \right](\mathbf{C} x)$, it is natural to introduce

 $-\operatorname{div} \mathbf{A} \nabla u - \rho \, \omega^2 \, u = 0, \quad x \in \Omega_+,$ $u = \varphi, \quad x \in \partial \Omega_+$

 $-\operatorname{div}(\mathbf{C}\mathbf{A}_{p}^{t}\mathbf{C}\nabla U)-\rho_{p}\,\omega^{2}\,U=0,\qquad z_{1}>0,$

Using the ansatz $u(x) = U(\mathbf{C} x)$ and the rule $\nabla u(x) = \left[{}^{t}\mathbf{C}\nabla U \right](\mathbf{C} x)$, it is natural to introduce

 $-\operatorname{div} \mathbf{A} \nabla u - \rho \, \omega^2 \, u = 0, \quad x \in \Omega_+,$ $u = \varphi, \quad x \in \partial \Omega_+$

 $-\operatorname{div}(\mathbf{C}\mathbf{A}_{p}^{t}\mathbf{C}\nabla U)-\rho_{p}\,\omega^{2}\,\boldsymbol{U}=0,\qquad z_{1}>0,$

Using the ansatz $u(x) = U(\mathbf{C} x)$ and the rule $\nabla u(x) = \left[{}^{t}\mathbf{C}\nabla U \right](\mathbf{C} x)$, it is natural to introduce

 $-\operatorname{div} \mathbf{A}\nabla u - \rho \,\omega^2 \, u = 0, \quad x \in \Omega_+,$ $\mathbf{u} = \varphi, \quad x \in \partial \Omega_+$

 $-\operatorname{div}(\mathbf{C}\mathbf{A}_{p}^{t}\mathbf{C}\boldsymbol{\nabla} U) - \rho_{p}\omega^{2} U = 0, \qquad z_{1} > 0,$ $U = \boldsymbol{\varphi}_{p}, \quad \boldsymbol{z}_{1} = \boldsymbol{0}$

 $\varphi_p(z_2, z_3)$ is an **arbitrary** function such that $\varphi_p(s \tan \alpha, s) = \varphi(s)$.

Using the ansatz $u(x) = U(\mathbf{C} x)$ and the rule $\nabla u(x) = \begin{bmatrix} t \mathbf{C} \nabla U \end{bmatrix} (\mathbf{C} x)$, it is natural to introduce

 $-\operatorname{div} \mathbf{A} \nabla \mathbf{u} - \rho \,\omega^2 \,\mathbf{u} = 0, \quad x \in \Omega_+,$

$$\boldsymbol{u} = \boldsymbol{\varphi}, \quad x \in \partial \Omega_+$$

 $-\operatorname{div}(\mathbf{C}\mathbf{A}_{p}^{t}\mathbf{C}\nabla\boldsymbol{U}) - \rho_{p}\omega^{2}\boldsymbol{U} = 0, \quad z_{1} > 0,$ $\boldsymbol{U} = \varphi_{p}, \quad z_{1} = 0$

 $\varphi_p(z_2, z_3)$ is an arbitrary function such that $\varphi_p(s \tan \alpha, s) = \varphi(s)$. It can be chosen periodic:

Using the ansatz $u(x) = U(\mathbf{C} x)$ and the rule $\nabla u(x) = \begin{bmatrix} t \mathbf{C} \nabla U \end{bmatrix} (\mathbf{C} x)$, it is natural to introduce

 $-\operatorname{div} \mathbf{A} \nabla \boldsymbol{u} - \rho \, \omega^2 \, \boldsymbol{u} = 0, \quad x \in \Omega_+,$

$$\boldsymbol{u} = \varphi, \quad x \in \partial \Omega_+$$

$$-\operatorname{div}(\mathbf{C}\mathbf{A}_{p}{}^{\mathrm{t}}\mathbf{C}\nabla\boldsymbol{U}) - \rho_{p}\,\omega^{2}\,\boldsymbol{U} = 0, \qquad z_{1} > 0,$$
$$\boldsymbol{U} = \varphi_{p}, \quad z_{1} = 0$$
$$\boldsymbol{U}(\cdot + \vec{e}_{2}) = \boldsymbol{U}(\cdot)$$

 $\varphi_p(z_2, z_3)$ is an arbitrary function such that $\varphi_p(s \tan \alpha, s) = \varphi(s)$. It can be chosen periodic:

$$\varphi_p(z_2+1,z_3) = \varphi_p(z_2,z_3) \implies \boldsymbol{U}(\cdot+\vec{e}_2) = \boldsymbol{U}(\cdot).$$

Properties of the 3D half-strip problem

- Periodic coefficients
- Nonelliptic principal part

$$-\operatorname{div}(\mathbf{C}\mathbf{A}_{p}^{\dagger}\mathbf{C}\boldsymbol{\nabla}\boldsymbol{U}) - \rho_{p}\,\omega^{2}\,\boldsymbol{U} = 0, \qquad z_{1} > 0,$$
$$\boldsymbol{U} = \varphi_{p}, \quad z_{1} = 0$$
$$\boldsymbol{U}(\cdot + \vec{e}_{2}) = \boldsymbol{U}(\cdot)$$

Resolution of the half-strip problem

How to solve the 3D half-strip problem

Fliss, Cassan, Bernier, 2010

1. Apply Floquet-Bloch transform along the z_3 -axis

$$-\operatorname{div}(\mathbf{C}\mathbf{A}_{p}{}^{\mathrm{t}}\mathbf{C}\boldsymbol{\nabla}\boldsymbol{U}) - \rho_{p}\,\omega^{2}\,\boldsymbol{U} = 0, \qquad z_{1} > 0,$$
$$\boldsymbol{U} = \varphi_{p}, \quad z_{1} = 0$$
$$\boldsymbol{U}(\cdot + \vec{e}_{2}) = \boldsymbol{U}(\cdot)$$

Resolution of the half-strip problem

How to solve the 3D half-strip problem

Fliss, Cassan, Bernier, 2010

- 1. Apply Floquet-Bloch transform along the z_3 -axis
- 2. Solve a family of waveguide problems parameterized by the Floquet variable k

$$\begin{split} -\operatorname{div} \left(\mathbf{C} \mathbf{A}_p \,^{\mathrm{t}} \mathbf{C} \boldsymbol{\nabla} \boldsymbol{U} \right) & -\rho_p \, \omega^2 \, \boldsymbol{U} = \boldsymbol{0}, \qquad z_1 > \boldsymbol{0}, \\ & \boldsymbol{U} = \varphi_p, \quad z_1 = \boldsymbol{0} \\ & \boldsymbol{U} (\cdot + \vec{e}_2) = \boldsymbol{U} (\cdot) \end{split}$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{U}_{k}(\cdot, z_{3}) e^{ikz_{3}} dk$$

$$(\operatorname{div} + \operatorname{ik}^{t} \bar{e}_{3})(\operatorname{CA}_{p}^{t} \operatorname{C}(\nabla + \operatorname{ik} \bar{e}_{3})\hat{U}_{k}) - \rho_{p} \omega^{2} \hat{U}_{k} = 0$$

$$z_{3}$$

$$\hat{U}_{k}(\cdot + \bar{e}_{3}) = \hat{U}_{k}(\cdot)$$

$$z_{4}$$

Resolution of the half-guide problem

How to solve the 3D half-strip problem

Fliss, Cassan, Bernier, 2010

 $U(\cdot, z_3)$

- 1. Apply Floquet-Bloch transform along the z_3 -axis
- 2. Solve a family of waveguide problems parameterized by the Floquet variable k

$$-\operatorname{div}(\mathbf{C}\mathbf{A}_{p}{}^{\mathrm{t}}\mathbf{C}\boldsymbol{\nabla}\boldsymbol{U}) - \rho_{p}\,\omega^{2}\,\boldsymbol{U} = 0, \qquad z_{1} > 0,$$
$$\boldsymbol{U} = \varphi_{p}, \quad z_{1} = 0$$
$$\boldsymbol{U}(\cdot + \vec{e}_{2}) = \boldsymbol{U}(\cdot)$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{U}_{k}(\cdot, z_{3}) e^{ikz_{3}} dk$$

$$(\operatorname{div} + \operatorname{ik}{}^{k} \vec{e}_{3}) (\operatorname{CA}_{p}{}^{t} \operatorname{C}(\nabla + \operatorname{ik} \vec{e}_{3}) \hat{U}_{k}) - \rho_{p} \omega^{2} \hat{U}_{k} = 0$$

$$\hat{U}_{k}(\cdot + \vec{e}_{3}) = \hat{U}_{k}(\cdot)$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{U}_{k}(\cdot, z_{3}) e^{ikz_{3}} dk$$

$$\hat{U}_{k}(\cdot + \vec{e}_{3}) = \hat{U}_{k}(\cdot)$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{U}_{k}(\cdot, z_{3}) e^{ikz_{3}} dk$$

$$\hat{U}_{k}(\cdot + \vec{e}_{3}) = \hat{U}_{k}(\cdot)$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{U}_{k}(\cdot, z_{3}) e^{ikz_{3}} dk$$

$$\hat{U}_{k}(\cdot + \vec{e}_{3}) = \hat{U}_{k}(\cdot)$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{U}_{k}(\cdot, z_{3}) e^{ikz_{3}} dk$$

$$\hat{U}_{k}(\cdot + \vec{e}_{3}) = \hat{U}_{k}(\cdot)$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{U}_{k}(\cdot, z_{3}) e^{ikz_{3}} dk$$

$$\hat{U}_{k}(\cdot + \vec{e}_{3}) = \hat{U}_{k}(\cdot)$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{U}_{k}(\cdot, z_{3}) e^{ikz_{3}} dk$$

Outline

4 Numerical results

Conclusion

Test case for the half-space problem

Data φ and function ρ

2

Test case for the half-space problem • $\omega = 5 \pm 0.5i$

•
$$\omega = 5 + 0.5i$$
 • $\alpha = \pi/3$ • $\varphi(s) = \exp(-s^2/2)$

Test case for the half-space problem

•
$$\omega = 10 + 0.5i$$
 • $\alpha = \pi/3$ • $\varphi(s) = \exp(-s^2/2)$

Test case for the half-space problem

•
$$\omega = 10 + \frac{0.1i}{0.1i}$$
 • $\alpha = \pi/3$ • $\varphi(s) = \exp(-s^2/2)$

Outline

3 The lifting approach

4 Numerical results

5 Conclusion

Conclusion

Summary

Resolution of the **Helmholtz equation** in presence of a 2D **periodic halfspace**: Extend the PDE to a periodic PDE through the **lifting approach**

Perspectives for this work (ongoing)

• Extension to transmission problems

Conclusion

Summary

Resolution of the **Helmholtz equation** in presence of a 2D **periodic halfspace**: Extend the PDE to a periodic PDE through the **lifting approach**

Perspectives for this work (ongoing)

• Extension to transmission problems

Thank you for your attention!