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o Motivation and model problem
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Overall objective

Mathematical and numerical analysis and simulation of some wave propagation phenomena arising in
acoustics, elastodynamics and electromagnetism in presence of heterogeneous media.

Periodic media

Media whose geometry or physical properties can be represented as periodic functions

Composite materials in mechanics
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Overall objective

Mathematical and numerical analysis and simulation of some wave propagation phenomena arising in
acoustics, elastodynamics and electromagnetism in presence of heterogeneous media.

Periodic media

Media whose geometry or physical properties can be represented as periodic functions

f 1
Magn® Dt WD b———— 500nm
Photonic crystals in optics Composite materials in mechanics
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Typical model

Time-harmonic wave equation

The total field u, satisfies the Helmholtz equation:

div AiVur — pt w? uy =0, in R?

u; +u,. in Q-
up =

Ud in 52+

where

Incident field u;

Reflected field w.,-
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Typical model

Time-harmonic wave equation

The total field u, satisfies the Helmholtz equation:

div AiVur — pt w? uy =0, in R?

u; +u,. in Q-
up =

Ud in 52+

where

A first step is to understand the half-space periodic problem.

Incident field u;

Lo PY X
Reflected field w,. % O O O O O
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In this presentation

Helmholtz equation with Dirichlet boundary condition

We wish to compute u € H' (Q4 ), Q4 := {x; tana — x> > 0}, the unique solution of

(2)

—divAVu — /JUJ2 u=0, z¢& Q4
u=¢, =€ 04

where o Jmw >0
o A € ¥°(R?R?>*?)and p € ¢°(R?) are 1—periodic, bounded and coercive

o The Dirichlet data ¢ belongs to H/2 (8.
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Current methods

When tan « is rational

The medium is periodic along the
interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

tana =1

© Pierre Amenoagbadji  Sonia Fliss  Patrick Joly 8



When tan « is rational

The medium is periodic along the
interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

tana =1

Procedure in the rational case

1. Apply Floquet-Bloch transform in the direction of the boundary

2. Solve a family of waveguide problems parameterized by the Floquet variable
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Current methods and limitations

When tan « is rational

The medium is periodic along the
interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

But the domain size increases with the
denominator of tan «.

tana = 1/2

Procedure in the rational case

1. Apply Floquet-Bloch transform in the direction of the boundary

2. Solve a family of waveguide problems parameterized by the Floquet variable
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Current methods and limitations

When tan « is rational

The medium is periodic along the
interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

But the domain size increases with the
denominator of tan «.

tana =1/3

Procedure in the rational case

1. Apply Floquet-Bloch transform in the direction of the boundary

2. Solve a family of waveguide problems parameterized by the Floquet variable
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Current methods and limitations

When tan « is rational

The medium is periodic along the
interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

But the domain size increases with the
denominator of tan «.

When tan « is irrational

The medium is no longer periodic along
the interface

But it still has a so-called quasiperiodic
structure.
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e Quasiperiodic functions
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Quasiperiodic functions

Definition — Quasiperiodic functions

A function pp : R — C is said to be quasiperiodic of order 2 if there exists 6 € (0, w/2) and a
continuous function p,, : R — C, 1-periodic in each variable, such that

VazeR, po(x)=pp(xcos,z sinfd) = p,(€px), €p:= (cosb,sinb).
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Quasiperiodic functions

Definition — Quasiperiodic functions

A function pp : R — C is said to be quasiperiodic of order 2 if there exists 6 € (0, w/2) and a
continuous function p,, : R — C, 1-periodic in each variable, such that

VazeR, po(x)=pp(xcos,z sinfd) = p,(€px), €p:= (cosb,sinb).
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Quasiperiodic functions

Definition — Quasiperiodic functions

A function pp : R — C is said to be quasiperiodic of order 2 if there exists 6 € (0, w/2) and a
continuous function p,, : R — C, 1-periodic in each variable, such that

o := (cos0,sin0).

VzeR, pg(x)=pp(x cosb,z sinf) = pu,(€ x),

tanf =3 € Q

| | |
—2 0 2 4

If the slope tan 6 is rational, then ¢ is periodic
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Quasiperiodic functions

Definition — Quasiperiodic functions

A function pp : R — C is said to be quasiperiodic of order 2 if there exists 6 € (0, w/2) and a
continuous function p,, : R — C, 1-periodic in each variable, such that

VazeR, po(x)=pp(xcos,z sinfd) = p,(€px), €p:= (cosb,sinb).

tanf =3 € Q

—4 =2 0 2 4
If the slope tan 6 is irrational, then 1.4 is not necessarily periodic

tanf = /3 € Q

—4 =% 0 2 4
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A hidden quasiperiodicity property

Quasiperiodic structure
Define V z = (21, 22,23) ER®, A,(2) = A(z1 + 23,22) and p,(2) = p(z1 + 23, 22)
e Thetensor A, and the coefficient p,, are lifts of A and p.

e A, and p, represent a 1-periodic medium in all directions.

.., 0000000
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A hidden quasiperiodicity property

Quasiperiodic structure

Define V z = (z1, 22, 23) € R, A,(2) = A(z1 + 2z3,22) and p,(z) = p(z1 + 23, 22)

and consider the matrix 1 —teme
C=1]o0 1
0 tan o
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A hidden quasiperiodicity property

Quasiperiodic structure

Define V z = (z1, 22, 23) € R, A,(2) = A(z1 + 2z3,22) and p,(z) = p(z1 + 23, 22)

and consider the matrix 1 —teme
C=1]o0 1
0 tan o

Then one shows that

z€Qy <= Cz€ {(21,22,23) ER3, z; >0}
z €00y <= Cuz € {(21,22,23) €R3, 21 =0}
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A hidden quasiperiodicity property

Quasiperiodic structure

Define V z = (z1, 22, 23) € R, A,(2) = A(z1 + 2z3,22) and p,(z) = p(z1 + 23, 22)

and consider the matrix 1 —teme
C=1]o0 1
0 tan o

Then one shows that 3
r€Q <= Cuz e {(z1,22,23) €ER’, z1 > 0}

z €00y <= Cuz € {(21,22,23) €R3, 21 =0}

and

Vo eR?, A(z)=A,(Cz) and p(z) = pp(Cx)
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State of the art

Lifting approach

. . L . L. ) Bouchitté, Guenneau, Zolla, 2010
Lift the PDE into a non-elliptic PDE with periodic coefficients Gérard-Varet, Masmoudi, 2010

e Has been used only in the context of homogenization Blanc, Le Bris, Lions, 2015
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State of the art and goal

. . L . L. ) Bouchitté, Guenneau, Zolla, 2010
Lift the PDE into a non-elliptic PDE with periodic coefficients Gérard-Varet, Masmoudi, 2010

e Has been used only in the context of homogenization Blanc, Le Bris, Lions, 2015

Goal of this work

Analysis of wave propagation in quasiperiodicity-induced situations
e 1D Helmholtz equation with quasiperiodic coefficients A, Fliss, Joly, In progress

e Periodic half-space problem
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© Thelifting approach
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The lifting approach

Helmholtz equation with Dirichlet boundary condition

We wish to compute u € H' (Q.), the unique solution of
—divAVu —p wu= 0, z=€Qg
‘ u=¢, x4
whereV z € Q;, A(z) =A,(Cz) and p(z) = pp(Cx) with

vz:(217z27z3) €R37 AI>(Z):A(21+237Z2)7 /)I)(Z):/)(21+Z3722),
and where

1 —tana )
CcC=|0 1 satisfies =z € Q4 < Cz € R‘j_ = {z1 > 0}
0 tan a.

Seek w as the trace of a function U : Ri — C along the half-plane {Cz, = € Q4 }, thatis,

U(Cxz).
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Lifting onto a periodic half-space problem

Using the ansatz u(z) = U(C =) and the rule Vu(z) = [ *CVU](C ), it is natural to introduce

7divAVufpw2 u=0, =€y,

u=¢, x€OoNy
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Lifting onto a periodic half-space problem

Using the ansatz u(z) = U(C =) and the rule Vu(z) = [ *CVU](C ), it is natural to introduce

—divAVu—pu’u=0, z€Q, —div(CA,'CVU) — p,w’U=0, 2 >0,
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Lifting onto a periodic half-space problem

Using the ansatz u(z) = U(C =) and the rule Vu(z) = [ *CVU](C ), it is natural to introduce

u=¢, €Oy

I zZ9 = zztan«

— z2
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Lifting onto a periodic half-space problem

Using the ansatz u(z) = U(C =) and the rule Vu(z) = [ *CVU](C ), it is natural to introduce

u=¢, €Oy U=yp, 21 =0

¢p (22, z3) is an arbitrary function such that ¢, (s tan o, s) = ¢(s).

I zo = zz tan«

© Pierre Amenoagbadiji  Sonia Fliss  Patrick Joly 10



Lifting onto a periodic half-space problem

Using the ansatz u(z) = U(C =) and the rule Vu(z) = [ *CVU](C ), it is natural to introduce

—divAVu—pu’u=0, z€Q, —div(CA,'CVU) — p,w’U=0, 2 >0,

u=¢, x€O004t U=¢p, 21=0

¢p (22, z3) is an arbitrary function such that ¢, (s tan o, s) = ¢(s). It can be chosen periodic:

I zo = zz tan«

— 29
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Lifting onto a periodic half-strip problem

Using the ansatz u(z) = U(C =) and the rule Vu(z) = [ *CVU](C ), it is natural to introduce

—divAVu — pw’u=0, =z€Qy, —div(CA,'CVU) — p,w>U=0, 2z >0,
u=¢, x€ ooy U=¢p, 21=0
U(-+é&)=U()

¢p (22, z3) is an arbitrary function such that ¢, (s tan o, s) = ¢(s). It can be chosen periodic:

| pp(z2 +1,23) = pp(22,23) = U(-+ &) =U(:).

A

/>

B
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Lifting onto a periodic half-strip problem
Properties of the 3D half-strip problem — div(CA,'CVU) — ppw?U=0, 2z >0,

U=yp, 21 =0

e Periodic coefficients
e Nonelliptic principal part Ul +&)=U()
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How to solve the 3D half-strip problem

Resolution of the half-strip problem

Fliss, Cassan, Bernier, 2010 = diV(CAptCVU) — Pp WU =0, z1 > 0,
1. Apply Floquet-Bloch transform along the U=pp, 2z1=0
z3—axis U( + ) =U()
z3
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Resolution of the half-strip problem
How to solve the 3D half-strip problem

Fliss, Cassan, Bernier, 2010 — div(CA,'CVU) — p, WU=0, 2z >0,
1. Apply Floquet-Bloch transform along the U=¢p, z21=0
o U(-+&)=U()
2. Solve a family of waveguide problems

parameterized by the Floquet variable &

(div + ik %&3) (CA,'C(V + ik&3)Uk) — ppw? Uy =0

1 SCIPN ik
U(-,23) = E/ Uy (-, 23) "3 dk

23 Ui (-4 &) =Ui()
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Resolution of the half-guide problem
How to solve the 3D half-strip problem

Fliss, Cassan, Bernier, 2010 — div(CA,'CVU) — p, WU=0, 2z >0,
1. Apply Floquet-Bloch transform along the U=¢p, z21=0
zz—axis

U(-+ &) =U()

2. Solve a family of waveguide problems
parameterized by the Floquet variable &

(div + ik %&3) (CA,'C(V + ik&3)Uk) — ppw? Uy =0

U(-, 23 Uk(-, z3) "3 dk

==L

Ui (-4 &) =Ui()

Half-guide

Fliss, Joly, 2008

1. Solve local cell
problems

2. Compute the
propagation
operator P
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o Numerical results
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Numerical results

Test case for the half-space problem

Data ¢ and function p
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Numerical results

Test case for the half-space problem

ew=5+05 e a=n/3 e o(s)=-exp(—s>/2)
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Numerical results

Test case for the half-space problem

ew=10+05 e a=n/3 e @(s)=exp(—s>/2)
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Numerical results

Test case for the half-space problem

ew=104+0.1i e a=n/3 e @(s)=exp(—s>/2)
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e Conclusion
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Conclusion

Resolution of the Helmholtz equation in presence of a 2D periodic halfspace:
Extend the PDE to a periodic PDE through the lifting approach

Perspectives for this work (ongoing)

e Extension to transmission problems
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Conclusion

Resolution of the Helmholtz equation in presence of a 2D periodic halfspace:
Extend the PDE to a periodic PDE through the lifting approach

Perspectives for this work (ongoing)

e Extension to transmission problems

Thank you for your attention!
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