Wave Propagation in presence of a Periodic Halfspace

Case where the slope of the interface is arbitrary

Pierre Amenoagbadji Sonia Fliss Patrick Joly
POEMS - UMR 7231 CNRS - INRIA - ENSTA Paris - IPP
45eme Congrès National d'Analyse Numérique - June 2022

Outline

(1) Motivation and model problem
(2) Quasiperiodic functions
(3) The lifting approach
(4) Numerical results

5 Conclusion

Motivation

Overall objective

Mathematical and numerical analysis and simulation of some wave propagation phenomena arising in acoustics, elastodynamics and electromagnetism in presence of heterogeneous media.

Periodic media

Media whose geometry or physical properties can be represented as periodic functions

Composite materials in mechanics

Motivation

Overall objective

Mathematical and numerical analysis and simulation of some wave propagation phenomena arising in acoustics, elastodynamics and electromagnetism in presence of heterogeneous media.

Periodic media

Media whose geometry or physical properties can be represented as periodic functions

Photonic crystals in optics

Composite materials in mechanics

Typical model

Time-harmonic wave equation

The total field u_{t} satisfies the Helmholtz equation:

$$
\operatorname{div} \mathbf{A}_{t} \nabla u_{t}-\rho_{t} \omega^{2} u_{t}=0, \quad \text { in } \quad \mathbb{R}^{2}
$$

where

$$
u_{t}= \begin{cases}u_{i}+u_{r} & \text { in } \Omega_{-} \\ u_{d} & \text { in } \Omega_{+}\end{cases}
$$

Typical model

Time-harmonic wave equation

The total field u_{t} satisfies the Helmholtz equation:

$$
\operatorname{div} \mathbf{A}_{t} \nabla u_{t}-\rho_{t} \omega^{2} u_{t}=0, \quad \text { in } \quad \mathbb{R}^{2}
$$

where

$$
u_{t}= \begin{cases}u_{i}+u_{r} & \text { in } \Omega_{-} \\ u_{d} & \text { in } \Omega_{+}\end{cases}
$$

A first step is to understand the half-space periodic problem.

In this presentation

Helmholtz equation with Dirichlet boundary condition

We wish to compute $u \in H^{1}\left(\Omega_{+}\right), \Omega_{+}:=\left\{x_{1} \tan \alpha-x_{2}>0\right\}$, the unique solution of

$$
\begin{align*}
-\operatorname{div} \mathbf{A} \nabla u-\rho \omega^{2} u & =0, & & x \in \Omega_{+} \tag{P}\\
u & =\varphi, & & x \in \partial \Omega_{+}
\end{align*}
$$

where - $\mathfrak{I m} \omega>0$

- $\mathbf{A} \in \mathscr{C}^{0}\left(\mathbb{R}^{2} ; \mathbb{R}^{2 \times 2}\right)$ and $\rho \in \mathscr{C}^{0}\left(\mathbb{R}^{2}\right)$ are 1-periodic, bounded and coercive
- The Dirichlet data φ belongs to $H^{1 / 2}\left(\partial \Omega_{+}\right)$.

Current methods

When $\tan \alpha$ is rational
The medium is periodic along the interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

$$
\tan \alpha=1
$$

Current methods

When $\tan \alpha$ is rational

The medium is periodic along the interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

$$
\tan \alpha=1
$$

Procedure in the rational case

1. Apply Floquet-Bloch transform in the direction of the boundary
2. Solve a family of waveguide problems parameterized by the Floquet variable

Current methods and limitations

When $\tan \alpha$ is rational

The medium is periodic along the interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010
But the domain size increases with the denominator of $\tan \alpha$.

$$
\tan \alpha=1 / 2
$$

Procedure in the rational case

1. Apply Floquet-Bloch transform in the direction of the boundary
2. Solve a family of waveguide problems parameterized by the Floquet variable

Current methods and limitations

When $\tan \alpha$ is rational

The medium is periodic along the interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010
But the domain size increases with the denominator of $\tan \alpha$.

Procedure in the rational case

1. Apply Floquet-Bloch transform in the direction of the boundary
2. Solve a family of waveguide problems parameterized by the Floquet variable

Current methods and limitations

When $\tan \alpha$ is rational

The medium is periodic along the interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010
But the domain size increases with the denominator of $\tan \alpha$.

When $\tan \alpha$ is irrational

The medium is no longer periodic along the interface

But it still has a so-called quasiperiodic structure.

Outline

(1) Motivation and model problem
(2) Quasiperiodic functions
(3) The lifting approach
(4) Numerical results
(5) Conclusion

Quasiperiodic functions

Definition - Quasiperiodic functions

A function $\mu_{\theta}: \mathbb{R} \rightarrow \mathbb{C}$ is said to be quasiperiodic of order 2 if there exists $\theta \in(0, \pi / 2)$ and a continuous function $\mu_{p}: \mathbb{R}^{2} \rightarrow \mathbb{C}$, 1-periodic in each variable, such that

$$
\forall x \in \mathbb{R}, \quad \mu_{\theta}(x)=\mu_{p}(x \cos \theta, x \sin \theta)=\mu_{p}\left(\vec{e}_{\theta} x\right), \quad \vec{e}_{\theta}:=(\cos \theta, \sin \theta)
$$

Quasiperiodic functions

Definition - Quasiperiodic functions

A function $\mu_{\theta}: \mathbb{R} \rightarrow \mathbb{C}$ is said to be quasiperiodic of order 2 if there exists $\theta \in(0, \pi / 2)$ and a continuous function $\mu_{p}: \mathbb{R}^{2} \rightarrow \mathbb{C}$, 1-periodic in each variable, such that

$$
\forall x \in \mathbb{R}, \quad \mu_{\theta}(x)=\mu_{p}(x \cos \theta, x \sin \theta)=\mu_{p}\left(\vec{e}_{\theta} x\right), \quad \vec{e}_{\theta}:=(\cos \theta, \sin \theta)
$$

Quasiperiodic functions

Definition - Quasiperiodic functions

A function $\mu_{\theta}: \mathbb{R} \rightarrow \mathbb{C}$ is said to be quasiperiodic of order 2 if there exists $\theta \in(0, \pi / 2)$ and a continuous function $\mu_{p}: \mathbb{R}^{2} \rightarrow \mathbb{C}$, 1 -periodic in each variable, such that

$$
\forall x \in \mathbb{R}, \quad \mu_{\theta}(x)=\mu_{p}(x \cos \theta, x \sin \theta)=\mu_{p}\left(\vec{e}_{\theta} x\right), \quad \vec{e}_{\theta}:=(\cos \theta, \sin \theta)
$$

Quasiperiodic functions

Definition - Quasiperiodic functions

A function $\mu_{\theta}: \mathbb{R} \rightarrow \mathbb{C}$ is said to be quasiperiodic of order 2 if there exists $\theta \in(0, \pi / 2)$ and a continuous function $\mu_{p}: \mathbb{R}^{2} \rightarrow \mathbb{C}$, 1-periodic in each variable, such that

$$
\forall x \in \mathbb{R}, \quad \mu_{\theta}(x)=\mu_{p}(x \cos \theta, x \sin \theta)=\mu_{p}\left(\vec{e}_{\theta} x\right), \quad \vec{e}_{\theta}:=(\cos \theta, \sin \theta)
$$

A hidden quasiperiodicity property

Quasiperiodic structure

Define $\quad \forall z=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}, \quad \mathbf{A}_{p}(z)=\mathbf{A}\left(z_{1}+z_{3}, z_{2}\right) \quad$ and $\quad \rho_{p}(z)=\rho\left(z_{1}+z_{3}, z_{2}\right)$

- The tensor \mathbf{A}_{p} and the coefficient ρ_{p} are lifts of \mathbf{A} and ρ.
- \mathbf{A}_{p} and ρ_{p} represent a 1-periodic medium in all directions.

A hidden quasiperiodicity property

Quasiperiodic structure

Define $\quad \forall z=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}, \quad \mathbf{A}_{p}(z)=\mathbf{A}\left(z_{1}+z_{3}, z_{2}\right) \quad$ and $\quad \rho_{p}(z)=\rho\left(z_{1}+z_{3}, z_{2}\right)$
and consider the matrix

$$
\mathbf{C}=\left(\begin{array}{cc}
1 & -\tan \alpha \\
0 & 1 \\
0 & \tan \alpha
\end{array}\right)
$$

A hidden quasiperiodicity property

Quasiperiodic structure

Define $\quad \forall z=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}, \quad \mathbf{A}_{p}(z)=\mathbf{A}\left(z_{1}+z_{3}, z_{2}\right) \quad$ and $\quad \rho_{p}(z)=\rho\left(z_{1}+z_{3}, z_{2}\right)$
and consider the matrix

$$
\mathbf{C}=\left(\begin{array}{cc}
1 & -\tan \alpha \\
0 & 1 \\
0 & \tan \alpha
\end{array}\right)
$$

Then one shows that

$$
\begin{aligned}
& x \in \Omega_{+} \Longleftrightarrow \mathbf{C} x \in\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}, z_{1}>0\right\} \\
& x \in \partial \Omega_{+} \Longleftrightarrow \mathbf{C} x \in\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}, z_{1}=0\right\}
\end{aligned}
$$

A hidden quasiperiodicity property

Quasiperiodic structure

Define $\quad \forall z=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}, \quad \mathbf{A}_{p}(z)=\mathbf{A}\left(z_{1}+z_{3}, z_{2}\right) \quad$ and $\quad \rho_{p}(z)=\rho\left(z_{1}+z_{3}, z_{2}\right)$
and consider the matrix

$$
\mathbf{C}=\left(\begin{array}{cc}
1 & -\tan \alpha \\
0 & 1 \\
0 & \tan \alpha
\end{array}\right)
$$

Then one shows that

$$
\begin{aligned}
& x \in \Omega_{+} \quad \Longleftrightarrow \mathbf{C} x \in\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}, z_{1}>0\right\} \\
& x \in \partial \Omega_{+} \Longleftrightarrow \mathbf{C} x \in\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}, z_{1}=0\right\}
\end{aligned}
$$

$$
\text { and } \quad \forall x \in \mathbb{R}^{2}, \quad \mathbf{A}(x)=\mathbf{A}_{p}(\mathbf{C} x) \quad \text { and } \quad \rho(x)=\rho_{p}(\mathbf{C} x)
$$

State of the art

Lifting approach

Lift the PDE into a non-elliptic PDE with periodic coefficients

- Has been used only in the context of homogenization

Bouchitté, Guenneau, Zolla, 2010
Gérard-Varet, Masmoudi, 2010 Blanc, Le Bris, Lions, 2015

State of the art and goal

Lifting approach

Lift the PDE into a non-elliptic PDE with periodic coefficients
Bouchitté, Guenneau, Zolla, 2010
Gérard-Varet, Masmoudi, 2010 Blanc, Le Bris, Lions, 2015

- Has been used only in the context of homogenization

Goal of this work

Analysis of wave propagation in quasiperiodicity-induced situations

- 1D Helmholtz equation with quasiperiodic coefficients

A, Fliss, Joly, In progress

- Periodic half-space problem

Outline

(1) Motivation and model problem
(2) Quasiperiodic functions
(3) The lifting approach
(4) Numerical results
(5) Conclusion

The lifting approach

Helmholtz equation with Dirichlet boundary condition

We wish to compute $u \in H^{1}\left(\Omega_{+}\right)$, the unique solution of

$$
\begin{align*}
-\operatorname{div} \mathbf{A} \nabla u-\rho \omega^{2} u & =0, \tag{P}\\
& x \in \Omega_{+} \\
u & =\varphi, \\
& x \in \partial \Omega_{+}
\end{align*}
$$

where $\forall x \in \Omega_{+}, \quad \mathbf{A}(x)=\mathbf{A}_{p}(\mathbf{C} x)$ and $\rho(x)=\rho_{p}(\mathbf{C} x)$ with

$$
\forall z=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}, \quad \mathbf{A}_{p}(z)=\mathbf{A}\left(z_{1}+z_{3}, z_{2}\right), \quad \rho_{p}(z)=\rho\left(z_{1}+z_{3}, z_{2}\right)
$$

and where

$$
\mathbf{C}=\left(\begin{array}{cc}
1 & -\tan \alpha \\
0 & 1 \\
0 & \tan \alpha .
\end{array}\right) \quad \text { satisfies } \quad x \in \Omega_{+} \Longleftrightarrow \mathbf{C} x \in \mathbb{R}_{+}^{3}:=\left\{z_{1}>0\right\}
$$

The core idea

Seek u as the trace of a function $U: \mathbb{R}_{+}^{3} \rightarrow \mathbb{C}$ along the half-plane $\left\{\mathbf{C} x, x \in \Omega_{+}\right\}$, that is,

$$
u(x)=U(\mathbf{C} x)
$$

Lifting onto a periodic half-space problem

Using the ansatz $u(x)=U(\mathbf{C} x)$ and the rule $\nabla u(x)=\left[{ }^{\mathrm{t}} \mathbf{C} \nabla U\right](\mathbf{C} x)$, it is natural to introduce

$$
\begin{aligned}
-\operatorname{div} \mathbf{A} \nabla u-\rho \omega^{2} u & =0, & & x \in \Omega_{+}, \\
u & =\varphi, & & x \in \partial \Omega_{+}
\end{aligned}
$$

Lifting onto a periodic half-space problem

Using the ansatz $u(x)=U(\mathbf{C} x)$ and the rule $\nabla u(x)=\left[{ }^{t} \mathbf{C} \nabla U\right](\mathbf{C} x)$, it is natural to introduce

$$
-\operatorname{div} \mathbf{A} \nabla u-\rho \omega^{2} u=0, \quad x \in \Omega_{+},
$$

$$
-\operatorname{div}\left(\mathbf{C A}_{p}{ }^{\mathrm{t}} \mathbf{C} \nabla U\right)-\rho_{p} \omega^{2} U=0, \quad z_{1}>0
$$

$u=\varphi, \quad x \in \partial \Omega_{+}$

Lifting onto a periodic half-space problem

Using the ansatz $u(x)=U(\mathbf{C} x)$ and the rule $\nabla u(x)=\left[{ }^{t} \mathbf{C} \nabla U\right](\mathbf{C} x)$, it is natural to introduce

Lifting onto a periodic half-space problem

Using the ansatz $u(x)=U(\mathbf{C} x)$ and the rule $\nabla u(x)=\left[{ }^{t} \mathbf{C} \nabla U\right](\mathbf{C} x)$, it is natural to introduce

$\varphi_{p}\left(z_{2}, z_{3}\right)$ is an arbitrary function such that $\varphi_{p}(s \tan \alpha, s)=\varphi(s)$.

Lifting onto a periodic half-space problem

Using the ansatz $u(x)=U(\mathbf{C} x)$ and the rule $\nabla u(x)=\left[{ }^{t} \mathbf{C} \nabla U\right](\mathbf{C} x)$, it is natural to introduce

$$
\begin{array}{rlrl}
-\operatorname{div} \mathbf{A} \nabla u-\rho \omega^{2} u & =0, & & x \in \Omega_{+}, \\
u & =\varphi, & x \in \partial \Omega_{+}
\end{array}
$$

$$
\begin{array}{rlrl}
-\operatorname{div}\left(\mathbf{C A}_{p}{ }^{t} \mathbf{C} \nabla U\right)-\rho_{p} \omega^{2} U & =0, & z_{1}>0, \\
U & =\varphi_{p}, & z_{1} & =0
\end{array}
$$

$\varphi_{p}\left(z_{2}, z_{3}\right)$ is an arbitrary function such that $\varphi_{p}(s \tan \alpha, s)=\varphi(s)$. It can be chosen periodic:

Lifting onto a periodic half-strip problem

Using the ansatz $u(x)=U(\mathbf{C} x)$ and the rule $\nabla u(x)=\left[{ }^{t} \mathbf{C} \nabla U\right](\mathbf{C} x)$, it is natural to introduce

$$
\begin{array}{rlrl}
-\operatorname{div} \mathbf{A} \nabla u-\rho \omega^{2} u & =0, & & x \in \Omega_{+}, \\
u & =\varphi, & x \in \partial \Omega_{+}
\end{array}
$$

$$
\begin{aligned}
-\operatorname{div}\left(\mathbf{C A}_{p}{ }^{t} \mathbf{C} \nabla U\right)-\rho_{p} \omega^{2} U & \left.=0, \quad \begin{array}{c}
z_{1}>0 \\
U
\end{array}\right)=\varphi_{p}, \quad z_{1}=0 \\
U\left(\cdot+\vec{e}_{2}\right) & =U(\cdot)
\end{aligned}
$$

$\varphi_{p}\left(z_{2}, z_{3}\right)$ is an arbitrary function such that $\varphi_{p}(s \tan \alpha, s)=\varphi(s)$. It can be chosen periodic:

$$
\varphi_{p}\left(z_{2}+1, z_{3}\right)=\varphi_{p}\left(z_{2}, z_{3}\right) \Longrightarrow U\left(\cdot+\vec{e}_{2}\right)=U(\cdot)
$$

Lifting onto a periodic half-strip problem

Properties of the 3D half-strip problem

$$
\begin{aligned}
-\operatorname{div}\left(\mathbf{C A}_{p}{ }^{\mathrm{t}} \mathbf{C} \boldsymbol{\nabla} U\right)-\rho_{p} \omega^{2} U & =0, \quad z_{1}>0, \\
U & =\varphi_{p}, \quad z_{1}=0 \\
U\left(\cdot+\vec{e}_{2}\right) & =U(\cdot)
\end{aligned}
$$

Resolution of the half-strip problem

How to solve the 3D half-strip problem

Fliss, Cassan, Bernier, 2010

1. Apply Floquet-Bloch transform along the z_{3}-axis

$$
\begin{aligned}
-\operatorname{div}\left(\mathbf{C A}_{p}{ }^{t} \mathbf{C} \nabla U\right)-\rho_{p} \omega^{2} U & =0, \\
& z_{1}>0 \\
U & =\varphi_{p}, \\
& z_{1}=0 \\
U\left(\cdot+\vec{e}_{2}\right) & =U(\cdot)
\end{aligned}
$$

Resolution of the half-strip problem

How to solve the 3D half-strip problem

Fliss, Cassan, Bernier, 2010

1. Apply Floquet-Bloch transform along the z_{3}-axis
2. Solve a family of waveguide problems parameterized by the Floquet variable k

$$
\begin{aligned}
-\operatorname{div}\left(\mathbf{C A}_{p}{ }^{t} \mathbf{C} \boldsymbol{\nabla} U\right)-\rho_{p} \omega^{2} U & =0, \quad z_{1}>0 \\
U & =\varphi_{p}, \\
& z_{1}=0 \\
U\left(\cdot+\vec{e}_{2}\right) & =U(\cdot)
\end{aligned}
$$

$$
U\left(\cdot, z_{3}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \hat{U}_{k}\left(\cdot, z_{3}\right) \mathrm{e}^{\mathrm{i} k z_{3}} d k
$$

$$
\left(\operatorname{div}+\mathrm{i} k{ }^{\mathrm{t}} \vec{e}_{3}\right)\left(\mathbf{C A}_{p}{ }^{\mathrm{t}} \mathbf{C}\left(\boldsymbol{\nabla}+\mathrm{i} k \vec{e}_{3}\right) \hat{U}_{k}\right)-\rho_{p} \omega^{2} \hat{U}_{k}=0
$$

$$
\hat{U}_{k}\left(\cdot+\vec{e}_{3}\right)=\hat{U}_{k}(\cdot)
$$

Resolution of the half-guide problem

How to solve the 3D half-strip problem

Fliss, Cassan, Bernier, 2010

1. Apply Floquet-Bloch transform along the z_{3}-axis
2. Solve a family of waveguide problems parameterized by the Floquet variable k

$$
\begin{aligned}
-\operatorname{div}\left(\mathbf{C A}_{p}{ }^{t} \mathbf{C} \nabla U\right)-\rho_{p} \omega^{2} U & =0, \quad z_{1}>0 \\
U & =\varphi_{p}, \quad z_{1}=0 \\
U\left(\cdot+\vec{e}_{2}\right) & =U(\cdot)
\end{aligned}
$$

$$
U\left(\cdot, z_{3}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \hat{U}_{k}\left(\cdot, z_{3}\right) \mathrm{e}^{\mathrm{i} k z_{3}} d k
$$

$$
\left(\operatorname{div}+\mathrm{i} k{ }^{\mathrm{t}} \vec{e}_{3}\right)\left(\mathbf{C} A_{p}{ }^{\mathrm{t}} \mathbf{C}\left(\boldsymbol{\nabla}+\mathrm{i} k \vec{e}_{3}\right) \hat{U}_{k}\right)-\rho_{p} \omega^{2} \hat{U}_{k}=0
$$

Half-guide

Fliss, Joly, 2008

1. Solve local cell problems
2. Compute the propagation operator \mathcal{P}

Outline

(1) Motivation and model problem
(2) Quasiperiodic functions
(3) The lifting approach
(4) Numerical results
(5) Conclusion

Numerical results

Test case for the half-space problem

Data φ and function ρ

Numerical results

Test case for the half-space problem

- $\omega=5+0.5 \mathrm{i}$ • $\alpha=\pi / 3$ • $\varphi(s)=\exp \left(-s^{2} / 2\right)$

Numerical results

Test case for the half-space problem

$$
\text { - } \omega=10+0.5 \mathrm{i} \quad \alpha=\pi / 3 \quad \bullet \varphi(s)=\exp \left(-s^{2} / 2\right)
$$

Numerical results

Test case for the half-space problem

$$
\text { - } \omega=10+0.1 \mathrm{i} \quad \alpha=\pi / 3 \quad \bullet \varphi(s)=\exp \left(-s^{2} / 2\right)
$$

Outline

(1) Motivation and model problem
(2) Quasiperiodic functions
(3) The lifting approach
(4) Numerical results
(5) Conclusion

Conclusion

Summary

Resolution of the Helmholtz equation in presence of a 2D periodic halfspace:
Extend the PDE to a periodic PDE through the lifting approach

Perspectives for this work (ongoing)

- Extension to transmission problems

Conclusion

Summary

Resolution of the Helmholtz equation in presence of a 2D periodic halfspace:
Extend the PDE to a periodic PDE through the lifting approach

Perspectives for this work (ongoing)

- Extension to transmission problems

Thank you for your attention!

