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Motivation

Overall objective

Mathematical and numerical analysis and simulation of some wave propagation phenomena arising in
acoustics, elastodynamics and electromagnetism in presence of heterogeneous media.

Periodic media

Media whose geometry or physical properties can be represented as periodic functions

Composite materials in mechanics
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Media whose geometry or physical properties can be represented as periodic functions
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Typical model

Time-harmonic wave equation

The total field ut satisfies the Helmholtz equation:

div At∇ut − ρt ω2
ut = 0, in R2

where

ut =

{
ui + ur in Ω−

ud in Ω+

A first step is to understand the half-space periodic problem.

Ω+

Incident field ui

Reflected field ur

Diffracted field ud

Ω−

© Pierre Amenoagbadji Sonia Fliss Patrick Joly 3



Typical model

Time-harmonic wave equation

The total field ut satisfies the Helmholtz equation:

div At∇ut − ρt ω2
ut = 0, in R2

where

ut =

{
ui + ur in Ω−

ud in Ω+

A first step is to understand the half-space periodic problem.

Ω+

Incident field ui

Reflected field ur

Diffracted field ud

Ω−

© Pierre Amenoagbadji Sonia Fliss Patrick Joly 3



In this presentation

Helmholtz equation with Dirichlet boundary condition

We wish to compute u ∈ H1(Ω+), Ω+ := {x1 tanα− x2 > 0}, the unique solution of∣∣∣∣∣ − div A∇u− ρω2
u= 0, x ∈ Ω+

u= ϕ, x ∈ ∂Ω+

(P)

where • Imω > 0

• A ∈ C 0(R2; R2×2) and ρ ∈ C 0(R2) are 1–periodic, bounded and coercive

• The Dirichlet data ϕ belongs toH1/2(∂Ω+).

Ω+

α

x1

x2

su = ϕ(s)
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Current methods

tanα = 1

/3

When tanα is rational

The medium is periodic along the
interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010
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Current methods

per
per

perper

tanα = 1

/3

When tanα is rational

The medium is periodic along the
interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

Procedure in the rational case

1. Apply Floquet-Bloch transform in the direction of the boundary

2. Solve a family of waveguide problems parameterized by the Floquet variable
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Current methods and limitations

per
per

perper

tanα = 1/2

When tanα is rational

The medium is periodic along the
interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

But the domain size increases with the
denominator of tanα.

Procedure in the rational case

1. Apply Floquet-Bloch transform in the direction of the boundary

2. Solve a family of waveguide problems parameterized by the Floquet variable
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Current methods and limitations

When tanα is rational

The medium is periodic along the
interface
Fliss, Joly, 2008; Fliss, Cassan, Bernier, 2010

But the domain size increases with the
denominator of tanα.

When tanα is irrational

The medium is no longer periodic along
the interface

But it still has a so-called quasiperiodic
structure.

© Pierre Amenoagbadji Sonia Fliss Patrick Joly 3



Outline

1 Motivation and model problem

2 Quasiperiodic functions

3 The lifting approach

4 Numerical results

5 Conclusion

© Pierre Amenoagbadji Sonia Fliss Patrick Joly 4



Quasiperiodic functions

Definition – Quasiperiodic functions

A function µθ : R→ C is said to be quasiperiodic of order 2 if there exists θ ∈ (0, π/2) and a
continuous function µp : R2 → C, 1–periodic in each variable, such that

∀ x ∈ R, µθ(x) = µp(x cos θ, x sin θ) = µp(~eθ x), ~eθ := (cos θ, sin θ).

R~eθ

~eθ

θ
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Quasiperiodic functions

Definition – Quasiperiodic functions

A function µθ : R→ C is said to be quasiperiodic of order 2 if there exists θ ∈ (0, π/2) and a
continuous function µp : R2 → C, 1–periodic in each variable, such that

∀ x ∈ R, µθ(x) = µp(x cos θ, x sin θ) = µp(~eθ x), ~eθ := (cos θ, sin θ).

0 1
0

1

1

2

tan θ = 3 ∈ Q

If the slope tan θ is rational, then µθ is periodic
−4 −2 0 2 4

1

2
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0 1
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1
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tan θ = 3 ∈ Q

tan θ =
√

3 6∈ Q

If the slope tan θ is irrational, then µθ is not necessarily periodic
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A hidden quasiperiodicity property

Quasiperiodic structure

Define ∀ z = (z1, z2, z3) ∈ R3, Ap(z) = A(z1 + z3, z2) and ρp(z) = ρ(z1 + z3, z2)

• The tensor Ap and the coefficient ρp are lifts of A and ρ.

• Ap and ρp represent a 1–periodic medium in all directions.

z1 z2

z3
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State of the art

Lifting approach

Lift the PDE into a non-elliptic PDE with periodic coefficients
• Has been used only in the context of homogenization

Bouchitté, Guenneau, Zolla, 2010
Gérard-Varet, Masmoudi, 2010

Blanc, Le Bris, Lions, 2015

Goal of this work

Analysis of wave propagation in quasiperiodicity-induced situations
• 1D Helmholtz equation with quasiperiodic coefficients A, Fliss, Joly, In progress

• Periodic half-space problem
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The lifting approach

Helmholtz equation with Dirichlet boundary condition

We wish to compute u ∈ H1(Ω+), the unique solution of∣∣∣∣∣ − div A∇u− ρω2
u= 0, x ∈ Ω+

u= ϕ, x ∈ ∂Ω+

(P)

where ∀ x ∈ Ω+, A(x) = Ap(Cx) and ρ(x) = ρp(Cx) with

∀ z = (z1, z2, z3) ∈ R3
, Ap(z) = A(z1 + z3, z2), ρp(z) = ρ(z1 + z3, z2),

and where

C =

1 − tanα
0 1
0 tanα.

 satisfies x ∈ Ω+ ⇐⇒ Cx ∈ R3
+ := {z1 > 0}

The core idea

Seek u as the trace of a function U : R3
+ → C along the half-plane {Cx, x ∈ Ω+}, that is,

u(x) = U(C x).
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Lifting onto a periodic half-space problem

Using the ansatz u(x) = U(C x) and the rule∇u(x) =
[

tC∇U
]
(C x), it is natural to introduce

ϕp(z2, z3) is an arbitrary function such that ϕp(s tanα, s) = ϕ(s).

It can be chosen periodic:

ϕp(z2 + 1, z3) = ϕp(z2, z3) =⇒ U(·+ ~e2) = U(·).

− div A∇u− ρω2
u= 0, x ∈ Ω+,

u= ϕ, x ∈ ∂Ω+

z1

z2

z3
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Lifting onto a periodic half-strip problem

Using the ansatz u(x) = U(C x) and the rule∇u(x) =
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Lifting onto a periodic half-strip problem

Using the ansatz u(x) = U(C x) and the rule∇u(x) =
[

tC∇U
]
(C x), it is natural to introduce

ϕp(z2, z3) is an arbitrary function such that ϕp(s tanα, s) = ϕ(s). It can be chosen periodic:

ϕp(z2 + 1, z3) = ϕp(z2, z3) =⇒ U(·+ ~e2) = U(·).

Properties of the 3D half-strip problem

• Periodic coefficients

• Nonelliptic principal part

− div
(
CAp

t
C∇U

)
− ρp ω2

U = 0, z1 > 0,

U = ϕp, z1 = 0

U(·+ ~e2) = U(·)

z1

z2

z3
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Resolution of the half-strip problem

Using the ansatz u(x) = U(C x) and the rule∇u(x) =
[

tC∇U
]
(C x), it is natural to introduce

ϕp(z2, z3) is an arbitrary function such that ϕp(s tanα, s) = ϕ(s). It can be chosen periodic:

ϕp(z2 + 1, z3) = ϕp(z2, z3) =⇒ U(·+ ~e2) = U(·).

How to solve the 3D half-strip problem

Fliss, Cassan, Bernier, 2010

1. Apply Floquet-Bloch transform along the
z3–axis

2. Solve a family of waveguide problems
parameterized by the Floquet variable k

− div
(
CAp

t
C∇U

)
− ρp ω2

U = 0, z1 > 0,

U = ϕp, z1 = 0

U(·+ ~e2) = U(·)

z1

z2

z3
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Resolution of the half-strip problem
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]
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− div
(
CAp

t
C∇U

)
− ρp ω2

U = 0, z1 > 0,

U = ϕp, z1 = 0

U(·+ ~e2) = U(·)

(div + ik t~e3)
(
CAp

tC(∇ + ik~e3)Ûk
)
− ρp ω2 Ûk = 0

Ûk(·+ ~e3) = Ûk(·)
U(·, z3) =

1
√

2π

∫ π

−π
Ûk(·, z3) e

ikz3dk

z1

z2

z3
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Resolution of the half-guide problem

Using the ansatz u(x) = U(C x) and the rule∇u(x) =
[

tC∇U
]
(C x), it is natural to introduce

ϕp(z2, z3) is an arbitrary function such that ϕp(s tanα, s) = ϕ(s). It can be chosen periodic:

ϕp(z2 + 1, z3) = ϕp(z2, z3) =⇒ U(·+ ~e2) = U(·).

How to solve the 3D half-strip problem

Fliss, Cassan, Bernier, 2010

1. Apply Floquet-Bloch transform along the
z3–axis

2. Solve a family of waveguide problems
parameterized by the Floquet variable k

− div
(
CAp

t
C∇U

)
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(div + ik t~e3)
(
CAp

tC(∇ + ik~e3)Ûk
)
− ρp ω2 Ûk = 0

Ûk(·+ ~e3) = Ûk(·)
U(·, z3) =

1
√

2π

∫ π

−π
Ûk(·, z3) e

ikz3dk

Half-guide

Fliss, Joly, 2008

1. Solve local cell
problems

2. Compute the
propagation
operator P

z1

z2

z3

P
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Numerical results

Test case for the half-space problem

Data ϕ and function ρ

0 1 2 3 4 5 6 7 8
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3
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2
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Numerical results

Test case for the half-space problem

• ω = 5 + 0.5i • α = π/3 • ϕ(s) = exp(−s2/2)
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Numerical results

Test case for the half-space problem

• ω = 10 + 0.5i • α = π/3 • ϕ(s) = exp(−s2/2)
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Numerical results

Test case for the half-space problem

• ω = 10 + 0.1i • α = π/3 • ϕ(s) = exp(−s2/2)
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Conclusion

Summary

Resolution of the Helmholtz equation in presence of a 2D periodic halfspace:
Extend the PDE to a periodic PDE through the lifting approach

Perspectives for this work (ongoing)

• Extension to transmission problems
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Conclusion

Summary

Resolution of the Helmholtz equation in presence of a 2D periodic halfspace:
Extend the PDE to a periodic PDE through the lifting approach

Perspectives for this work (ongoing)

• Extension to transmission problems

Thank you for your attention!
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