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Biological context 

Growing lesions caused 
b y a f u n g u s , e . g . 
Peyronellaea pinodes 
(blackspot) strongly 
i n v o l v e d i n p e a 
diseases 



Growing lesions

Peyronellaea pinodes



Questions

Can we combine imaging with a spatially explicit model that 

1. Describe plant-pathogen interactions at lesion scale  

2. Compare the aggressiveness and the variability of the 
infection 

  
3. Predict the adaptation of pathogen populations and 

optimize the use of different varieties
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Outline

1. Top-down approach: Data generation and 
classification 

2. Bottom-up approach: Diffusion and growth from a 
spatially explicit model 



Short review

Berger-Jones 85:  logistic ODE!

Individual based model: Calonnec et al 08, Mammeri et al. 
10, Calonnec-Mammeri 17!

Statistical: Leclerc et al.19!

Front propagation: Van den Bosch et al. 88, Powell et al. 05 

Reaction-diffusion: Mammeri et al. 14 !
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1. Top-down approach: Data generation and 
classification 



How we proceed

In the laboratory: 
• inoculation of young plants or detached organs (e.g. leaves)  
• acquisitions: visible + Chlorophyll Fluorescence x time tracking  
• visual scoring or semi-automatic quantification of traits (e.g. 

disease score or symptom size)  

For pea: 500- 1000 spores inoculated, 6 dates measured, 6 seedlings on 60 boxes 



Image acquisition
Standardized acquisition (adapted lighting, 
color test pattern)  
→ RGB images  

Temporal and multimodal registration for the 
c h a ra c t e r i z a t i o n o f p l a n t - p a t h o g e n 
interactions



Images day 3

Visible Fluorescence



Images day 5

Visible Fluorescence



Image registration

For an inoculated leaf, we have 2 images per day.  

To analyze the spatiotemporal dynamics of the lesion and compare the 
imaging types we need to: remap (and merge) the images 

Find the geometrical transformations that allow to go from one image 
to another



Temporal registration
Coherent Point Drift method (Myronenko-Song 2010): uses the features 
of the image, e.g. points, contours, regions 

Day 4

Day 5



Registration between imaging modes
RGB + Fluo



Raw images to Registered images

a) Initial image sequence

Day 3 Day 4 Day 5 Day 6 Day 7

b) Registered images

Day 3 Day 4 Day 5 Day 6 Day 7

c) Probability images

Day 3 Day 4 Day 5 Day 6 Day 7
     

︸ ︷︷ ︸ ︸ ︷︷ ︸

Initial conditions Fitted to PDE model

1



Pixel classification
Healthy (H) or Symptomatic (S) ( or Background ) 
in 32x16x(648 × 756) = 250 822 656 px described by colors, 
edges, textures  
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Likelihood function



Classifiers quality

Imaging with spatio-temporal modelling to
characterize the dynamics of plant-pathogen

lesions
Supplementary information

Melen Leclerc1, Stéphane Jumel1, Frédéric M. Hamelin1, Rémi
Treilhaud1, Nicolas Parisey1, and Youcef Mammeri2

1IGEPP, INRAE, Institut Agro, Univ Rennes 1, Rennes, France
2LAMFA, CNRS, Picardie Jules Verne University, Amiens, France

S1 Assessment of classifiers quality

Predictions of trained Random Forest classifiers were tested against 31 anno-
tated images obtained from Dutt et al. (2020) on the susceptible cultivar Solara
and the partially resistant germplasm line DP instead of the cultivar James
used in our study. As Dutt et al. (2020) did not monitor inoculated stipules 5
days after inoculation we were not able to compare predictions of the classifier
for this date. We considered two metrics to compare supervised predictions
and ground truth: the balanced accuracy that is the average of sensitivities and
specificities, and the Cohen’s κ that measures the inter-rater reliability in a clas-
sification problem. For both metrics the best and worst values are respectively
1 and 0. All the tested classifiers showed a good ability to predict pixel classes
with a balanced accuracy ranges from 0.85 to 0.95 and a Cohen’s κ between
0.77 and 0.96 showing good agreements between supervised segmentation and
human annotation (Table S1).

Classifier Balanced accuracy Cohen’s κ
Day 3 0.91 0.96
Day 4 0.95 0.95
Day 6 0.85 0.77
Day 7 0.89 0.82

Table S1: Assessment of classifiers quality on ground truth data with balanced
accuracy and Cohen’s κ metrics.
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Outline

2. Bottom-up approach: Diffusion and growth from a 
spatially explicit model 



Fisher-KPP equation

Ω leaf surface 
u local density of pathogen mycelium 

D diffusion coefficient 
a local growth rate of the mycelium  
K maximum local biomass 
   constant asymptotic speed

2.4 Spatial lesion growth model

Most existing models for the spread of plant pathogens within host tissues are
rather spatially implicit and generally assume a constant radial growth rate and
a simplified geometry of the host organ (Powell et al., 2005; Mammeri et al.,
2010; Garin et al., 2014). Yet, these models were able to fit non-spatial lesion size
data (Leclerc et al., 2019), including for the particular P. pinodes-pea pathosys-
tem (Dutt et al., 2020). Here, we consider the Fisher-KPP model to describe
the spatially explicit spread of the pathogen on host tissues. The Fisher-KPP
equation was introduced in 1937 by Fisher (Fisher, 1937) and Kolmogorov-
Petrovsky-Piskunov (Kolmogorov et al., 1937) as a semilinear parabolic partial
differential equation (PDE) combining Fick’s diffusion with logistic growth. Let
Ω ∈ R2 be the stipules area. The Fisher-KPP equation reads as the following
reaction-diffusion equation, for the position x = (x, y) ∈ Ω and the time t > 0

∂u

∂t
(x, t) = D∆u(x, t) + au(x, t)

(
1− u(x, t)

K

)
. (1)

where u(x, t) denotes the local density of pathogen mycelium, D > 0 is the
diffusion coefficient, a ≥ 0 the local growth rate of the mycelium, and K > 0 its
maximum local biomass. The equation is closed thanks to a given initial image
u0 as

u(x, t = t3) = u0(x) in Ω.

Assuming the pathogen cannot move out of the leaf, homogeneous Neumann
boundary conditions are imposed

∂u

∂n
(x, t) = 0 on ∂Ω.

This model exhibits traveling waves with asymptotic speed 2
√
aD which is

coherent with the assumption of a constant radial growth rate considered in
several studies and supported by non-spatial lesion data.

Numerical solutions of the model are obtained by computing the spatial
domain Ω with a level-set formalism so the boundaries ∂Ω match those of the
leaves in the image (Osher and Fedkiw, 2002; Sethian, 1999), and solving the
partial differential equations using explicit Euler finite differences in time and
second order centered finite differences in space. More details on these numerical
aspects are provided in supplementary information S2.

2.5 Parameters estimation from image sequences

For each inoculated stipule, the observations consisted in a set of registered
images ureg(x, t) for times after inoculation t = {t3, t4, t5, t6, t7} (Fig. 1). Pa-

rameters identification consisted in seeking estimates θ̂ such that the output of
the spatial model u(x, t, θ) matches these observations. Depending on the es-
timation problem, inverse problems or statistical inference of reaction-diffusion
can be addressed by several methods such as mathematical analysis, maximum
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The level-set
Describe Ω leaf surface with a level-set function φ

computational domain

(Osher and Fedkiw 2002; Sethian 1999) 

S2 Numerical discretization and resolution of
the optimization problem

S2.1 Meshing the computation domain

The level-set formalism is used to described the stipules surface and boundary.
Let φ be the level-set function such that the stipules boundary is the zero level
of φ defined as

∂Ω :=
{
x ∈ R2; φ(x) = 0

}
.

Then the stipules surface is Ω :=
{
x ∈ R2; φ(x) < 0

}
, and its complementary

Ωc :=
{
x ∈ R2; φ(x) > 0

}
. The function φ easily provides the exterior normal

of leaf as #n = ∇φ
||∇φ|| . The computation domain consists in a cartesian grid of

the overall area (see Figure S1). The partial differential equations are solved
using explicit Euler finite differences in time and second order centered finite
differences in space. The gradient is solved using a descent method (Osher and
Fedkiw, 2002; Sethian, 1999). The method is implemented with Petsc using
Python (Dalcin et al., 2011).

! > # $% &'

! < # $% &

! = # *% +&

computational domain

Figure S1: Schematic representation of the computational domain given by a
cartesian grid and the stipules area Ω =

{
x ∈ R2; φ(x) < 0

}
defined by the

level-set function φ.
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Lagrangian minimization
S2.2 Variational image data assimilation

The optimization problem is solved thanks to the minimization of the La-
grangian (Asch et al., 2016)

L(a,D) =
1

2

∫ t7

t3

∫

Ω
(u(x, t, θ)− ureg(x, t))

2dxdt

+

∫ t7

t3

∫

Ω

(
∂u(x, t, θ)

∂t
−D∆u(x, t, θ) (S1)

− au(x, t, θ)

(
1− u(x, t, θ)

K

))
λ(x, t, θ)dxdt.

The adjoint state λ is the solution of the following backward PDE

− ∂λ

∂t
= D∆λ(x, t) + a

(
1− 2u(x, t)

K

)
λ(x, t) + (u(x, t)− ureg) in Ω (S2)

with homogeneous Neummann boundary condition ∂λ
∂n = 0 on ∂Ω, and with the

final condition λ(t = t7) = 0. Finally, the gradient of the cost function is given
by 





∂L
∂D

= −
∫ t7

t3

∫

Ω
∇u(x, t)∇λ(x, t)dxdt

∂L
∂a

=

∫ t7

t3

∫

Ω
u(x, t)

(
1− u(x, t)

K

)
λ(x, t)dxdt.

(S3)

To avoid local minimum, the initial guess is determined by splitting the
Fisher-KPP equation into

du

dt
(x, t) = au(x, t)

(
1− u(x, t)

K

)
(S4)

∂u

∂t
(x, t) = D∆u(x, t). (S5)

From the given set of registerd images ureg, the diffusion coefficient in equation
(S4) is approximated with 98% of the population preservation (Okubo, 1980;
Shigesada and Kawasaki, 1997), by

D # 〈r2〉
16(tb − ta)

, (S6)

where 〈r2〉 denotes the mean of the square radius of mycelium spread between
times tb and ta. On the other hand, the logistic equation (S5) has explicit
solution written as

u(tb) =
K

1 +
(

K
u(ta)

− 1
)
exp(−a(tb − ta))

3
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The numerical procedure is summarized in Algorithm 1.

Algorithm 1 Parameters identification

Given N registered images ureg and a tolerance τ
Compute the stipules area Ω using level-set
Compute initial D0 with (S6) and a0 with (S7)
while ||∇L(θm)|| ≥ τ do,

Find um(x, t, θm) solution of the forward PDE (1)
Find λm(x, t, θm, um) solution of the backward PDE (S2)
Compute the gradient






Dm+1 = Dm + ρm1
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K

)
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S2.3 Numerical convergence examination

To ensure the convergence of the numerical method, the size of each set of images
has been rescaled. Table S2 indicates that same order values are found for a.
The diffusion coefficient depends on images size, but the relative diffusions, i.e.
the quotient between diffusion coefficient and stipules area are equal at order
10−3. Convergence results are provided in Table S2.

Cultivar

1 Solara
size 512× 514 614× 617 717× 720 819× 822 922× 925
â 0.4788 0.4835 0.4845 0.4852 0.4841

D̂ 0.4597 0.4511 0.4529 0.4534 0.4584

17 James
size 512× 514 614× 617 717× 720 819× 822 922× 925
â 0.4472 0.4492 0.4530 0.4550 0.4543

D̂ 0.2367 0.2367 0.2368 0.2366 0.2368

Table S2: Estimated diffusion D̂, rate growth â for two different sets of images
with five variable image sizes. The method provides same order parameters with
respect to the size images.
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Results

Figure 3: Visualization of stipules deformation in time. Change in the Jaccard
index with time for cultivars James (a) and Solara (b). At each time after
inoculation the Jaccard index was calculated in comparison with the image at
day 3, also used as a reference for image registration.
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Figure 4: Distributions of the estimated parameters. a) diffusion coefficient
D̂ with a mean values of 0.291 for James against 0.489 for the more resistant
cultivar Solara, b) local growth rate â with mean values of 0.496 and 0.536
for respectively James and Solara. All estimated coefficient are available in
supplementary information (Table S3).

9

Cultivar effect on estimated parameters

Df Sum Sq Mean Sq F value Pr(>F)
Diffusion D̂

Cultivar 1 0.31 0.31 24.95 2.36e-05
Residuals 30 0.37 0.01

Growth rate â
Cultivar 1 0.01 0.01 3.56 6.90e-02
Residuals 30 0.11 0.00

Table S4: Anova table for the cultivar effect on the diffusion D̂ and the local
growth rate â. Although the cultivar effect is significant on both D̂ and â it
explains 84% of the variance for the diffusion and only 9% for the growth rate.
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Conclusion
We propose a simple PDE able to predict the lesion growth from 
imaging data



Conclusion

Other pathosystems: phytophthora infestans – potato 
phoma medicaginis – pea 
powdery mildew - vine

We propose a simple PDE able to predict the lesion growth from 
imaging data

Account for the host physiology (age, 
senescence, veins…): 
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