Mini-symposium CANUM 2020 13-17 juin 2022

Hétérogénéités dans les modèles mathématiques d'épidémiologie

Hervé LE MEUR, LAMFA CNRS UMR 7352, UPJV - Amiens

Youcef MAMMERI, LAMFA CNRS UMR 7352, UPJV - Amiens

Gauthier Delvoye, Post-doctorant au LAMFA, Influence des caractéristiques sociales dans les modèles épidémiques SIR.

Cheryl Mentuda, Doctorante entre Caraga State University et l'UPJV, *Comparaison* entre les stratégies pharmacologique, écologique et polluante de lutte contre la dengue.

Pauline Clin, Doctorante à l'IGEPP INRAe Rennes, Mélanges d'hôtes pour la lutte contre les maladies des plantes : avantages de la sélection des agents pathogènes et de l'amorçage *immunitaire*.

Youcef Mammeri, MCF HDR au LAMFA, *Modélisation spatio-temporelle de la dyna*mique des lésions entre plantes et pathogènes.

Avec le support du groupe SMAI Mabiome et du GDR Mathématiques, Santé, Sciences de la Vie (MathSAV) <u>https://mathsav.math.cnrs.fr</u>

> Journées Math Bio Santé du GDR MathSAV et du GT Mabiome 3 au 7 octobre à Besançon <u>https://jmbs2022.sciencesconf.org/</u>

Spatio-temporal modelling of plant-pathogen lesions dynamics

Youcef Mammeri LAMFA CNRS UMR 7352 Université de Picardie Jules Verne

INRA

Multidisciplinary joint work with INRAE Bretagne Démécologie Team

UMR Institut de Génétique, Environnement et Protection des Plantes Stéphane Jumel, Lydia Bousset (biologist) Melen Leclerc (stat), Nicolas Parisey (computer) Fréderic Hamelin (modeller)

Biological context

Growing lesions caused by a fungus, e.g. *Peyronellaea pinodes* (blackspot) strongly involved in pea diseases

Growing lesions

Peyronellaea pinodes

Questions

Can we combine imaging with a spatially explicit model that

- 1. Describe plant-pathogen interactions at lesion scale
- 2. Compare the aggressiveness and the variability of the infection
- 3. Predict the adaptation of pathogen populations and optimize the use of different varieties

Top-down

and

bottom-up

Top-down

and

bottom-up

Image acquisition

Top-down

and

bottom-up

Image acquisition Image processing

Outline

1. Top-down approach: Data generation and classification

2. Bottom-up approach: Diffusion and growth from a spatially explicit model

Short review

Berger-Jones 85: logistic ODE

Individual based model: Calonnec et al 08, Mammeri et al. 10, Calonnec-Mammeri 17

Statistical: Leclerc et al.19

Front propagation: Van den Bosch et al. 88, Powell et al. 05

Reaction-diffusion: Mammeri et al. 14

1. Top-down approach: Data generation and classification

How we proceed

In the laboratory:

- inoculation of young plants or detached organs (e.g. leaves)
- acquisitions: visible + Chlorophyll Fluorescence x time tracking
- visual scoring or semi-automatic quantification of traits (e.g. disease score or symptom size)

For pea: 500-1000 spores inoculated, 6 dates measured, 6 seedlings on 60 boxes

Image acquisition

Standardized acquisition (adapted lighting, color test pattern) → RGB images

Temporal and multimodal registration for the characterization of plant-pathogen interactions

Images day 3

Images day 5

Visible

Fluorescence

Image registration

For an inoculated leaf, we have 2 images per day.

To analyze the spatiotemporal dynamics of the lesion and compare the imaging types we need to: remap (and merge) the images

Find the geometrical transformations that allow to go from one image to another

Temporal registration

Coherent Point Drift method (Myronenko-Song 2010): uses the features of the image, e.g. points, contours, regions

Day 4

Day 5

Registration between imaging modes

RGB + Fluo

Raw images to Registered images

Pixel classification

Healthy (H) or Symptomatic (S) (or Background) in 32x16x(648 × 756) = 250 822 656 px described by colors, edges, textures

Pixel classification

Healthy (H) or Symptomatic (S) (or Background) in 32x16x(648 × 756) = 250 822 656 px described by colors, edges, textures

Random Forest classifiers using the Trainable Waikato Environment for Knowledge Analysis (Weka) (Arganda-Carreras et al., 2017)

Pixel classification

Healthy (H) or Symptomatic (S) (or Background) in 32x16x(648 × 756) = 250 822 656 px described by colors, edges, textures

Random Forest classifiers using the Trainable Waikato Environment for Knowledge Analysis (Weka) (Arganda-Carreras et al., 2017)

Likelihood function

$$n_{H,i} \sim \mathcal{B}(n_{H,i} + n_{S,i}, 1-p)$$
$$n_{S,i} \sim \mathcal{B}(n_{H,i} + n_{S,i}, p)$$

Classifiers quality

Classifier	Balanced accuracy	Cohen's κ
Day 3	0.91	0.96
Day 4	0.95	0.95
Day 6	0.85	0.77
Day 7	0.89	0.82

Outline

2. Bottom-up approach: Diffusion and growth from a spatially explicit model

Fisher-KPP equation

 Ω leaf surface *u* local density of pathogen mycelium

$$\frac{\partial u}{\partial t}(\mathbf{x},t) = D\Delta u(\mathbf{x},t) + au(\mathbf{x},t)\left(1 - \frac{u(\mathbf{x},t)}{K}\right).$$

$$\frac{\partial u}{\partial n}(\mathbf{x},t) = 0 \text{ on } \partial \Omega.$$

D diffusion coefficient a local growth rate of the mycelium K maximum local biomass $2\sqrt{aD}$ constant asymptotic speed

The level-set

 $\Omega := \left\{ \mathbf{x} \in \mathbb{R}^2; \ \phi(\mathbf{x}) < 0 \right\}$

 $\vec{n} = \frac{\nabla \phi}{||\nabla \phi||}$

Describe Ω leaf surface with a level-set function ϕ

(Osher and Fedkiw 2002; Sethian 1999)

putational domain

The level-set

Describe Ω leaf surface with a level-set function ϕ

(Osher and Fedkiw 2002; Sethian 1999)

Lagrangian minimization

$$\mathcal{L}(a,D) = \frac{1}{2} \int_{t_3}^{t_7} \int_{\Omega} (u(\mathbf{x},t,\theta) - u_{reg}(\mathbf{x},t))^2 d\mathbf{x} dt + \int_{t_3}^{t_7} \int_{\Omega} \left(\frac{\partial u(\mathbf{x},t,\theta)}{\partial t} - D\Delta u(\mathbf{x},t,\theta) - au(\mathbf{x},t,\theta) \left(1 - \frac{u(\mathbf{x},t,\theta)}{K}\right) \right) \lambda(\mathbf{x},t,\theta) d\mathbf{x} dt.$$

Lagrangian minimization

$$\mathcal{L}(a,D) = \frac{1}{2} \int_{t_3}^{t_7} \int_{\Omega} (u(\mathbf{x},t,\theta) - u_{reg}(\mathbf{x},t))^2 d\mathbf{x} dt + \int_{t_3}^{t_7} \int_{\Omega} \left(\frac{\partial u(\mathbf{x},t,\theta)}{\partial t} - D\Delta u(\mathbf{x},t,\theta) - au(\mathbf{x},t,\theta) \left(1 - \frac{u(\mathbf{x},t,\theta)}{K} \right) \right) \lambda(\mathbf{x},t,\theta) d\mathbf{x} dt.$$

gradient
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial D} = -\int_{t_3}^{t_7} \int_{\Omega} \nabla u(\mathbf{x}, t) \nabla \lambda(\mathbf{x}, t) d\mathbf{x} dt \\ \frac{\partial \mathcal{L}}{\partial a} = \int_{t_3}^{t_7} \int_{\Omega} u(\mathbf{x}, t) \left(1 - \frac{u(\mathbf{x}, t)}{K}\right) \lambda(\mathbf{x}, t) d\mathbf{x} dt. \end{cases}$$

Lagrangian minimization

$$\mathcal{L}(a,D) = \frac{1}{2} \int_{t_3}^{t_7} \int_{\Omega} (u(\mathbf{x},t,\theta) - u_{reg}(\mathbf{x},t))^2 d\mathbf{x} dt + \int_{t_3}^{t_7} \int_{\Omega} \left(\frac{\partial u(\mathbf{x},t,\theta)}{\partial t} - D\Delta u(\mathbf{x},t,\theta) - au(\mathbf{x},t,\theta) \left(1 - \frac{u(\mathbf{x},t,\theta)}{K} \right) \right) \lambda(\mathbf{x},t,\theta) d\mathbf{x} dt.$$

gradient
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial D} = -\int_{t_3}^{t_7} \int_{\Omega} \nabla u(\mathbf{x}, t) \nabla \lambda(\mathbf{x}, t) d\mathbf{x} dt \\ \frac{\partial \mathcal{L}}{\partial a} = \int_{t_3}^{t_7} \int_{\Omega} u(\mathbf{x}, t) \left(1 - \frac{u(\mathbf{x}, t)}{K}\right) \lambda(\mathbf{x}, t) d\mathbf{x} dt. \end{cases}$$

 λ solution of backward PDE

$$-\frac{\partial\lambda}{\partial t} = D\Delta\lambda(\mathbf{x},t) + a\left(1 - \frac{2u(\mathbf{x},t)}{K}\right)\lambda(\mathbf{x},t) + (u(\mathbf{x},t) - u_{reg})$$

Initial guess

By splitting the PDE

Initial guess

By splitting the PDE

$$D\simeq \frac{\langle r^2\rangle}{16t}~$$
 = 98% of population $~$ (Shigesada and Kawasaki, 1997)

Initial guess

By splitting the PDE

$$D\simeq \frac{\langle r^2\rangle}{16t}~$$
 = 98% of population $~$ (Shigesada and Kawasaki, 1997)

$$a = -\frac{1}{(t_b - t_a)} \ln \left(\frac{\frac{K}{u(t_b)} - 1}{\frac{K}{u(t_a)} - 1} \right)$$

Simulation: movie

James

Day 4

Day 7

Convergence

	Cultivar						
1	Solara	size	512×514	614×617	717×720	819×822	922×925
		â	0.4788	0.4835	0.4845	0.4852	0.4841
		\hat{D}	0.4597	0.4511	0.4529	0.4534	0.4584
17	James	size	512×514	614×617	717×720	819×822	922×925
		â	0.4472	0.4492	0.4530	0.4550	0.4543
		\hat{D}	0.2367	0.2367	0.2368	0.2366	0.2368

30

Residuals

0.00

0.11

P. pinodes spread at a higher speed and more virulent on Solara than on James

Conclusion

We propose a simple PDE able to predict the lesion growth from imaging data

Conclusion

We propose a simple PDE able to predict the lesion growth from imaging data

Other pathosystems: *phytophthora infestans* – potato phoma medicaginis – pea powdery mildew - vine

Account for the host physiology (age, senescence, veins...):

MERCI DE VOTRE ATTENTION!

Merci au groupe SMAI Mabiome GDR Mathématiques, Santé, Sciences de la Vie (MathSAV) <u>https://mathsav.math.cnrs.fr</u>

Journées Math Bio Santé du GDR MathSAV et du GT Mabiome 3 au 7 octobre à Besançon <u>https://jmbs2022.sciencesconf.org/</u>

