Global existence of a BV solution to a diagonal hyperbolic system

Maryam AL ZOHBI,

Ahmad EL HAJJ and Mustapha JAZAR

Côte d'Azur University, LJAD

June 14^{th} , 2022

1/16

イロト イポト イヨト イヨト

June 14th, 2022

Presentation of the problem

We study the existence of solutions $u(t,x) = (u^i(t,x))_{i=1,\ldots,d}$, where $d \in \mathbb{N}^*$, to

$$\begin{cases} \partial_t u^i(t,x) = \lambda^i(t,x,u(t,x))\partial_x u^i(t,x) & \text{ in } (0,T) \times \mathbb{R}, \quad T > 0\\ u^i(0,x) = u^i_0(x) & \text{ in } \mathbb{R}. \end{cases}$$
(H)

• The velocities λ^i satisfy for every compact $\mathcal{K} \subset \mathbb{R}^d$

$$\lambda^{i} \in L^{\infty}((0,T) \times \mathbb{R} \times \mathcal{K}).$$
(K1)

• The initial data u_0^i satisfy

$$u_0^i \in BV(\mathbb{R}),\tag{K2}$$

where $BV(\mathbb{R})$ is the space of functions of bounded variations given by

$$BV(\mathbb{R}) = \left\{ f \in L^1_{loc}(\mathbb{R}); \ TV(f) < +\infty \right\},\$$

and equipped with the semi-norm

$$|f|_{BV(\mathbb{R})} = TV(f) = \sup\left\{\int_{\mathbb{R}} f(x)\phi'(x)dx; \ \phi \in C_c^1(\mathbb{R}) \text{ and } \|\phi\|_{L^{\infty}(\mathbb{R})} \le 1\right\}.$$

2/16

• For a locally bounded function f, we denote the upper and lower semi-continuous envelopes respectively by

$$f^{\star}(X) = \limsup_{Y \to X} f(Y), \text{ and } f_{\star}(X) = \liminf_{Y \to X} f(Y).$$

• For two locally bounded functions $v = (v^i)_{i=1,...,d}$ and $u = (u^i)_{i=1,...,d}$ on $[0,T) \times \mathbb{R}$ such that $(v^i)_{\star} \leq (u^i)^{\star}$ for every $i = 1, \ldots, d$, we define the set

$$\mathcal{E}_v^u(t,x) = \prod_{i=1}^d \left[(v^i)_\star(t,x), (u^i)^\star(t,x) \right].$$

3/16

Ishii, Koike (1991-1992)

Definition

Assume that $\lambda = (\lambda^i)_{i=1,...,d}$ is locally bounded on $(0,T) \times \mathbb{R} \times \mathbb{R}^d$ and $u_0 = (u_0^i)_{i=1,...,d}$ is locally bounded on \mathbb{R} . Let $v = (v^i)_{i=1,...,d}$, $u = (u^i)_{i=1,...,d}$ be two locally bounded functions on $[0,T) \times \mathbb{R}$ such that $(v^i)_* \leq (u^i)^*$ for every i = 1,...,d. We say that u and v are a couple of discontinuous viscosity sub- and super- solutions of (H) if they satisfy the following two conditions

(i) •
$$(u^i)^*(0, x) \le (u^i_0)^*(x)$$
, for all $i = 1, ..., d$ and $x \in \mathbb{R}$

•
$$(v^i)_{\star}(0,x) \ge (u_0^i)_{\star}(x)$$
, for all $i = 1, \dots, d$ and $x \in \mathbb{R}$.

4/16

Ishii, Koike (1991-1992)

Definition

(*ii*) • Whenever a test function $\phi \in C^1((0,T) \times \mathbb{R})$, $i = 1, \ldots, d$ and $(u^i)^* - \phi$ attains a local maximum at $(t_0, x_0) \in (0,T) \times \mathbb{R}$, then we have

$$\min\left\{\partial_t \phi(t_0, x_0) - (\lambda^i)^*(t_0, x_0, r)(\partial_x \phi)^+(t_0, x_0) + (\lambda^i)_*(t_0, x_0, r)(\partial_x \phi)^-(t_0, x_0) : r \in \mathcal{E}^u_v(t_0, x_0), r^i = (u^i)^*(t_0, x_0)\right\} \le 0.$$

• Whenever $\phi \in C^1((0,T) \times \mathbb{R})$, $i = 1, \ldots, d$ and $(v^i)_{\star} - \phi$ attains a local minimum at $(t_0, x_0) \in (0,T) \times \mathbb{R}$, then we have

$$\max\left\{\partial_t \phi(t_0, x_0) - (\lambda^i)_{\star}(t_0, x_0, r)(\partial_x \phi)^+(t_0, x_0) + (\lambda^i)^{\star}(t_0, x_0, r)(\partial_x \phi)^-(t_0, x_0): r \in \mathcal{E}_v^u(t_0, x_0), r^i = (v^i)_{\star}(t_0, x_0)\right\} \ge 0.$$

Finally, we call a function $w = (w^i)_{i=1,...,d}$ a discontinuous viscosity solution of (H) if w^* and w_* verify conditions (i) and (ii).

4/16

Regularization of (H)

Step 1: Regularization of u_0^i and λ^i

•
$$u_{0,\varepsilon}^i = u_0^i \star \rho_{\varepsilon}^1$$
 for $= 1, \dots, d$

• $\lambda_{\varepsilon}^{i} = \hat{\lambda}^{i} \star \rho_{\varepsilon}^{d+2}$ for $= 1, \dots, d$, where $\hat{\lambda}^{i}$ is an extension of λ^{i} by 0

where ρ_{ε}^{1} and ρ_{ε}^{d+2} are the standard mollifiers in \mathbb{R} and \mathbb{R}^{d+2} respectively. Step 2: Adding the term $\eta \partial_{xx}^{2} u_{\varepsilon,\eta}^{i}$

Thus, we obtain the following parabolic regularized system

$$\begin{cases} \partial_t u^i_{\varepsilon,\eta}(t,x) = \eta \partial^2_{xx} u^i_{\varepsilon,\eta}(t,x) + \lambda^i_{\varepsilon}(t,x,u_{\varepsilon,\eta}(t,x)) \partial_x u^i_{\varepsilon,\eta}(t,x) & \text{ in } (0,T) \times \mathbb{R}, \\ u^i_{\varepsilon,\eta}(0,x) = u^i_{0,\varepsilon}(x) & \text{ in } \mathbb{R}. \end{cases}$$
(P)

Global solution to (H)

Global existence to a diagonal hyperbolic system for any BV initial data (Nonlinearity 2021)

Theorem (Existence of a weak sense to (H))

Assume that (K1) and (K2) hold. Then, we have

(i) Smooth solution: there exists a unique smooth solution $u_{\varepsilon,\eta} = (u_{\varepsilon,\eta}^i)_{i=1,...,d}$ to system (P), satisfying for all T > 0 and i = 1, ..., d, the following uniform a priori estimates

$$\begin{split} \left\| u_{\varepsilon,\eta}^{i} \right\|_{L^{\infty}((0,T)\times\mathbb{R})} &\leq \left\| u_{0}^{i} \right\|_{L^{\infty}(\mathbb{R})} \\ \left\| u_{\varepsilon,\eta}^{i} \right\|_{L^{\infty}((0,T);BV(\mathbb{R}))} &\leq \left| u_{0}^{i} \right|_{BV(\mathbb{R})} \\ \left\| \partial_{t} u_{\varepsilon,\eta}^{i} \right\|_{L^{\infty}((0,T);W^{-1,1}(\mathbb{R}))} &\leq \left(1 + \left\| \lambda^{i} \right\|_{L^{\infty}((0,T)\times\mathbb{R}\times\mathcal{K}_{0})} \right) \left| u_{0}^{i} \right|_{BV(\mathbb{R})} \\ \end{split}$$
where $\mathcal{K}_{0} = \prod_{i=1}^{d} \left[- \left\| u_{0}^{i} \right\|_{L^{\infty}(\mathbb{R})}, \left\| u_{0}^{i} \right\|_{L^{\infty}(\mathbb{R})} \right].$

6/16

Global existence to a diagonal hyperbolic system for any BV initial data (Nonlinearity 2021)

Theorem (Existence in a week sense to (H))

(ii) Sub and super solutions: the upper and lower relaxed semi-limits $\overline{u} = (\overline{u})_{i=1,...,d}$ and $\underline{u} = (\underline{u}^i)_{i=1,...,d}$ of the solution $u_{\varepsilon,\eta} = (u_{\varepsilon,\eta}^i)_{i=1,...,d}$ to (P), are a couple of discontinuous viscosity sub- and super- solutions respectively to system (H).

We define the upper and lower relaxed semi-limits of $u_{\varepsilon,\eta}$ respectively by

$$\overline{u}(t,x) = \limsup_{\substack{(\varepsilon,\eta) \longrightarrow (0,0)\\(s,y) \longrightarrow (t,x)}} u_{\varepsilon,\eta}(s,y), \quad \text{and} \quad \underline{u}(t,x) = \liminf_{\substack{(\varepsilon,\eta) \longrightarrow (0,0)\\(s,y) \longrightarrow (t,x)}} u_{\varepsilon,\eta}(s,y).$$

June 14th, 2022

7/16

Global existence to a diagonal hyperbolic system for any BV initial data (Nonlinearity 2021)

Theorem (Existence in a weak sense to (H))

(iii) Convergence: the solutions $u^i_{\varepsilon,\eta}$ of (P) converge, up to the extract of a subsequence, as ε and η tend to zero, for all $i = 1, \ldots, d$, to a function u^i that satisfies the following L^{∞} and BV estimates

$$\begin{split} \left\| u^{i} \right\|_{L^{\infty}((0,T)\times\mathbb{R})} &\leq \left\| u^{i}_{0} \right\|_{L^{\infty}(\mathbb{R})} \\ \left\| u^{i} \right\|_{L^{\infty}((0,T);BV(\mathbb{R}))} &\leq |u^{i}_{0}|_{BV(\mathbb{R})} \end{split}$$

and the following equality

$$u^{i}(t,\cdot) = \overline{u}^{i}(t,\cdot) = \underline{u}^{i}(t,\cdot)$$

except at most on a countable set in \mathbb{R} , for all $t \in [0, T)$.

8/16

Global existence to a diagonal hyperbolic system for any BV initial data (Nonlinearity 2021)

Corollary (Non-decreasing viscosity solution to (H))

Assume that (K1) and (K2) are satisfied. Suppose also that u_0^i is non-decreasing for every $i = 1, \ldots, d$. Then system (H) has a discontinuous non-decreasing viscosity solution $(u^i)_{i=1,\ldots,d}$ satisfying the L^{∞} and BV estimates for all $i = 1, \ldots, d$.

Our work with respect to the literature

In the case of strictly hyperbolic systems:

- **Bianchini and Bressan (2005):** existence and uniqueness result of a semi-group like solution considering initial data with small total variation.
- El Hajj and Monneau (2010): existence and uniqueness of a continuous viscosity solution considering non-decreasing initial data and assuming the velocities are Lipschitz smooth functions.

In the case of not necessarily strictly hyperbolic systems:

- El Hajj and Monneau (2010): existence and uniqueness of a Lipschitz continuous viscosity solution assuming non-decreasing initial data with some monotonicity conditions on the velocities.
- El Hajj, Ibrahim, and Rizik (2021): existence of a discontinuous viscosity solution considering non-decreasing *BV* initial data, with a monotonicity condition on the velocities.

10 / 16

Fixed point argument:

• Applied to the integral form of the system

$$u_{\varepsilon,\eta}^{i}(t,x) = G_{\eta}(t) \star u_{0}^{i}(x) + \int_{0}^{t} \left(G_{\eta}(t-s) \star \lambda_{\varepsilon}^{i}(s,\cdot,u_{\varepsilon,\eta}(s,\cdot)) \partial_{x} u_{\varepsilon,\eta}^{i}(s,\cdot) \right) (x) ds$$

• $G_{\eta}(t,x) = \frac{1}{\sqrt{4\pi t \eta}} e^{-\frac{x^{2}}{4t \eta}}$

• Obtaining a fixed point in an adapted space X_T .

Maryam AL ZOHB	1
----------------	---

イロト イヨト イヨト イヨト

June 14th, 2022

11 / 16

- L^{∞} estimate: by applying the Maximum principle to (P).
- *BV* estimate: differentiating (P) with respect to x, multiplying by $B'_{\delta}(\partial_{\tau} u^{i}_{e,\tau}) \quad \text{where } B_{\delta}(x) = \sqrt{x^{2} + \delta^{2}},$

and then integrating with respect to t.

• Time derivative estimate: by duality. We multiply (P) with a test function in $L^1((0,T); W^{1,\infty}(\mathbb{R}))$, and we integrate over $(0,T) \times \mathbb{R}$.

12 / 16

Existence of sub and super solutions to (H)

Using:

• Finite speed propagation property of (P), for h > 0

$$\begin{split} &\int_{\mathbb{R}} G_{\eta}(t,y) \min_{|z-(x-y)| \leq \Lambda t} u^{i}_{\varepsilon,\eta}(h,z) dy \leq u^{i}_{\varepsilon,\eta}(t+h,x) \leq \\ &\int_{\mathbb{R}} G_{\eta}(t,y) \max_{|z-(x-y)| \leq \Lambda t} u^{i}_{\varepsilon,\eta}(h,z) dy, \text{ for all } (t,x) \in [0,T-h) \times \mathbb{R}, \end{split}$$

• $\Lambda = \max_{i \in \{1,\ldots,d\}} \left\|\lambda^{i}\right\|_{L^{\infty}((0,T) \times \mathbb{R} \times \mathcal{K}_{0})},$

• Stability results of viscosity solutions,

we can show that \overline{u}^i and \underline{u}^i satisfy the conditions of viscosity sub- and supersolutions of (H) respectively.

Maryam 1	AL ZOHB
----------	---------

イロト イヨト イヨト イヨト

June 14th, 2022

13 / 16

Convergence: using

- Simon's Lemma,
- Uniform a priori estimates,

we can extract a convergent subsequence u^i satisfying the L^{∞} and BV estimates.

Existence of nondecreasing solution to (H): using

- Finite speed propagation property of (P)
- Properties of $BV(\mathbb{R})$ functions

we can show that for every $i = 1, \ldots, d$

$$\overline{u}^i = (u^i)^\star$$
 and $\underline{u}^i = (u^i)_\star$

Equality between \overline{u}^i and \underline{u}^i :

- Finite speed propagation property of (P)
- Properties of $BV(\mathbb{R})$ functions.

(日) (同) (三) (三) (三)

Recent, current and future work

• Proven a similar result to the eikonal system

$$\partial_t u^i(t,x) = \lambda^i(t,x,u(t,x)) \left| \partial_x u^i(t,x) \right|, \quad i = 1,\dots,d.$$

- $\bullet\,$ Recovered the BV solution of the eikonal system through proposing a convergent numerical scheme.
- Established the existence of a BV^s solution to a particular case of the main diagonal system.
- Prove an almost everywhere uniqueness result of a "piece-wise continuous" solution.
- Establish the existence of a BV^s entropy solution to the diagonal system.

15 / 16

Thank You For Your Patience!

ロシュロシュアシュア