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Introduction

ε

framework :study of electric potential in an homogeneous medium
with random inclusions Fε of infinite conductivity and small size ε

a criterion ensuring homogenization was already given by Zhikov

Goal : relax this criterion using idea from network approximation.

=⇒ inspired by the work on network approximation of Leonid Berlyand
[Berlyand and Kolpakov, 2001].
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Microscopic problem

F(ω) = ∪I∈CC(F)I(ω) ⊂ R3 is the random set of inclusions, CC= Connected
Components
domain U ⊂ R3

Iε = εI and Fε = ∪I∈CC(F)Iε(ω) such that ”εI ⊂ U”

Consider electric potentials (uε)ε>0 ∈ H1
0(U) such that

−∆uε = f in U \ Fε, conductivity = 1
∇uε = 0 in Fε∫

∂Iε
∂νuε = 0, ∀Iε ∈ CC(Fε)

uε = 0 on ∂U

(Eε)

where
uε equals a constant CI in each inclusion, determined by the zero-flux
condition

=⇒ The main goal is to pass to the limit when ε → 0 (homogenization result)
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Heuristic difficulty

Naive heuristic difficulty - two inclusions set-up

uε = uI uε = uJ
d

the conductivity uε must pass quickly from uI to uJ
=⇒ explosion of

∫
|∇uε|2 in the contact zone ≈ | ln d ||uI − uJ|2.

clusters/dense settings may prevent homogenization
(the energy might blows up, cf work of Berlyand. L).
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Existing results

Well-separated inclusions =⇒ homogenization holds
I

Theorem (Zhikov, [Jikov et al., 1994])
Assume that all the inclusions are balls of unit radius, and that, almost surely

lim sup
N→+∞

1

N3

∑
I⊂QN

µI < +∞, where µI := | ln d(I,F \ I)|,QN = [−N/2,N/2]3 (Z)

Then (uε)ε converges weakly in H1
0(U) to u0 solution of the effective problem{

−div A0∇u0 = (1− λ)f in U
u0 = 0 on ∂U

(E0)

where A0 is the effective conductivity matrix and λ is the density of the inclusions
(λ = E [1F]).
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Effective conductivity

The effective conductivity matrix is constant and defined for any ξ ∈ R3 :

A0ξ · ξ := E−
∫

Q1

|ξ +∇ϕξ|2

= lim
N→+∞

−
∫

QN

|ξ +∇ϕξ|2 ω − a.s

where ϕξ(ω, x) is a random corrector which satisfies for almost all ω
−∆ϕξ = 0 in R3 \ F,
∇ϕξ = −ξ in F,∫

∂I
∂νϕξ = 0, ∀I ∈ CC(F).

(EC)

=⇒ classic difficulty of stochastic homogenization :

it is unclear that this problem is well-posed !
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Geometric Assumptions

We restrict to a specific class of inclusions
F is a random, stationary and ergodic closed set

The inclusions are regular and the gaps are well-separated

•xI,α

• xJ,β

I Iα

Iβ

I

J

Figure – Geometry of the inclusions with a close-up on a gap.

no constraint so far on the inclusion’s diameter !
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• xJ,β

I Iα

Iβ

I

J

Figure – Geometry of the inclusions with a close-up on a gap.

no constraint so far on the inclusion’s diameter !
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Multigraph of the inclusions
Definition
The δ-multigraph of inclusions associated to F is the unoriented
multigraph Gr(F) with

the vertices of Gr(F) are the inclusions of F
there is an edge between I and J for each δ-close gaps
the corresponding edge e has a weight µe = | ln |xI,α − xJ,β ||
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Multigraph of the inclusions
Definition
The δ-multigraph of inclusions associated to F is the unoriented
multigraph Gr(F) with

the vertices of Gr(F) are the inclusions of F
there is an edge between I and J for each δ-close gaps
the corresponding edge e has a weight µe = | ln |xI,α − xJ,β ||

cluster : the union of all the
inclusions that are the nodes
of a same connected
component of Gr(F)

Alexandre Girodroux-Lavigne CANUM 2020 9 / 16



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete energy on the network

Goal : using the multigraph of inclusions, relax the Zhikov assumption.

Discrete energy : Let FN := ∪I∈CC(F), I⊂QNI and
a family {uI} indexed by the vertices I

a family {bIJe} indexed by vertices I, J and an edge e linking I to J

E
(

FN, {uI}, {bIJe}
)
:=

∑
I,J,e

µe|bIJe − bJIe + uI − uJ|2 +
∑

I
|I||uI|2

QN

If bIJe = ξ · xI, this energy is an upper bound for the
energy ||u||H1(QN) where u that is harmonic outside
FN, and satisfies u = uI+ξ ·xI on each I ∈ CC(FN)
=⇒ similar to ϕξ !
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Effective conductivity - corrector result
Let xI = −

∫
I x and I0 the inclusion that contains 0 (with I0 = ∅ if 0 /∈ F).

Theorem ([Gérard-Varet and Girodroux-Lavigne, 2021])
If for any ξ ∈ R3, a.s,

lim sup
N→+∞

inf
{uI}

1

|QN|
E
(

FN, {uI}, {bIJe = ξ · xI}
)
< +∞, (H1)

and E (diam I0)2 < +∞, then the corrector problem has a solution
ϕξ with good properties and the conductivity matrix A0 is well-
defined.

QN

(H1) appears as a natural condition to get a uniform bound on the mean energy of
the corrector over QN

(Z) condition implies that lim supN→+∞
1

|QN|E
(

FN, {0}, {ξ · xI}
)
< +∞

minimizing inf{uI} E
(

FN, {uI}, {ξ · xI}
)

=⇒ solving the weighted laplacian
problem on the graph Gr(FN) : (∆FN + Id)U = Bξ
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Corollary - bounded diameter condition

Let C0 the cluster that contains 0 (C0 = ∅ if 0 /∈ F ). We can derive a convenient
assumption on the inclusions

Corollary
If E (diam C0)

2 < +∞ then (H1) is verified.

Proof. Take uI := −ξ · (xI − xC). With this choice

E(FN, {uI}, {ξ · xI}) =
∑

I∈CC(FN)

|I||uI|2 ≲
∑
C

cluster of FN

∑
I∈C

|I||xI − xC |2

≲
∑
C

∑
I∈C

∫
I
diam(C)2 dx =

∑
C

∑
I∈C

∫
I
diam(Cx)

2 dx ≲
∫

QN

diam(Cx)
2 dx

=⇒ by ergodic theorem : lim sup
N→+∞

inf
{uI}

1

|QN|
E
(

FN, {uI}, ξ · xI}
)
≲ E diam(C0)

2 a.s

Eventually, any F such that the P(0 ∈ cluster of diameter N) ≤ 1/N3+α is admissible.
Similar results were established recently in [Duerinckx and Gloria, 2021] for the Stokes
problem.
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problem.
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Corollary - bounded diameter condition
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∑

I∈CC(FN)

|I||uI|2 ≲
∑
C

cluster of FN

∑
I∈C

|I||xI − xC |2

≲
∑
C

∑
I∈C

∫
I
diam(C)2 dx =

∑
C

∑
I∈C

∫
I
diam(Cx)
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QN

diam(Cx)
2 dx
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Homogenization

Theorem ([Gérard-Varet and Girodroux-Lavigne, 2021])

We assume that there exists s ∈ (2,+∞), such that F satisfies almost
surely

lim sup
N→+∞

1

|QN|
sup

||bIJe||s=1
inf
{uI}

E
(

FN, {uI}, {bIJe}
)
< +∞, (H2)

where ||bIJe||s/2s = 1
|QN|

∑
I,J,e |bIJe|s, then there exists p(s) such that if

E (diam I0)p < +∞, then homogenization holds.

(H2) =⇒ (H1)
(H2) is implied by a slightly improved Zhikov condition
Proof : modified oscillatory test function method

Alexandre Girodroux-Lavigne CANUM 2020 13 / 16



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Homogenization

Theorem ([Gérard-Varet and Girodroux-Lavigne, 2021])

We assume that there exists s ∈ (2,+∞), such that F satisfies almost
surely

lim sup
N→+∞

1

|QN|
sup

||bIJe||s=1
inf
{uI}

E
(

FN, {uI}, {bIJe}
)
< +∞, (H2)

where ||bIJe||s/2s = 1
|QN|

∑
I,J,e |bIJe|s, then there exists p(s) such that if

E (diam I0)p < +∞, then homogenization holds.

(H2) =⇒ (H1)
(H2) is implied by a slightly improved Zhikov condition
Proof : modified oscillatory test function method

Alexandre Girodroux-Lavigne CANUM 2020 13 / 16



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Corollary - cycle-free inclusions

Corollary
Assume that Gr(F) is cycle-free, supI I < +∞ and that E ♯Cp

0 < +∞
with p > 2, then, F satisfies (H2) with exponent s = 2p

p−2 ∈ (2,+∞).
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Thank you for listening !
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Precised corrector result

Theorem ([Gérard-Varet and Girodroux-Lavigne, 2021])
If almost surely,

lim sup
N→+∞

inf
{uI}

1

|QN|
E
(

FN, {uI}, {bIJe = ξ · xI}
)
< +∞ (H1)

where FN := ∪I∈CC(F), I⊂QN I, and if E diam(I0)2 < +∞, then there exists a scalar field
ϕξ(ω, x) ∈ L2(Ω,H1

loc(R3)) with stationary gradient s.t
i) ∇ϕξ(ω, ·) satisfies (EC) a.s
ii) ϕ is sub-linear, in the sense that εϕ(·/ε) −→

ε→0
0 in Ls

loc(R3) for any s < 6

iii) E
∫

Q1
∇ϕξ = 0, E

∫
Q1

|∇ϕξ|2 < +∞,
∫

Q1
ϕξ = 0

iv) up to a constant, ϕξ is the unique minimizer of the variational problem

inf
{
E
∫

Q1

|∇ϕ+ ξ|2, ϕ ∈ L2(Ω,H1
loc(R

3)), ∇ϕ stationary, ∇ϕ+ ξ|F = 0, E∇ϕ = 0
}
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Sketch of the homogenization proof
Step 1 : thanks to (H2), we prove the following lemma of extension outside the
inclusion , using local surgery on the gaps

Lemma
Almost surely, there exists C > 0 independent of ε such that for all φε ∈ W1,s(Fε), one
can find a field ϕε ∈ H1

0(U) such that

∇ϕε = ∇φε in Fε, ∥∇ϕε∥L2(U) ≤ C∥∇φε∥Ls(Fε), 2 ≤ s < +∞

step 2 : by a duality argument, we obtain an extension theorem for divergence-free
vector outside the inclusions , that we use to extend ∇uε.

step 3 : we introduce for φ ∈ C∞
0 (U) the oscillatory test function

φε(x) := φ(x) + ε
∑

i ϕei(x/ε)∂iφ(x) and we want to use it as a test function in
(Eε)

step 4 : since ∇φε = ε
∑

i ∇∂iφ(x)ϕei(x/ε) ̸= 0 in Fε, we correct it using the
lemma

step 5 : passing to the limit using ergodic’s theorem, div/curl lemma and
sublinearity of the corrector.
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