
CANUM 2022
14 June 2022

Solving linear systems efficiently using block
low-rank compression in mixed precision

Matthieu Gerest
EDF R&D, LIP6 (CIFRE PhD)

Join work with:
Patrick Amestoy1, Olivier Boiteau2, Alfredo Buttari3, Fabienne Jézéquel4,

Jean-Yves L’Excellent1, Théo Mary4

1Mumps Technologies
2EDF R&D
3Université de Toulouse, CNRS, IRIT
4Sorbonne Université, CNRS, LIP61/15



Context: solving linear systems

• Objective: solving Ax = b

• Direct method: compute LU=A

• Often a bottleneck in terms of memory
bandwith and computation time

• MUMPS: a multifrontal solver

• BLR compression: a method to reduce the
complexity

• Objective: combine BLR compression and
mixed precision

Example of application: a RIS

pump under internal pressure

2/15



Context: solving linear systems

• Objective: solving Ax = b

• Direct method: compute LU=A

• Often a bottleneck in terms of memory
bandwith and computation time

• MUMPS: a multifrontal solver

• BLR compression: a method to reduce the
complexity

• Objective: combine BLR compression and
mixed precision

Example of application: a RIS

pump under internal pressure

2/15



BLR compression

• Class of matrices: BLR matrices

• Off-diagonal blocks of A tend to
contain less information (low numerical
ranks)

• They can be replaced by their
Low-Rank approximations

B ≈ X × Y T

• The compression error is controlled by
a threshold ε

• Larger ε

⇒ fewer coefficients stored
⇒ fewer operations
⇒ faster computations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Example of BLR matrix
(perf009, RIS pump)

Color scale: numerical ranks of

the blocks for ε = 10−10

3/15



BLR compression

• Class of matrices: BLR matrices

• Off-diagonal blocks of A tend to
contain less information (low numerical
ranks)

• They can be replaced by their
Low-Rank approximations

B ≈ X × Y T

• The compression error is controlled by
a threshold ε

• Larger ε

⇒ fewer coefficients stored
⇒ fewer operations
⇒ faster computations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Example of BLR matrix
(perf009, RIS pump)

Color scale: numerical ranks of

the blocks for ε = 10−10

3/15



BLR compression

• Class of matrices: BLR matrices

• Off-diagonal blocks of A tend to
contain less information (low numerical
ranks)

• They can be replaced by their
Low-Rank approximations

B ≈ X × Y T

• The compression error is controlled by
a threshold ε

• Larger ε

⇒ fewer coefficients stored
⇒ fewer operations
⇒ faster computations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Example of BLR matrix
(perf009, RIS pump)

Color scale: numerical ranks of

the blocks for ε = 10−10

3/15



Mixed precision Low-Rank approximation

× ×

X Y TΣ

Xε Y T
εΣεX1 X2

Y T
1

Y T
2

Σ1 Σ2X1X2 X3

Y T
1

Y T
2

Y T
3

Σ1Σ2 Σ3

SVD: Singular Value Decomposition

Extension to 3 precision (fp64,
fp32, bfloat16)

- Converting X3 and Y3 to bfloat16

- Criterion for storing columns xi and yi in precision bfloat16:
σi ≤ ε

ubf 16

- Error: ‖B − XΣY ‖ . 5ε‖B‖

4/15



Mixed precision Low-Rank approximation

Xε Y T
εΣε

X1 X2

Y T
1

Y T
2

Σ1 Σ2X1X2 X3

Y T
1

Y T
2

Y T
3

Σ1Σ2 Σ3

× ×

Truncated SVD

- B =
∑r

k=1 xkσky
T
k , with r such that the error satisfies

- ‖B − XεΣεYε‖ ≤ ε‖B‖

Extension to 3 precision (fp64, fp32, bfloat16)

- Converting X3 and Y3 to bfloat16

- Criterion for storing columns xi and yi in precision bfloat16:
σi ≤ ε

ubf 16

- Error: ‖B − XΣY ‖ . 5ε‖B‖

4/15



Mixed precision Low-Rank approximation

Xε Y T
εΣε

X1 X2

Y T
1

Y T
2

Σ1 Σ2

X1X2 X3

Y T
1

Y T
2

Y T
3

Σ1Σ2 Σ3

× ×

Truncated SVD with 2 precision formats (fp64, fp32)

- The idea: Converting X2 and Y2 to single precision (fp32)
- Criterion for storing columns xi and yi in precision fp32:
σi ≤ ε

us
‖B‖

- Error: ‖B − XΣY ‖ . 3ε‖B‖

Extension to 3 precision (fp64, fp32, bfloat16)

- Converting X3 and Y3 to bfloat16
- Criterion for storing columns xi and yi in precision bfloat16:
σi ≤ ε

ubf 16
- Error: ‖B − XΣY ‖ . 5ε‖B‖

4/15



Mixed precision Low-Rank approximation

Xε Y T
εΣεX1 X2

Y T
1

Y T
2

Σ1 Σ2

X1X2 X3

Y T
1

Y T
2

Y T
3

Σ1Σ2 Σ3

× ×

Extension to 3 precision (fp64, fp32, bfloat16)

- Converting X3 and Y3 to bfloat16

- Criterion for storing columns xi and yi in precision bfloat16:
σi ≤ ε

ubf 16

- Error: ‖B − XΣY ‖ . 5ε‖B‖

4/15



Why does it work? An intuition

• B =B1+B2

• The coefficients of B2 are small compared to those of B1

• Example:

• B2 can be stored in lower precision, with fewer fraction bits

5/15



Why does it work? An intuition

• B =B1+B2

• The coefficients of B2 are small compared to those of B1

• Example:

• B2 can be stored in lower precision, with fewer fraction bits

5/15



Why does it work? An intuition

• B =B1+B2

• The coefficients of B2 are small compared to those of B1

• Example:

• B2 can be stored in lower precision, with fewer fraction bits

5/15



Distribution of singular values

• A typical example of rapidly decaying singular values for
off-diagonal blocks (matrix perf009)

0 10 20 30 40 50 60 70

10
-20

10
-15

10
-10

10
-5

10
0

0 10 20 30 40 50 60 70

10
-20

10
-15

10
-10

10
-5

10
0

block (12,11) block (12,25)

• Most common precision formats:

Signif. bits (t) Exp. Range u = 2−t

fp64 53 11 10±308 1× 10−16

fp32 24 8 10±38 6× 10−8

fp16 11 5 10±5 5× 10−4

bfloat16 8 8 10±38 4× 10−3

6/15



Compression gain: an example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Storage cost of the blocks, in percentage of
the full-rank blocks

(perf009, ε = 10−10)

Monoprecision BLR:

• entries in fp64: 100%

• entries in fp32:

• entries in bfloat16: 33%

size: 27.9 MBytes

7/15



Compression gain: an example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Storage cost of the blocks, in percentage of
the full-rank blocks

(perf009, ε = 10−10)

2-precision BLR:

• entries in fp64: 14%

• entries in fp32: 86%

• entries in bfloat16: 33%

size: 16.4 MBytes
(×1.7 storage gain)

7/15



Compression gain: an example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Storage cost of the blocks, in percentage of
the full-rank blocks

(perf009, ε = 10−10)

3-precision BLR:

• entries in fp64: 13%

• entries in fp32: 53%

• entries in bfloat16: 33%

size: 14.0 MBytes
(×2.0 storage gain)

7/15



LU factorization algorithm (dense matrix)

• Step k:
◦ compute LkUk = Akk

◦ Update formula: for i , j > k ,
Aij ← Aij − (AikU

−1
k )× (L−1k Akj)

• BLR: Aik ≈ XikY
T
ik

• Example of kernel in mixed precision:
LR × matrix multiplication:

× = × + ×

computed in fp64 computed in fp32

8/15



Stability

Traditional LU (Wilkinson)

L̂Û = A + ∆A, ‖∆A‖ . 3n3ρnu1‖A‖.

BLR LU (Higham & Mary)

L̂Û = A + ∆A, ‖∆A‖ ≤
(
c1ε+ c2ρnu1

)
‖A‖.

Mixed precision BLR LU (this work)

L̂Û = A + ∆A, ‖∆A‖ ≤
(
c ′1ε+ c ′2ρnu1

)
‖A‖.

Stability is preserved with mixed precision

See article: Mixed Precision Low Rank Approximations and their Application to
Block Low Rank LU Factorization q

5ρn is the growth factor of the LU factorization (often small)9/15

https://hal.archives-ouvertes.fr/hal-03251738


A prototype (for dense matrices)

• Experiments with a Matlab prototype to assess potential gains

• Simulating a LU factorization in 3 precisions: fp64, fp32, bfloat16

• Performance metrics: storage cost, expected time6

• Result: repartition of the precision formats:

n
b

 o
f 

e
n

tr
ie

s
 (

%
 o

f 
d

o
u

b
le

 p
re

c
is

io
n

 B
L

R
)

fl
o
p
s
 (

%
 o

f 
d
o
u
b
le

 p
re

c
is

io
n
 B

L
R

)

6Hypothesis: 1 operation in fp64 = 2 in fp32 = 4 in bfloat16
7Results for ε = 10−910/15



Tradeoff between performance and accuracy (dense)

• Better performance

• Loss in accuracy

• Is it still worth it ?

Yes

• Example (perf0009): performances as a function of the error

10
-15

10
-10

10
-5

1

1.5

2

2.5

3

10
-15

10
-10

10
-5

1

1.5

2

2.5

3

11/15



Tradeoff between performance and accuracy (dense)

• Better performance

• Loss in accuracy

• Is it still worth it ? Yes

• Example (perf0009): performances as a function of the error

10
-15

10
-10

10
-5

1

1.5

2

2.5

3

10
-15

10
-10

10
-5

1

1.5

2

2.5

3

11/15



Tradeoff between performance and accuracy (dense)

• Better performance

• Loss in accuracy

• Is it still worth it ? Yes

• Example (perf0009): performances as a function of the error

10
-15

10
-10

10
-5

1

1.5

2

2.5

3

10
-15

10
-10

10
-5

1

1.5

2

2.5

3

11/15



MUMPS: LU factorization

• Multifrontal method:

→ LU factorisation of a large sparse matrix

→ partial LU factorization of many small dense matrix

L
U

L
U

L
U

L
U

L
U

L
U

L
U

→ Possibility to use BLR compression on those matrices

12/15



MUMPS: mixed precision for storage

• Using mixed precision for storage only:
the formats do not need to be supported
in hardware

• Example: 7 precisions formats, using
respectively 16, 24, 32, 40, 48, 56 and
64 bits

Representation of a

low-rank block stored in 7

precisions

• Example: conversion from fp32 to ”fp24”:

sign
exponent
(8 bits)

mantissa
(23 bits)

copy
bytes

sign exponent
(8 bits)

mantissa
(15 bits)

13/15



MUMPS: storage results

Matrix precision
Memory peak

(GBytes)

Scaled

residual

thmgas fp64 120 6.4E-14

mixed 86 5.5E-14

perf009 fp64 36 1.3E-10

mixed 32 1.4E-10

knuckle fp64 281 1.6E-10

mixed 236 7.7E-9

→ Relative gains on memory peak: ×1.1 to ×1.4

14/15



Conclusion

• Mixed-precision BLR compression and its use in LU factorization
are motivated by an error analysis

• An article submitted to IMA Journal of Numerical Analysis: Mixed
Precision Low Rank Approximations and their Application to Block
Low Rank LU Factorization q

• A first implementation in sparse solver MUMPS, achieving a
storage reduction up to 40%

• Some future works:
◦ We could consider fp16 instead of bfloat16 (⇒ scaling)
◦ Continue the implementation in MUMPS, aiming for time gains in

the factorization

15/15

https://hal.archives-ouvertes.fr/hal-03251738


Appendix: Low precision arithmetics

Signif.

bits(t)
Exponent

bits
Range u = 2−t

fp64 53 11 10±308 1× 10−16

fp32 24 8 10±38 6× 10−8

fp16 11 5 10±5 5× 10−4

bfloat16 8 8 10±38 4× 10−3

Half precision increasingly supported by hardware:
• Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU,

ARM NEON, Fujitsu A64FX ARM
• Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

Great benefits:
• Reduced storage, data movement, and communications
• Increased speed , e.g., with GPU Tensor Cores:

fp32 → fp16 speedup evolution:
P100: 2× V100: 8× A100: 16× H100: 16×

• Reduced energy consumption (5× with fp16, 9× with bfloat16!)

→ Motivations to use mixed-precision algorithms



Appendix: Test matrices for Matlab prototype

• Dense matrices obtained from the root separator (Schur
complement) of sparse matrices

• ε = 10−9

Matrix Application N block size

P64 Poisson equation 4k 128

perf009

Elastic computation of

a RIS pump under internal

pressure (EDF, code aster)

2k 64

Serena
Gas resevoir simulation

for CO2 sequestration
16k 256



Appendix: Matrices for MUMPS

Matrix N NNZ SYM8

thmgas 4.9M 471M 0

perf009 5.4M 209M 2

knuckle 8.5M 363M 2

• thmgas: taking gas into account in storage of nuclear waste
(code aster, thermo-hydro-mechanical couplings)

• knuckle: a matrix from Altair OptiStruct (structural mechanics)

• perf009 : a RIS pump under internal pressure: elastic computation
(EDF, code aster)

8SYM = 0: unsymmetric; 1: SDP; 2: symmetric



Appendix: Distribution of singular values

• A typical example of rapidly decaying singular values for
off-diagonal blocks (matrix perf009)

0 10 20 30 40 50 60 70

10
-20

10
-15

10
-10

10
-5

10
0

0 10 20 30 40 50 60 70

10
-20

10
-15

10
-10

10
-5

10
0

block (12,25) block (12,11)

• Classic criterion for low-rank admissibility : r < n/2

(i.e. storage reduction)

• A criterion for mixed-precision low-rank admissibility :

rd + 0.5rs + 0.25rh < n/2 (i.e. storage reduction)



Appendix: mixed precision for computation in MUMPS

• Triangular solve step: LX = B, whereL is BLR

• Accelerated using 2 precisions for computations (in LR × matrix
product):

× = × + ×

computed in fp64 computed in fp32

• Some early results9:

precision
Avg time in solve

forward (s)

Scaled

residual

double 0.76 2.9E-12

mixed 0.67 3.9E-12

single 0.46 5.2E-8

9on matrix Queen 4147 from SuiteSparse, for ε = 10−9)


	Appendix

