CANUM 2022

14 June 2022

Solving linear systems efficiently using block low-rank compression in mixed precision

Matthieu Gerest
EDF R\&D, LIP6 (CIFRE PhD)

Join work with:
Patrick Amestoy ${ }^{1}$, Olivier Boiteau ${ }^{2}$, Alfredo Buttari ${ }^{3}$, Fabienne Jézéquel ${ }^{4}$, Jean-Yves L'Excellent ${ }^{1}$, Théo Mary ${ }^{4}$

R\&D

[^0]
Context: solving linear systems

- Objective: solving $A x=b$
- Direct method: compute LU=A
- Often a bottleneck in terms of memory bandwith and computation time
- MUMPS: a multifrontal solver

Example of application: a RIS pump under internal pressure

Context: solving linear systems

- Objective: solving $A x=b$
- Direct method: compute LU=A
- Often a bottleneck in terms of memory bandwith and computation time
- MUMPS: a multifrontal solver
- BLR compression: a method to reduce the complexity
- Objective: combine BLR compression and mixed precision

Example of application: a RIS pump under internal pressure

- Class of matrices: BLR matrices
- Off-diagonal blocks of A tend to contain less information (low numerical ranks)

Example of BLR matrix (perf009, RIS pump)
Color scale: numerical ranks of the blocks for $\varepsilon=10^{-10}$

- Class of matrices: BLR matrices
- Off-diagonal blocks of A tend to contain less information (low numerical ranks)
- They can be replaced by their Low-Rank approximations

Example of BLR matrix (perf009, RIS pump)
Color scale: numerical ranks of the blocks for $\varepsilon=10^{-10}$

- Class of matrices: BLR matrices
- Off-diagonal blocks of A tend to contain less information (low numerical ranks)
- They can be replaced by their Low-Rank approximations

- The compression error is controlled by a threshold ε
- Larger ε
\Rightarrow fewer coefficients stored
\Rightarrow fewer operations
\Rightarrow faster computations
$3 / 15 \Rightarrow$ faster computations

Example of BLR matrix (perf009, RIS pump)
Color scale: numerical ranks of the blocks for $\varepsilon=10^{-10}$

Mixed precision Low-Rank approximation

SVD: Singular Value Decomposition

Mixed precision Low-Rank approximation

Truncated SVD

- $B=\sum_{k=1}^{r} x_{k} \sigma_{k} y_{k}^{T}$, with r such that the error satisfies
- $\left\|B-X_{\varepsilon} \Sigma_{\varepsilon} Y_{\varepsilon}\right\| \leq \varepsilon\|B\|$

Mixed precision Low-Rank approximation

Truncated SVD with 2 precision formats (fp64, fp32)

- The idea: Converting X_{2} and Y_{2} to single precision (fp32)
- Criterion for storing columns x_{i} and y_{i} in precision fp32: $\sigma_{i} \leq \frac{\varepsilon}{u_{s}}\|B\|$
- Error: $\|B-X \Sigma Y\| \lesssim 3 \varepsilon\|B\|$

Mixed precision Low-Rank approximation

Extension to 3 precision (fp64, fp32, bfloat16)

- Converting X_{3} and Y_{3} to bfloat16
- Criterion for storing columns x_{i} and y_{i} in precision bfloat16: $\sigma_{i} \leq \frac{\varepsilon}{u_{b f 16}}$
- Error: $\|B-X \Sigma Y\| \lesssim 5 \varepsilon\|B\|$
- $B=\mathrm{B}_{1}+\mathrm{B}_{2}$

Why does it work? An intuition

- $B=\mathrm{B}_{1}+\mathrm{B}_{2}$

- The coefficients of B_{2} are small compared to those of B_{1}
- $B=\mathrm{B}_{1}+\mathrm{B}_{2}$

- The coefficients of B_{2} are small compared to those of B_{1}
- Example:

$$
\begin{array}{r}
1.0101101 \\
+\quad 1.10(10110) \times 2^{2-6} \\
+\quad 1.0110000
\end{array}
$$

- B_{2} can be stored in lower precision, with fewer fraction bits

Distribution of singular values

- A typical example of rapidly decaying singular values for off-diagonal blocks (matrix perf009)

block (12,25)
- Most common precision formats:

	Signif.	bits (t)	Exp.	Range	$u=2^{-t}$
fp 64	53	11	$10^{ \pm 308}$	1×10^{-16}	
fp 32	24	8	$10^{ \pm 38}$	6×10^{-8}	
fp 16	11	5	$10^{ \pm 5}$	5×10^{-4}	
bfloat16	8	8	$10^{ \pm 38}$	4×10^{-3}	

Storage cost of the blocks, in percentage of the full-rank blocks

$$
\left(\text { perf009, } \varepsilon=10^{-10}\right)
$$

Monoprecision BLR:

- entries in fp64:

Storage cost of the blocks, in percentage of the full-rank blocks

$$
\left(\text { perf009, } \varepsilon=10^{-10}\right)
$$

2-precision BLR:

- entries in fp64:

14\%

- entries in fp32:

86\%
size: 16.4 MBytes
($\times 1.7$ storage gain)

Storage cost of the blocks, in percentage of the full-rank blocks

$$
\left(\text { perf009, } \varepsilon=10^{-10}\right)
$$

3-precision BLR:

- entries in fp64:

13\%

- entries in fp32:

53\%

- entries in bfloat16: 33\% size: 14.0 MBytes ($\times 2.0$ storage gain)
- Step k :
- compute $L_{k} U_{k}=A_{k k}$
- Update formula: for $i, j>k$,

$$
A_{i j} \leftarrow A_{i j}-\left(A_{i k} U_{k}^{-1}\right) \times\left(L_{k}^{-1} A_{k j}\right)
$$

- BLR: $A_{i k} \approx X_{i k} Y_{i k}^{T}$
- Example of kernel in mixed precision:

LR \times matrix multiplication:

computed in fp64 computed in fp32

Stability

Traditional LU (Wilkinson)

$$
\widehat{L} \widehat{U}=A+\Delta A, \quad\|\Delta A\| \lesssim 3 n^{3} \rho_{n} u_{1}\|A\| .
$$

BLR LU (Higham \& Mary)

$$
\widehat{L} \widehat{U}=A+\Delta A, \quad\|\Delta A\| \leq\left(c_{1} \varepsilon+c_{2} \rho_{n} u_{1}\right)\|A\| .
$$

Mixed precision BLR LU (this work)

$$
\widehat{L} \widehat{U}=A+\Delta A, \quad\|\Delta A\| \leq\left(c_{1}^{\prime} \varepsilon+c_{2}^{\prime} \rho_{n} u_{1}\right)\|A\| .
$$

Stability is preserved with mixed precision

See article: Mixed Precision Low Rank Approximations and their Application to Block Low Rank LU Factorization 튱
$9 / 15 \quad{ }^{5} \rho_{n}$ is the growth factor of the LU factorization (often small)

A prototype (for dense matrices)

- Experiments with a Matlab prototype to assess potential gains
- Simulating a LU factorization in 3 precisions: $\mathbf{f p 6 4 , f p 3 2 \text { , bfloat16 }}$
- Performance metrics: storage cost, expected time ${ }^{6}$
- Result: repartition of the precision formats:

${ }^{6}$ Hypothesis: 1 operation in fp64 $=2$ in fp32 $=4$ in bfloat16
$10 / 15{ }^{7}$ Results for $\varepsilon=10^{-9}$

Tradeoff between performance and accuracy (dense)

- Better performance
- Loss in accuracy
- Is it still worth it ?
- Example (perf0009): performances as a function of the error

Tradeoff between performance and accuracy (dense)

- Better performance
- Loss in accuracy
- Is it still worth it ? Yes
- Example (perf0009): performances as a function of the error

Tradeoff between performance and accuracy (dense)

- Better performance
- Loss in accuracy
- Is it still worth it ? Yes
- Example (perf0009): performances as a function of the error

MUMPS: LU factorization

- Multifrontal method:
\rightarrow LU factorisation of a large sparse matrix
\rightarrow partial LU factorization of many small dense matrix

\rightarrow Possibility to use BLR compression on those matrices

MUMPS: mixed precision for storage

- Using mixed precision for storage only: the formats do not need to be supported in hardware
- Example: 7 precisions formats, using respectively $16,24,32,40,48,56$ and 64 bits
- Example: conversion from fp32 to "fp24":

Representation of a
low-rank block stored in 7
precisions

MUMPS: storage results

Matrix	precision	Memory peak (GBytes)	Scaled residual
thmgas	fp64	120	$6.4 \mathrm{E}-14$
	mixed	86	$5.5 \mathrm{E}-14$
perf009	fp64	36	$1.3 \mathrm{E}-10$
	mixed	32	$1.4 \mathrm{E}-10$
knuckle	fp64	281	$1.6 \mathrm{E}-10$
	mixed	236	$7.7 \mathrm{E}-9$

\rightarrow Relative gains on memory peak: $\times 1.1$ to $\times 1.4$

- Mixed-precision BLR compression and its use in LU factorization are motivated by an error analysis
- An article submitted to IMA Journal of Numerical Analysis: Mixed Precision Low Rank Approximations and their Application to Block Low Rank LU Factorization 国
- A first implementation in sparse solver MUMPS, achieving a storage reduction up to 40%
- Some future works:
- We could consider fp16 instead of bfloat16 (\Rightarrow scaling)
- Continue the implementation in MUMPS, aiming for time gains in the factorization

Appendix: Low precision arithmetics

$$
\begin{array}{ll}
\text { Signif. } & \text { Exponent } \\
\text { bits }(t) & \text { bits }
\end{array} \quad \text { Range } \quad u=2^{-t}
$$

fp64	53	11	$10^{ \pm 308}$	1×10^{-16}
fp32	24	8	$10^{ \pm 38}$	6×10^{-8}
fp16	11	5	$10^{ \pm 5}$	5×10^{-4}
bfloat16	8	8	$10^{ \pm 38}$	4×10^{-3}

Half precision increasingly supported by hardware:

- Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU, ARM NEON, Fujitsu A64FX ARM
- Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

Great benefits:

- Reduced storage, data movement, and communications
- Increased speed, e.g., with GPU Tensor Cores: $\mathrm{fp} 32 \rightarrow \mathrm{fp} 16$ speedup evolution:
P100: $2 \times \quad$ V100: $8 \times \quad$ A100: $16 \times \quad$ H100: $16 \times$
- Reduced energy consumption ($5 \times$ with $\mathrm{fp} 16,9 \times$ with bfloat16!)
\rightarrow Motivations to use mixed-precision algorithms

Appendix: Test matrices for Matlab prototype

- Dense matrices obtained from the root separator (Schur complement) of sparse matrices
- $\varepsilon=10^{-9}$

Matrix	Application	N	block size
P64	Poisson equation	4 k	128
perf009	Elastic computation of a RIS pump under internal pressure (EDF, code_aster)	2 k	64
Serena	Gas resevoir simulation for CO2 sequestration	16 k	256

Appendix: Matrices for MUMPS

Matrix	N	NNZ	SYM 8
thmgas	4.9 M	471 M	0
perf009	5.4 M	209 M	2
knuckle	8.5 M	363 M	2

- thmgas: taking gas into account in storage of nuclear waste (code_aster, thermo-hydro-mechanical couplings)
- knuckle: a matrix from Altair OptiStruct (structural mechanics)
- perf009: a RIS pump under internal pressure: elastic computation (EDF, code_aster)

[^1]
Appendix: Distribution of singular values

- A typical example of rapidly decaying singular values for off-diagonal blocks (matrix perf009)

block $(12,25)$

block $(12,11)$
- Classic criterion for low-rank admissibility : $r<n / 2$ (i.e. storage reduction)
- A criterion for mixed-precision low-rank admissibility :
$r_{d}+0.5 r_{s}+0.25 r_{h}<n / 2$ (i.e. storage reduction)

Appendix: mixed precision for computation in MUMPS

- Triangular solve step: $L X=B$, whereL is BLR
- Accelerated using 2 precisions for computations (in LR \times matrix product):

- Some early results ${ }^{9}$:

precision	Avg time in solve forward (s)	Scaled residual
double	0.76	$2.9 \mathrm{E}-12$
mixed	0.67	$3.9 \mathrm{E}-12$
single	0.46	$5.2 \mathrm{E}-8$

${ }^{9}$ on matrix Queen_4147 from SuiteSparse, for $\varepsilon=10^{-9}$)

[^0]: ${ }^{1}$ Mumps Technologies
 ${ }^{2}$ EDF R\&D
 ${ }^{3}$ Université de Toulouse, CNRS, IRIT
 ${ }^{4}$ Sorbonne Université, CNRS, LIP6

[^1]: ${ }^{8}$ SYM $=\mathbf{0}$: unsymmetric; 1: SDP; 2: symmetric

