CANUM 2022

14 June 2022

Solving linear systems efficiently using block low-rank compression in mixed precision

Matthieu Gerest EDF R&D, LIP6 (CIFRE PhD)

Join work with:

Patrick Amestoy¹, Olivier Boiteau², Alfredo Buttari³, Fabienne Jézéquel⁴, Jean-Yves L'Excellent¹, Théo Mary⁴

¹Mumps Technologies ²EDF R&D ³Université de Toulouse, CNRS, IRIT ⁴Sorbonne Université, CNRS, LIP6

Context: solving linear systems

- Objective: solving Ax = b
- Direct method: compute LU=A
- Often a bottleneck in terms of memory bandwith and computation time
- MUMPS: a multifrontal solver

Example of application: a RIS pump under internal pressure

Context: solving linear systems

- Objective: solving Ax = b
- Direct method: compute LU=A
- Often a bottleneck in terms of memory bandwith and computation time
- MUMPS: a multifrontal solver
- BLR compression: a method to reduce the complexity
- Objective: combine BLR compression and mixed precision

Example of application: a RIS pump under internal pressure

BLR compression

- Class of matrices: BLR matrices
- Off-diagonal blocks of A tend to contain less information (low numerical ranks)

Example of BLR matrix (*perf009*, RIS pump) Color scale: numerical ranks of the blocks for $\varepsilon = 10^{-10}$

BLR compression

- Class of matrices: BLR matrices
- Off-diagonal blocks of A tend to contain less information (low numerical ranks)
- They can be replaced by their Low-Rank approximations

Example of BLR matrix (*perf009*, RIS pump) Color scale: numerical ranks of the blocks for $\varepsilon = 10^{-10}$

BLR compression

- Class of matrices: BLR matrices
- Off-diagonal blocks of A tend to contain less information (low numerical ranks)
- They can be replaced by their Low-Rank approximations

- The compression error is controlled by a threshold $\ensuremath{\varepsilon}$
- Larger ε

3/15

- \Rightarrow fewer coefficients stored
- \Rightarrow fewer operations
- \Rightarrow faster computations

Example of BLR matrix (*perf009*, RIS pump) Color scale: numerical ranks of the blocks for $\varepsilon = 10^{-10}$

SVD: Singular Value Decomposition

Truncated SVD

-
$$B = \sum_{k=1}^{r} x_k \sigma_k y_k^T$$
, with r such that the error satisfies
- $\|B - X_{\varepsilon} \Sigma_{\varepsilon} Y_{\varepsilon}\| \le \varepsilon \|B\|$

Truncated SVD with 2 precision formats (fp64, fp32)

- The idea: Converting X_2 and Y_2 to single precision (fp32)
- Criterion for storing columns x_i and y_i in precision fp32:
 - $\sigma_i \leq \frac{\varepsilon}{u_s} \|B\|$
- Error: $||B X\Sigma Y|| \lesssim 3\varepsilon ||B||$

Extension to 3 precision (fp64, fp32, bfloat16)

- Converting X_3 and Y_3 to bfloat16
- Criterion for storing columns x_i and y_i in precision bfloat16:

$$\sigma_i \leq \frac{\varepsilon}{u_{bf16}}$$

- Error: $||B - X\Sigma Y|| \lesssim 5\varepsilon ||B||$

Why does it work? An intuition

• $B = B_1 + B_2$

Why does it work? An intuition

• $B = B_1 + B_2$

• The coefficients of B₂ are small compared to those of B₁

Why does it work? An intuition

- The coefficients of B₂ are small compared to those of B₁
- Example:

$$\begin{array}{c} 1.0\ 1\ 0\ 1\ 1\ 0\ 1 \\ + \\ \hline 1.1\ 0(1\ 0\ 1\ 1\ 0) \times 2^{-6} \\ \hline = 1.0\ 1\ 1\ 0\ 0\ 0\ 0 \\ \end{array}$$

• B₂ can be stored in lower precision, with fewer fraction bits

Distribution of singular values

• A typical example of rapidly decaying singular values for off-diagonal blocks (matrix *perf009*)

block (12,11)

block (12,25)

• Most common precision formats:

	Signif. bits (t)	Exp.	Range	$u = 2^{-t}$
fp64	53	11	$10^{\pm 308}$	$1 imes 10^{-16}$
fp32	24	8	$10^{\pm 38}$	$6 imes 10^{-8}$
fp16	11	5	$10^{\pm 5}$	$5 imes 10^{-4}$
<u>bfloat16</u>	8	8	$10^{\pm 38}$	$4 imes 10^{-3}$

Compression gain: an example

Storage cost of the blocks, in percentage of the full-rank blocks $(\textit{perf009}, \ensuremath{\varepsilon} = 10^{-10})$

Monoprecision BLR:

• entries in fp64:

100%

size: 27.9 MBytes

Compression gain: an example

Storage cost of the blocks, in percentage of the full-rank blocks $(\textit{perf009}, \ensuremath{\varepsilon} = 10^{-10})$

2-precision BLR:

- entries in fp64: **14%**
- entries in fp32:

14% 86%

size: 16.4 MBytes (×1.7 storage gain)

Compression gain: an example

Storage cost of the blocks, in percentage of the full-rank blocks $(\textit{perf009}, \ensuremath{\varepsilon} = 10^{-10})$

3-precision BLR:

- entries in fp64: **13%**
- entries in fp32: **53%**
- entries in bfloat16: 33%

size: 14.0 MBytes (×**2.0** storage gain)

LU factorization algorithm (dense matrix)

- Step k:
 - compute $L_k U_k = A_{kk}$
 - Update formula: for i, j > k, $A_{ij} \leftarrow A_{ij} - (A_{ik}U_k^{-1}) \times (L_k^{-1}A_{kj})$
- BLR: $A_{ik} \approx X_{ik} Y_{ik}^T$
- Example of kernel in mixed precision: $LR \times matrix multiplication:$

computed in fp64 computed in fp32

Stability

Traditional LU (Wilkinson)

$$\widehat{L}\widehat{U} = A + \Delta A, \quad \|\Delta A\| \lesssim 3n^3 \rho_n u_1 \|A\|.$$

BLR LU (Higham & Mary)

$$\widehat{L}\widehat{U} = A + \Delta A, \quad \|\Delta A\| \leq (c_1\varepsilon + c_2\rho_n u_1)\|A\|.$$

Mixed precision BLR LU (this work)

$$\widehat{L}\widehat{U} = A + \Delta A, \quad \|\Delta A\| \le (c_1'\varepsilon + c_2'\rho_n u_1)\|A\|.$$

Stability is preserved with mixed precision

See article: Mixed Precision Low Rank Approximations and their Application to Block Low Rank LU Factorization

 $^{^{9/15}}$ $^{5}\rho_{n}$ is the growth factor of the LU factorization (often small)

A prototype (for dense matrices)

- Experiments with a Matlab prototype to assess potential gains
- Simulating a LU factorization in 3 precisions: fp64, fp32, bfloat16
- Performance metrics: storage cost, expected time⁶
- Result: repartition of the precision formats:

⁶Hypothesis: 1 operation in fp64 = 2 in fp32 = 4 in bfloat16 ⁷Results for $\varepsilon = 10^{-9}$

10/15

Tradeoff between performance and accuracy (dense)

- Better performance
- Loss in accuracy
- Is it still worth it ?
- Example (perf0009): performances as a function of the error

Tradeoff between performance and accuracy (dense)

- Better performance
- Loss in accuracy
- Is it still worth it ? Yes
- Example (perf0009): performances as a function of the error

Tradeoff between performance and accuracy (dense)

- Better performance
- Loss in accuracy
- Is it still worth it ? Yes
- Example (perf0009): performances as a function of the error

MUMPS: LU factorization

- Multifrontal method:
- $\rightarrow~$ LU factorisation of a large sparse matrix
- $\rightarrow\,$ partial LU factorization of many small dense matrix

 $\rightarrow\,$ Possibility to use BLR compression on those matrices

MUMPS: mixed precision for storage

- Using mixed precision for storage only: the formats do not need to be supported in hardware
- Example: 7 precisions formats, using respectively 16, 24, 32, 40, 48, 56 and 64 bits

Representation of a low-rank block stored in 7 precisions

Motoir	nmooigion	Memory peak	Scaled
Matrix	precision	(GBytes)	residual
thmgas	fp64	120	6.4E-14
	mixed	86	5.5E-14
perf009	fp64	36	1.3E-10
	mixed	32	1.4E-10
knuckle	fp64	281	1.6E-10
	mixed	236	7.7E-9

 \rightarrow Relative gains on memory peak: $\quad \times 1.1 \text{ to } \times 1.4$

Conclusion

- Mixed-precision BLR compression and its use in LU factorization are motivated by an **error analysis**
- An **article** submitted to IMA Journal of Numerical Analysis: *Mixed Precision Low Rank Approximations and their Application to Block Low Rank LU Factorization*
- A first implementation in sparse solver MUMPS, achieving a **storage reduction** up to 40%
- Some future works:
 - $\circ~$ We could consider fp16 instead of bfloat16 (\Rightarrow scaling)
 - Continue the implementation in MUMPS, aiming for **time gains** in the factorization

Appendix: Low precision arithmetics

2 ^{-t}
10^{-16}
10 ⁻⁸
10^{-4}
10^{-3}
10 ⁻¹ 10 ⁻⁸ 10 ⁻⁴ 10 ⁻³

Half precision increasingly supported by hardware:

- Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU, ARM NEON, Fujitsu A64FX ARM
- Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

Great benefits:

- · Reduced storage, data movement, and communications
- Increased speed , e.g., with GPU Tensor Cores: fp32 \rightarrow fp16 speedup evolution: P100: 2× V100: 8× A100: 16× H100: 16×
- Reduced energy consumption (5× with fp16, 9× with bfloat16!)
- \rightarrow Motivations to use mixed-precision algorithms

Appendix: Test matrices for Matlab prototype

- Dense matrices obtained from the root separator (Schur complement) of sparse matrices
- $\varepsilon = 10^{-9}$

Matrix	Application	Ν	block size
P64	Poisson equation	4k	128
	Elastic computation of		
perf009	a RIS pump under internal	2k	64
	pressure (EDF, code_aster)		
Serena	Gas resevoir simulation	161	256
	for CO2 sequestration	IOK	230

Matrix	N	NNZ	SYM ⁸
thmgas	4.9M	471M	0
perf009	5.4M	209M	2
knuckle	8.5M	363M	2

- thmgas: taking gas into account in storage of nuclear waste (code_aster, thermo-hydro-mechanical couplings)
- *knuckle*: a matrix from Altair OptiStruct (structural mechanics)
- perf009: a RIS pump under internal pressure: elastic computation (EDF, code_aster)

⁸SYM = 0: unsymmetric; 1: SDP; 2: symmetric

Appendix: Distribution of singular values

• A typical example of rapidly decaying singular values for off-diagonal blocks (matrix *perf009*)

- Classic criterion for low-rank admissibility : r < n/2 (i.e. storage reduction)
- A criterion for mixed-precision low-rank admissibility : $r_d + 0.5r_s + 0.25r_h < n/2$ (i.e. storage reduction)

Appendix: mixed precision for computation in MUMPS

- Triangular solve step: LX = B, where L is BLR
- Accelerated using 2 precisions for computations (in LR \times matrix product):

• Some early results⁹:

nrocicion	Avg time in solve	Scaled
precision	forward (s)	residual
double	0.76	2.9E-12
mixed	0.67	3.9E-12
single	0.46	5.2E-8

 $^9 \text{on matrix Queen_4147}$ from SuiteSparse, for $\varepsilon = 10^{-9})$