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Context: solving linear systems

Objective: solving Ax = b

Direct method: compute LU=A

Often a bottleneck in terms of memory
bandwith and computation time

MUMPS: a multifrontal solver

Example of application: a RIS

pump under internal pressure

A

code_aster
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Context: solving linear systems

® Objective: solving Ax = b
e Direct method: compute LU=A

e Often a bottleneck in terms of memory
bandwith and computation time

e MUMPS: a multifrontal solver

e BLR compression: a method to reduce the
complexity

Example of application: a RIS

pump under internal pressure
e Objective: combine BLR compression and

mixed precision 'A

code_aster
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BLR compression

e Class of matrices: BLR matrices

e Off-diagonal blocks of A tend to
contain less information (low numerical
ranks)

3/15

RRRE
IBRRE o

Example of BLR matrix
(perf009, RIS pump)

Color scale: numerical ranks of
the blocks for e = 10710




BLR compression

e Class of matrices: BLR matrices

e Off-diagonal blocks of A tend to
contain less information (low numerical
ranks)

e They can be replaced by their
Low-Rank approximations
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BLR compression

e Class of matrices: BLR matrices

e Off-diagonal blocks of A tend to
contain less information (low numerical
ranks)

e They can be replaced by their
Low-Rank approximations

-

BrXxYT
e The compression error is controlled by
a threshold ¢

e Larger ¢

= fewer coefficients stored
=- fewer operations
= faster computations
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Example of BLR matrix
(perf009, RIS pump)

Color scale: numerical ranks of
the blocks for e = 10710




Mixed precision Low-Rank approximation

SVD: Singular Value Decomposition
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Mixed precision Low-Rank approximation

Truncated SVD
- B=3Y"{_;xxkoxy,, with r such that the error satisfies
- ”B _stsya?” < 5“BH
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Mixed precision Low-Rank approximation

X1 Xo X1 X

Truncated SVD with 2 precision formats (fp64, fp32)

- The idea: Converting X and Y5 to single precision (fp32)

- Criterion for storing columns x; and y; in precision fp32:
oi < . |IB]

- Error: ||B — XZY| < 3¢||B||
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Mixed precision Low-Rank approximation

X1 X2 X3 Z122 z3
"
X \ X Y,
'

Extension to 3 precision (fp64, fp32, bfloat16)
- Converting X3 and Y3 to bfloatl6

- Criterion for storing columns x; and y; in precision bfloat16:
o < ==&
"= upr1e

- Error: ||B— XXY| < 5¢||B]|
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Why does it work? An intuition

X X I I
4
. B=Bi+E, . S L
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Why does it work? An intuition

X X I I
4
. B=Bi+E, . S L

e The coefficients of By are small compared to those of B;
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Why does it work? An intuition

X1 Xz L 5n
vy
g =

The coefficients of B, are small compared to those of B;

e Example:
10101101 x 20
+ 1.10(10110)x26
=1.0110000

B> can be stored in lower precision, with fewer fraction bits
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Distribution of singular values

e A typical example of rapidly decaying singular values for
off-diagonal blocks (matrix perf009)

10° 10
________________________ -
e mscg%)%
R RRECEEEEEEEREEEE E
107" 1070 b6’
"""""""""""" diSearded
10 10
o doubl
o single o single
10 bfloat16 1o bfloat16
discarded| discarded
o 0w @ w0 = w0 0 0w wm @ o w7
block (12,11) block (12,25)

e Most common precision formats:

Signif. bits (t) Exp. Range u=27"

fp64 53 11 1038 1 x 10716
£p32 24 8 108 6x10°8
£p16 11 5 108  5x107*
bfloat16 8 8 10%3¥  4x1073

6/15



Compression gain: an example

0.9

0:5 Monoprecision BLR:

04 e entries in fp64: 100%
0.2

o size: 27.9 MBytes

Storage cost of the blocks, in percentage of
the full-rank blocks

(perf009, ¢ = 107'0)
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Compression gain: an example

2-precision BLR:
04 e entries in fp64: 14%

° e entries in fp32: 86%

0 size: 16.4 MBytes
Storage cost of the blocks, in percentage of (><1.7 storage gain)
the full-rank blocks

(perf009, ¢ = 107'0)

&
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Compression gain: an example

g :
: H .
Eadii i " 3-precision BLR:
B2 - H ;4 e entries in fp64: 13%
as | =R e entries in fp32: 53%
| Zj e entries in bfloatl6: 33%
RRES 0 size: 14.0 MBytes

Storage cost of the blocks, in percentage of (><2.0 storage gain)
the full-rank blocks

(perf009, ¢ = 107'0)

&
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LU factorization algorithm (dense matrix)

e Step k: -
o compute LUy = Ak
o Update formula: for i,j > k, :
A,'j — A,'j — (AikUk_l) X (L;lAkj) . = . I_ I_
e BLR: A,'k ~ X,'kYI-Z— L .
- I N m
e Example of kernel in mixed precision: |_

LR X matrix muItipIication

computed in fp64 computed in fp32
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Stability

Traditional LU (Wilkinson)

LU=A+DA, DA <30 ppu Al

BLR LU (Higham & Mary)

LO=A+DA, ||AA] < (as + capau) Al

Mixed precision BLR LU (this work)

LO=A+0A, [DA] < (cie + chpaun) Al

Stability is preserved with mixed precision

See article: Mixed Precision Low Rank Approximations and their Application to
Block Low Rank LU Factorization [2)

9/15° 5, is the growth factor of the LU factorization (often small)


https://hal.archives-ouvertes.fr/hal-03251738

A prototype (for dense matrices)

e Experiments with a Matlab prototype to assess potential gains
e Simulating a LU factorization in 3 precisions: fp64, fp32, bfloat16
e Performance metrics: storage cost, expected time®
e Result: repartition of the precision formats:
[ERfp64 [Efp32 [Jbfloat16] 64 @32 [Jbfloat16]
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perf009d  Poisson64 Serena. perf009d Poisson64 Serena

SHypothesis: 1 operation in fp64 = 2 in fp32 = 4 in bfloat16
10/15" 7Results for ¢ = 107°



Tradeoff between performance and accuracy (dense)

e Better performance

e Loss in accuracy

e |s it still worth it ?
e Example (perf0009): performances as a function of the error
5
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Tradeoff between performance and accuracy (dense)

Better performance

Loss in accuracy
Is it still worth it ? Yes

Example (perf0009): performances as a function of the error
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Tradeoff between performance and accuracy (dense)

Better performance

e Loss in accuracy

e |s it still worth it 7 Yes

e Example (perf0009): performances as a function of the error
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MUMPS: LU factorization

e Multifrontal method:
— LU factorisation of a large sparse matrix

— partial LU factorization of many small dense matrix

N
bs Y]
/N /N
¥ M MM

— Possibility to use BLR compression on those matrices
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MUMPS: mixed precision for storage
e Using mixed precision for storage only: ;

the formats do not need to be supported
in hardware

. . . R tati f
e Example: 7 precisions formats, using epresentation of a

respectively 16, 24, 32, 40, 48, 56 and low-rank block stored in 7
64 bits precisions

e Example: conversion from fp32 to " fp24":

exponent mantissa
sign (8 bits) (23 bits)
AL I 1
INENAREN NNRNRNNN RNANEAEY ANRREENY
copy
) bytes
| INANNNED RANNNNEN ANNERRER
si:g.n exponent mantissa '
(8 bits) (15 bits)
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MUMPS: storage results

Matrix | precision Memory peak | Scaled
(GBytes) residual
thmgas fp64 120 6.4E-14
mixed 86 5.5E-14
perf009 fp64 36 1.3E-10
mixed 32 1.4E-10
knuckle fp64 281 1.6E-10
mixed 236 7.7E-9

— Relative gains on memory peak:  x1.1to x1.4
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Conclusion

e Mixed-precision BLR compression and its use in LU factorization
are motivated by an error analysis

e An article submitted to IMA Journal of Numerical Analysis: Mixed
Precision Low Rank Approximations and their Application to Block
Low Rank LU Factorization [2)

e A first implementation in sparse solver MUMPS, achieving a
storage reduction up to 40%

e Some future works:

o We could consider fp16 instead of bfloat16 (= scaling)
o Continue the implementation in MUMPS, aiming for time gains in
the factorization
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https://hal.archives-ouvertes.fr/hal-03251738

Appendix: Low precision arithmetics

Signif. Exponent
bits(t) Dbits

£p32 24 8 10!!! 6 x 10—!

fp16 11 5 10>  5x107*
bfloat16 8 8 1038 4 x 1073

Range u=27"

Half precision increasingly supported by hardware:
e Fpl6 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU,
ARM NEON, Fujitsu A64FX ARM
e Bfloatl6 used by Google TPU, NVIDIA GPUs, Arm, Intel
Great benefits:
e Reduced storage, data movement, and communications
e Increased speed , e.g., with GPU Tensor Cores:
fp32 — fpl6 speedup evolution:
P100: 2x V100: 8x A100: 16x H100: 16x
* Reduced energy consumption (5x with fpl6, 9x with bfloat16!)
— Motivations to use mixed-precision algorithms



Appendix: Test matrices for Matlab prototype

e Dense matrices obtained from the root separator (Schur
complement) of sparse matrices

e e=10"°

Matrix  Application N  block size

P64 Poisson equation 4k 128
Elastic computation of

perf009 a RIS pump under internal 2k 64

pressure (EDF, code_aster)

Serena Gas resevoir s1mul§t10n 16k 956
for CO2 sequestration




Appendix: Matrices for MUMPS

Matrix N NNZ  Sym®

thmgas 4.9M 471M 0

perf009 5.4M 209M 2

knuckle 8.5M 363M 2

e thmgas: taking gas into account in storage of nuclear waste
(code_aster, thermo-hydro-mechanical couplings)

e knuckle: a matrix from Altair OptiStruct (structural mechanics)

e perf009: a RIS pump under internal pressure: elastic computation
(EDF, code_aster)

8SYM = 0: unsymmetric; 1: SDP; 2: symmetric



Appendix: Distribution of singular values

e A typical example of rapidly decaying singular values for
off-diagonal blocks (matrix perf009)

o
o double
o single
102 102 bfloat16
discarded
T S T T S R )
block (12,25) block (12,11)

e Classic criterion for low-rank admissibility : r < n/2

(i.e. storage reduction)
e A criterion for mixed-precision low-rank admissibility :

rg +0.5rs +0.25r, < n/2 (i.e. storage reduction)



Appendix: mixed precision for computation in MUMPS

e Triangular solve step: LX = B, wherelL is BLR

* Accelerated using 2 precisions for computations (in LR x matrix
product)'

" computed in fp64 “computed in fp32

e Some early results®:

Sreeieien Avg time in solve | Scaled
forward (s) residual
double 0.76 2.9E-12
mixed 0.67 3.9E-12
single 0.46 5.2E-8

on matrix Queen_4147 from SuiteSparse, for ¢ = 107°)
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