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We consider the overdamped Langevin equation:
dX(t) = f(X(t))dt + V2dW(t), W(t),X(t) € RY,

where f = —VV/, noise is additive, and W(t) is a std. Wiener process.
We use grafted forests:

Fg::{IX\V, \}‘ V}

and exotic forests, which are grafted forests with paired grafted vertices:

EF::{C?Q?/CP, 39 0, @2%%...},

to represent differential operators.
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We consider the overdamped Langevin equation:
dX(t) = f(X(t))dt + V2dW(t), W(t),X(t) € RY,

where f = —VV/, noise is additive, and W(t) is a std. Wiener process.
We use grafted forests:

Fg::{IX\V, \}‘ V}

and exotic forests, which are grafted forests with paired grafted vertices:

EF::{C?Q?/CP, 39 0, @8%...},

to represent differential operators, for example:

Fur(V) =202 S élditkon,  Fur(R) =202 Fhog.

X X . .
We note that F¢( ¥ ) is a random variable, since £ ~ N(0, /).
Related: Laurent and Vilmart [2019].
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Preliminaries

d
Deterministic case: d_); = f(y),

with y(0) € yo, y(t) € RY, f: RY — R? is a smooth vector field.

We can use Runge-Kutta methods:

S
Vim0t b3 9 (), alan oo
jjl with . S
Cs | ds1 -+ dss
}’IZYO‘Fh;bif(Yi), by --- b,

We can Taylor expand f(Y;) around yp to obtain

S S
i =yo+hy_ bif(yo) + h* Y bicif (yo)f(vo) + -
i=1 i=1
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Consider rooted non-planar trees T := {e, I, V, I, b

Let a: T — R, then a B-series is a formal sum B(a) : RY — RY:
B(a) := ld+a(e)hf + a(d)n2f f+
V) SR, ) + a( I)h3f’f’f +-

where all £, f'f f"(f,f),---: RY — Rq.
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Consider rooted non-planar trees T := {e, I, V, I, b

Let a: T — R, then a B-series is a formal sum B(a) : RY — RY:
B(a) := ld+a(e)hf + a(d)n2f f+
V) SR, ) + a( I)h3f’f’f +-

where all £, f'f f"(f,f),---: RY — Rq.

Exact solution and Runge-Kutta methods are B-series.
1
a(e)=>» b =1, NN "peo ==
} 2.b o) =3 bici =5,
1 s 1
a( ):Zb,-a,-jcj: 6 a(V):Zb;c,- =3
a(r) =

Related: Butcher [1963], Hairer and Wanner [1974], Hairer et al. [1993],
Connes and Kreimer [1998], Butcher [2021].
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S-series and the symmetry coefficient

B-series are based on trees, while S-series are based on forests:

F .= {@, o, I, Jo, V I, }
The symmetry coefficient of trees and forests:

oVMy=2 olh=2 oN"=3.
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S-series and the symmetry coefficient

B-series are based on trees, while S-series are based on forests:

F={2, . 1 VI VI, L
The symmetry coefficient of trees and forests:
oVMy=2 olh=2 oN"=3.
S-series were introduced to study first integrals. Chartier and Murua [2006]

Given a map ¢ : RY — R, S-series are defined as

a(m)
o(m)

¢ o B(a) = S(a)l¢] = > == Fur(m)[0]-

meF

We consider B-series in the stochastic context. We study E[¢(B(a))], and,
thus, we use and extend the concept of S-series for our needs.
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Order conditions for invariant measure sampling
We consider an ergodic integrator {Xp, X1, X2, ...} for an ergodic problem:

17
jim 7/0 qﬁ(X(t))dt:/quﬁ(x)du(x)? as.

T—oo

For overdamped Langevin, we have du(x) = Ze~V(X)dx.
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Order conditions for invariant measure sampling

We consider an ergodic integrator {Xp, X1, X2, ...} for an ergodic problem:

#inw/ 5(X )dt:/qub(x)du(x), as.

For overdamped Langevin, we have dju(x) = Ze~ V) dx.

Definition (Weak order g and order p for inv. measure)

Given an ergodic integrator X, — X,11, we have

weak order:  |E[o(Xn)] — IE[¢(X( )| < Ch,

lim N—+12¢ - [ 63t

where C is independent of h assumed small enough. Generally, p > q.

inv. measure: < Ch*,

Order 3 conditions: 15 for weak order vs 9 for inv. measure.

Related: Talay and Tubaro [1990], Debussche and Faou [2011],
Abdulle et al.
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2014], Laurent and Vilmart [2019
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@ Multiplicative property and Labeled Transformation Chains

Reference: B. "Exotic B-series and S-series: algebraic structures and order conditions for

invariant measure sampling”, preprint 2022.
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Part 1: Exotic S-series

Overdamped Langevin: dX(t) = —VV/(X(t))dt + V2dW(t),

X

Grafted forests:  Fg := {I X\V’, 0‘ , Vx’ b
Exotic forests: EF := {(? @ , 3§D, :(D, .1
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S-series and exotic S-series
Define S-series over grafted forests and exotic S-series over exotic forests:

S(a) =Y aT) 7 (7). ES(a) = 3 M) 7 (),

2 o) Zz o)

with o(7) being a symmetry coefficient.
We prove that ES(a) = E[S(a)] and describe the composition law.
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S-series and exotic S-series

Define S-series over grafted forests and exotic S-series over exotic forests:

S(a) = ) ;((Z;fhf(ﬂ)» ES(a)= ) j(n)fhf(ﬂ),

rEFg neEF ()

with o(7) being a symmetry coefficient.
We prove that ES(a) = E[S(a)] and describe the composition law.

Theorem (Composition law)

Let a,b: EF — R and let Ack : EF — EF ® EF denote the
Connes-Kreimer coproduct, then

ES(a)[ES(b)] = ES(a * b),

where (a * b)(mt) = (mr o (a ® b) o Ack)(m) for all exotic forests € EF.

(axb (\(AD/(P a(2)b( Q/(P) + a(.)b(Q?) + a(* @@)b(I) + a(® (D(P)b( )

+ a(@@)bn(V) + a((D(P)b(I) +a("")b(2).

v
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|dea of the proof of ES(a* b) = ES(a)[ES(b)]

The exotic S-series can be written as
ES(a) = (Fpr o Az o 671)(a),

where (5_1(3) = ZﬂeEF a(m)mt  and Agl(ﬂ) - ﬁ

We define Grossman-Larson product ¢ on exotic forests as
fhf(ﬂl <>712) = fhf(ﬂl)[fhf(ﬂg)]. (1)

We analyse how * changes as it passes through ES:

51 AL Fit

*—>®4><>—>[]

Difficulty: exotic trees can have multiple roots, e.g. CPCP, $%,
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Part 2: Order conditions
for invariant measure sampling

Q(e) = Sbh —1=0,

1 1
Q(o o) = EZbibj + 5 —Yb; =0,
1
Q@) = Tbic; — 5+ Tbi —25bid; =0,

1 1 1
%) = gTbid — g+ b~ Thid =0
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Order conditions for invariant measure sampling

We present a theoretical algorithm that generates order conditions for
invariant measure for arbitrary high order systematically.

Q(m) =0 for exotic forests € EF  with |7t] < p.
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Order conditions for invariant measure sampling

We present a theoretical algorithm that generates order conditions for
invariant measure for arbitrary high order systematically.

Q(m) =0 for exotic forests € EF  with It| < p.

Let L, denote a renormalized concatenation product of exotic forests.

Theorem (Multiplicative property of Q for stochastic RK)

For stochastic Runge-Kutta methods, the order condition map €2 satisfies:
Q(T[l Ll 7'[2) = Q(Tlfl)Q(T[z).

We see that Q(@vb@@) = %Q(@vb)ﬂ(@@) with %D Us %D = 2619@@ and

1 1 1
Q(Q}D) = —Sbid? —¥hid; + -Tb — =,
2 ! 2 4

Q;DQQ 1 1 1 1 1 1
Q )= gzb,-bjd,?d} + Zzb,-bjd,? - 5zb,-bjd,-df + E)Zb,-bjd,-dj - EZb;bjd,' + §>:b,-bj

1

1 1 1
— ZYbid? + =¥ bid; — =% b;
gty gt

Evh
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Labeled Transformation Chains (LTC)
We define LTC to trace the action of the algorithm on the exotic forests.

For example, the action of the algorithm on ; ;1 is

TR R R T
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Labeled Transformation Chains (LTC)
We define LTC to trace the action of the algorithm on the exotic forests.
For example, the action of the algorithm on ; ;1 is

TR R R T

and the list of labeled transformation chains (LTC) from (P(%f is

R
I N 3
R R )

YN

Each exotic tree has a single root.
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Idea of the proof
The main ingredients used to prove the multipicative property are:
@ we can split and combine LTC,
@ the algorithm generating order conditions defines a linear map,
@ the stochastic Runge-Kutta methods form exotic S-series ES(a) with

a(m U mp) = a(m)a(m).
We use them to prove the multiplicative property:

Q(m Uy m2) = Q(711)Q(712).
The following order conditions are satisfied automatically:

Qe =0, 2Qa=0 %) =0 Qees=0.

The number of order 3 conditions for inv. measure drops from 13 to 9.
This property of order 3 conditions was noticed in Laurent and Vilmart
[2019] through manual computation.
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Conclusion

Summary:
@ we defined exotic S-series with new symmetry coefficient, proved their
relationship to S-series, and proved the composition law;

@ we introduced a theoretical algorithm to generate order conditions for

invariant measure sampling and proved the multiplicative property of
the generated order conditions.

Ongoing work:
@ description of the substitution law for exotic S-series;

@ development of a symbolic package for manipulation of forest-like
structures. In collaboration with Jean-Luc Falcone from the Comp.
Science Dep. of Univ. Geneva.

Thank you for your attention!
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