

# Anisotropic adaptive finite elments for aluminium electrolysis

Paride Passelli, Marco Picasso

This work is financially supported by Rio Tinto-Aluminium (LRF, Saint-Jean de Maurienne)

#### Industry of aluminium





Aluminium cells. Copyright of Rio Tinto 2020

#### **Aluminium electrolysis**



▶  $2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$ 



▶ Difficulties: multi-scale features



We are mainly concerned on the fluid flow problem of aluminium electrolysis

- ▶ Goal: Compute velocity by finite elements method for a given precision
- ► Approach: construct a "better" mesh
- ▶ Outcome: a mesh giving a solution with a given precision and with reduced amount of vertices and therefore CPU time
- ► The anisotropic mesh are produced using the MeshGems commercial software (3D Precise Mesh)

#### Example of "standard" mesh





▶ View from above

▶ 326099 Vertices

### Example of adapted mesh (same precision than standard mesh)





- ▶ View from above
- ▶ 41687 Vertices

#### **Two model problems**



- ► Let  $\Omega \subset \mathbb{R}^2$  and  $u : \Omega \to \mathbb{R}$  solution of  $-\nabla \cdot (\mu \nabla u) = f$  with zero Dirichlet boundary conditions.
- ▶ We consider two different models:
  - Linear:  $\mu \in L^{\infty}(\Omega), 0 < \mu_{\min} \le \mu \le \mu_{\max}$ .
  - Nonlinear:  $\mu = \mu_0 + |\nabla u|^{p-2}, \ \mu_0 \ge 0, \ p \ge 3.$
- For any h > 0, let  $\mathcal{T}_h$  be a conformal triangulation of  $\Omega$  into triangles K.
- We consider piecewise finite elements and we denote  $u_h$  the obtained solution.
- ▶ We introduce anisotropic error estimates the involved constants being independent of the aspect ratio, provided the "mesh is aligned with the solution".
- ▶ We use the anisotropic interpolation error of Formaggia and Perotto (2001,2003).

#### **Error estimator: linear** $-\nabla \cdot (\mu \nabla u) = f$



- ► Let  $f \in L^2(\Omega)$ ,  $\mu \in W^{1,\infty}(\Omega)$ ,  $u \in H_0^1(\Omega)$  solution of the problem and  $u_h$  the finite element solution.
- ► Assume that there exists  $\hat{C} > 0$  depending only on the reference triangle  $\hat{K}$  such that for any  $K \in \mathcal{T}_h$  we have  $\lambda_{1,K}^2 \mathbf{r}_{1,K}^T G_K(u-u_h) \mathbf{r}_{1,K} \leq \hat{C} \lambda_{2,K}^2 \mathbf{r}_{2,K}^T G_K(u-u_h) \mathbf{r}_{2,K}.$



$$(G_K(u-u_h))_{ij} = \int_{\Delta K} \frac{\partial(u-u_h)}{\partial x_i} \frac{\partial(u-u_h)}{\partial x_j}$$

• Then there exists  $\hat{C}_1$ ,  $\hat{C}_2$  independent of the mesh size and aspect ratio such that up to higher order terms (Dubuis, Passelli, Picasso 2022)

$$\hat{C}_1 \int_{\Omega} \mu |\nabla(u - u_h)|^2 \le \sum_{K \in \mathcal{T}_h} \eta_K^2 \le \hat{C}_2 \int_{\Omega} \mu |\nabla(u - u_h)|^2,$$

$$\begin{split} \eta_K^2 &= \left( ||\Pi_K f + \Pi_K \nabla \mu \cdot \nabla u_h||_{L^2(K)} \right. \\ &+ \frac{1}{2} \sum_{i=1}^3 \left( \frac{|l_i|}{\lambda_{1,K} \lambda_{2,K}} \right)^{1/2} ||[\Pi_{l_i} \mu \nabla u_h \cdot \mathbf{n}]||_{L^2(l_i)} \right) \sum_{i=1}^2 \lambda_{i,K}^2 \mathbf{r}_{i,K}^T G_k(u - u_h) \mathbf{r}_{i,K} \end{split}$$

Anisotropic adaptive finite elements for aluminium electrolysis



▶ Goal: construct a mesh such that

$$0.75 \text{TOL} \le \left(\frac{\sum_{K \in \mathcal{T}_h} \eta_K^2}{\int_{\Omega} \mu |\nabla u_h|^2}\right)^{1/2} \le 1.25 \text{TOL}$$

► Strategy: iteratively solve the problem and change the mesh:

- Equidistribute the error in both directions for each triangle
- Align directions  $\mathbf{r}_{1,K}$  and  $\mathbf{r}_{2,K}$  with respect to eigenvectors of  $G_k(u-u_h)$

#### Numerical results



Consider  $\Omega = (0,1)^2$  with f such that u is

$$u(\mathbf{x}) = \mu_2 \sin(\pi x_1) H_{\varepsilon}(x_1 - 0.5) + \mu_1 \sin(\pi x_1) H_{\varepsilon}(0.5 - x_1),$$
  
$$\mu(\mathbf{x}) = \mu_2 H_{\varepsilon}(x_1 - 0.5) + \mu_1 (1 - H_{\varepsilon}(x_1 - 0.5))$$

where for all  $x \in \mathbb{R}$  and  $\varepsilon > 0$  we define a smoothing of the classical Heavyside function.

$$H_{\epsilon}(x) = \begin{cases} 0 & x \leq -\epsilon, \\ \frac{x+\epsilon}{2\epsilon} + \frac{1}{2\pi} \sin\left(\frac{\pi x}{\epsilon}\right) & -\epsilon \leq x \leq \epsilon, \\ 1 & \epsilon \leq x. \end{cases}$$

 $\mu_1 = 1 \ \mu_2 = 2 \ \epsilon = 0.01$  Starting mesh  $10 \times 10$  uniform

| TOL                                                                              | Vertices | $\mathrm{ei}^A$ | $e_{H^1}$ | $ei^{ZZ}$ | $\operatorname{ar}_{\max}$ | $ar_{av}$ |
|----------------------------------------------------------------------------------|----------|-----------------|-----------|-----------|----------------------------|-----------|
| 0.0125                                                                           | 741      | 0.96            | 0.054     | 1.00      | 17847                      | 3055      |
| 0.00625                                                                          | 1388     | 0.99            | 0.027     | 1.00      | 37973                      | 6683      |
| 0.003125                                                                         | 2822     | 0.98            | 0.013     | 1.00      | 77257                      | 13292     |
| $\mu_1 = 1 \ \mu_2 = 100 \ \epsilon = 0.01$ Starting mesh $10 \times 10$ uniform |          |                 |           |           |                            |           |
| 0.0125                                                                           | 524      | 1.02            | 7.34      | 0.98      | 17609                      | 4046      |
| 0.00625                                                                          | 1070     | 1.03            | 3.82      | 0.98      | 35918                      | 7553      |
| 0.003125                                                                         | 2166     | 1.03            | 1.86      | 0.99      | 91030                      | 15305     |

Anisotropic adaptive finite elements for aluminium electrolysis

#### Adapted mesh





• Obtained adapted mesh at tolerance TOL = 0.025.

Anisotropic adaptive finite elements for aluminium electrolysis

**Error estimator:**  $-\nabla \cdot ((\mu_0 + |\nabla u|^{p-2})\nabla u) = f$ 



▶ We can prove the following upper bound



$$\int_{\Omega} |\nabla(u-u_h)|^2 (\mu_0 + |\nabla u| + |\nabla(u-u_h)|) \le \hat{C} \sum_{K \in \mathcal{T}_h} \eta_K$$

$$\eta_{K} = \left( ||\nabla \cdot ((\mu_{0} + |\nabla u_{h}|)\nabla u_{h}) + f||_{L^{2}(K)} + \frac{1}{2\lambda_{2,K}^{1/2}} ||[(\mu_{0} + |\nabla u_{h}|)\nabla u_{h} \cdot \mathbf{n}]||_{L^{2}(\partial K)} \right) \sum_{i=1}^{2} \lambda_{i,K}^{2} \mathbf{r}_{i,K}^{T} G_{k}(u - u_{h}) \mathbf{r}_{i,K}.$$

$$\blacktriangleright \ (G_K(u-u_h))_{ij} = \int_{\Delta K} \frac{\partial (u-u_h)}{\partial x_i} \frac{\partial (u-u_h)}{\partial x_j}$$

►  $\int_{\Omega} |\nabla(u - u_h)|^2 (\mu_0 + |\nabla u| + |\nabla(u - u_h)|)$  is a quasi-norm (Liu, Yan, 2001).

(1)

#### **Numerical results**

| TOL           | $\mathrm{ei}^A$ | $e_{QN}$ | $ei^{ZZ}$ |  |  |  |
|---------------|-----------------|----------|-----------|--|--|--|
|               |                 |          |           |  |  |  |
| $\mu_0 = 0$   |                 |          |           |  |  |  |
| 0.125         | 13.32           | 0.78     | 0.88      |  |  |  |
| 0.0625        | 18.68           | 0.20     | 1.00      |  |  |  |
| 0.03125       | 18.55           | 0.08     | 1.00      |  |  |  |
| 0.015625      | 17.02           | 0.04     | 0.99      |  |  |  |
| $\mu_0 = 1$   |                 |          |           |  |  |  |
| 0.125         | 16.62           | 0.31     | 1.00      |  |  |  |
| 0.0625        | 18.68           | 0.25     | 0.99      |  |  |  |
| 0.03125       | 15.60           | 0.11     | 1.00      |  |  |  |
| 0.015625      | 19.09           | 0.052    | 0.97      |  |  |  |
| $\mu_0 = 100$ |                 |          |           |  |  |  |
| 0.125         | 10.97           | 5.63     | 0.98      |  |  |  |
| 0.0625        | 10.90           | 2.55     | 0.98      |  |  |  |
| 0.03125       | 11.03           | 1.23     | 0.99      |  |  |  |
| 0.015625      | 9.91            | 0.65     | 0.97      |  |  |  |



• Obtained adapted mesh at tolerance TOL=  $0.125 \ \mu_0 = 0$ 

• Exact solution: 
$$u(x, y) = \tanh\left(\frac{x-0.5}{0.1}\right)$$

Anisotropic adaptive finite elements for aluminium electrolysis



#### Application to aluminium electrolysis



- Consider  $\Omega = \Omega_{al} \cup \Omega_{el}$ .
- A free interface problem should be considered, here the interface  $\Gamma$  is considered flat and fixed.

• 
$$\epsilon_{ij}(\mathbf{u}) = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \, i, j = 1, 2, 3.$$



$$\begin{split} \rho(\mathbf{u}\cdot\nabla)\mathbf{u}-\nabla\cdot(2\mu\epsilon(|u|)\epsilon(u))+\nabla p&=\rho\mathbf{g}+\mathbf{j}\wedge\mathbf{B} \qquad \quad \text{in }\Omega,\\ \nabla\cdot\mathbf{u}&=0 \qquad \quad \text{in }\Omega. \end{split}$$

- ► Two models are considered
  - Smagorinsky  $\mu(|\epsilon(\mathbf{u})|) = \mu_L + C|\epsilon(\mathbf{u})|$  (Application of the modified p-Laplace problem presented before).
  - Von Karmann  $\mu(|\epsilon(\mathbf{u})|) = \mu_L + Cd_{\partial\Omega}^2 |\epsilon(\mathbf{u})|$  (ongoing work).

#### Application to aluminium electrolysis





## Comparison between adapted mesh and standard one



- ▶ Results obtained on the standard mesh and adapted mesh show similar accuracy.
- ▶ An adapted mesh could be used for several simulations.

| Mesh     | N. vertices | Adaptation CPU time | CPU time updating interface |
|----------|-------------|---------------------|-----------------------------|
| Standard | 326099      | -                   | 6h11                        |
| Adapted  | 41687       | 3h33m               | 1h12                        |

#### Adapted mesh vs standard mesh





Figure: Top: Adapted mesh Bottom: Standard mesh. View from above. Anisotropic adaptive finite elements for aluminium electrolysis

#### Adapted mesh vs standard mesh





16/06/2022



Figure: Top: Adapted mesh Bottom: Standard mesh. View from above.





#### Figure: Top: Adapted mesh Bottom: Standard mesh.





Figure: Top: Adapted mesh Bottom: Standard mesh. Cut view from below.



Figure: Top: Adapted mesh Bottom: Standard mesh. Zoom cut view from below.

#### **Conclusion and further work**



- ▶ With the help of adaptive finite elements with large aspect ratio the accuracy can be controlled reducing considerably the CPU time.
- ▶ The effectivity index does not depends on the aspect ratio on adapted meshes.
- ▶ The efficiency of the algorithm has been validated on an industrial application.
- We are working on the theoretical framework of the Von Karmann model, where the distance of the wall is involved in the turbulence model.

### Thank you!