A non-equilibrium multi-component model with miscible conditions

Jean Bussac

LMJL, Nantes Université

45ème Congrès National d'Analyse Numérique - 14 juin 2022

IV Nantes U Université

Motivations

- Multiphase flow modelling
- Industrial applications : nuclear safety (loss of coolant scenario in pressurized water reactors, vapor explosion...)

Figure: LOCA scenario (IRSN)

A brief and non-exhaustive historical review

- 1986, Baer and Nunziato: model for a two-phase compressible mixture
- 1992, Embid and Baer: analysis of this latter model
- 2002, Coquel, Gallouet, Hérard and Seguin: $\left(P_{I}, V_{I}\right)$ entropy-consistent closure, and jump conditions for a class of two-phase flow models
- 2007, Hérard: three-phase flow model
- 2014, Coquel, Hérard, Saleh and Seguin: deeper analysis of the two-phase model (convexity of the entropy, symmetrization)
- 2016, Müller, Hantke and Richter: generalization for a mixture of N immiscible phases
- 2019, Hérard and Mathis: two-phase flow model with a miscible condition (three fields)
- 2021, Hérard, Hurisse and Quibel: three-phase flow model with a miscible condition (four fields)

A brief and non-exhaustive historical review

- 1986, Baer and Nunziato: model for a two-phase compressible mixture
- 1992, Embid and Baer: analysis of this latter model
- 2002, Coquel, Gallouet, Hérard and Seguin: $\left(P_{I}, V_{I}\right)$ entropy-consistent closure, and jump conditions for a class of two-phase flow models
- 2007, Hérard: three-phase flow model
- 2014, Coquel, Hérard, Saleh and Seguin: deeper analysis of the two-phase model (convexity of the entropy, symmetrization)
- 2016, Müller, Hantke and Richter: generalization for a mixture of N immiscible phases
- 2019, Hérard and Mathis: two-phase flow model with a miscible condition (three fields)
- 2021, Hérard, Hurisse and Quibel: three-phase flow model with a miscible condition (four fields)

Objective

Generalizing these latter works that include the miscible hypothesis to any number of phases.

Plan

(1) Generalized model
(2) Definition of the interfacial pressures
(3) Analysis of the convective part
(4) Admissible source terms

Plan

(1) Generalized model
(2) Definition of the interfacial pressures
(3) Analysis of the convective part
(4) Admissible source terms

The mixture

- Mixture of N phases and M fields
- "phase" means a state of the matter and "field" a component in a given phase
- All the miscible components are contained in the Nth phase
- $K=M-N+1$ miscible components

Figure: N phases and M fields mixture

Mixture description

- We note \mathcal{K} the set of fields, and each field k is depicted by its state vector $\mathbf{Y}_{k}=\left(\alpha_{k}, \rho_{k}, v_{k}, e_{k}\right)$, where
- α_{k} is the volume fraction
- ρ_{k} is the phasic density
- v_{k} is the phasic speed
- e_{k} is the phasic internal energy

Mixture description

- We note \mathcal{K} the set of fields, and each field k is depicted by its state vector $\mathbf{Y}_{k}=\left(\alpha_{k}, \rho_{k}, v_{k}, e_{k}\right)$, where
- α_{k} is the volume fraction
- ρ_{k} is the phasic density
- v_{k} is the phasic speed
- e_{k} is the phasic internal energy
- Volumic constraints

$$
\left\{\begin{array}{l}
\sum_{k=1}^{N} \alpha_{k}=1 \\
\alpha_{k}=\alpha_{N} \text { for } k \geq N
\end{array}\right.
$$

Mixture description

- We note \mathcal{K} the set of fields, and each field k is depicted by its state vector $\mathbf{Y}_{k}=\left(\alpha_{k}, \rho_{k}, v_{k}, e_{k}\right)$, where
- α_{k} is the volume fraction
- ρ_{k} is the phasic density
- v_{k} is the phasic speed
- e_{k} is the phasic internal energy
- Volumic constraints

$$
\left\{\begin{array}{l}
\sum_{k=1}^{N} \alpha_{k}=1 \\
\alpha_{k}=\alpha_{N} \text { for } k \geq N
\end{array}\right.
$$

- By introducing $m_{k}=\alpha_{k} \rho_{k}$, we define the mixture entropy

$$
\sigma(\mathbf{Y})=\sum_{k \in \mathcal{K}} m_{k} \sigma_{k}\left(\mathbf{Y}_{k}\right)
$$

where σ_{k} is the specific entropy of the phase k.

System of equations

For $k=1, \ldots, N$

$$
\partial_{t} \alpha_{k}+V_{I}(\mathbf{Y}) \partial_{x} \alpha_{k}=\Phi_{k}(\mathbf{Y})
$$

System of equations

For $k=1, \ldots, N$

$$
\partial_{t} \alpha_{k}+V_{I}(\mathbf{Y}) \partial_{x} \alpha_{k}=\Phi_{k}(\mathbf{Y})
$$

For $k \in \mathcal{K}$

$$
\begin{gathered}
\partial_{t}\left(m_{k}\right)+\partial_{x}\left(m_{k} v_{k}\right)=\Gamma_{k}(\mathbf{Y}) \\
\partial_{t}\left(m_{k} v_{k}\right)+\partial_{x}\left(m_{k} v_{k}^{2}+\alpha_{k} p_{k}\right)+\sum_{l=1, \neq k}^{M} P_{k, l}(\mathbf{Y}) \partial_{x} \alpha_{l}=S_{q, k}(\mathbf{Y}) \\
\partial_{t}\left(m_{k} E_{k}\right)+\partial_{x}\left(m_{k} v_{k}\left(E_{k}+\frac{p_{k}}{\rho_{k}}\right)\right)+\sum_{l=1, \neq k}^{M} P_{k, l}(\mathbf{Y}) V_{I}(\mathbf{Y}) \partial_{x} \alpha_{l}=S_{E, k}(\mathbf{Y}),
\end{gathered}
$$

System of equations

For $k=1, \ldots, N$

$$
\partial_{t} \alpha_{k}+V_{I}(\mathbf{Y}) \partial_{x} \alpha_{k}=\Phi_{k}(\mathbf{Y})
$$

For $k \in \mathcal{K}$

$$
\begin{gathered}
\partial_{t}\left(m_{k}\right)+\partial_{x}\left(m_{k} v_{k}\right)=\Gamma_{k}(\mathbf{Y}) \\
\partial_{t}\left(m_{k} v_{k}\right)+\partial_{x}\left(m_{k} v_{k}^{2}+\alpha_{k} p_{k}\right)+\sum_{l=1, \neq k}^{M} P_{k, l}(\mathbf{Y}) \partial_{x} \alpha_{l}=S_{q, k}(\mathbf{Y}) \\
\partial_{t}\left(m_{k} E_{k}\right)+\partial_{x}\left(m_{k} v_{k}\left(E_{k}+\frac{p_{k}}{\rho_{k}}\right)\right)+\sum_{l=1, \neq k}^{M} P_{k, l}(\mathbf{Y}) V_{I}(\mathbf{Y}) \partial_{x} \alpha_{l}=S_{E, k}(\mathbf{Y}),
\end{gathered}
$$

\rightsquigarrow Closure laws: nonconservative interfacial terms $P_{k, l}(\mathbf{Y})$ and $V_{I}(\mathbf{Y})+$ source terms

Several constraints

Since the system is isolated, the source terms must verify

$$
\sum_{k \in \mathcal{K}} \Gamma_{k}(\mathbf{Y})=0, \quad \sum_{k \in \mathcal{K}} S_{q, k}(\mathbf{Y})=0, \quad \sum_{k \in \mathcal{K}} S_{E, k}(\mathbf{Y})=0 .
$$

Moreover, as we consider no vacuum occurrence

$$
\sum_{k=1}^{N} \Phi_{k}(\mathbf{Y})=0
$$

Several constraints

Since the system is isolated, the source terms must verify

$$
\sum_{k \in \mathcal{K}} \Gamma_{k}(\mathbf{Y})=0, \quad \sum_{k \in \mathcal{K}} S_{q, k}(\mathbf{Y})=0, \quad \sum_{k \in \mathcal{K}} S_{E, k}(\mathbf{Y})=0
$$

Moreover, as we consider no vacuum occurrence

$$
\sum_{k=1}^{N} \Phi_{k}(\mathbf{Y})=0
$$

Besides, the interfacial quantities $P_{k, l}$ should cancel each other

$$
\sum_{k \in \mathcal{K}} \sum_{\substack{l \in \mathcal{K} \\ l \neq k}} P_{k, l}(\mathbf{Y}) \partial_{x} \alpha_{l}=0
$$

to preserve the mixture conservative equations on momentum and energy.

Entropy equation

The mixture entropy verifies the following equation

$$
\partial_{t} \sigma(\mathbf{Y})+\partial_{x} f_{\sigma}(\mathbf{Y})=\mathcal{A}_{\sigma}\left(\mathbf{Y}, \partial_{x} \mathbf{Y}\right)+R H S_{\sigma}(\mathbf{Y})
$$

where

- $f_{\sigma}(\mathbf{Y})=\sum_{k \in \mathcal{K}} m_{k} \sigma_{k} v_{k}$ is the entropy flux
- $\mathcal{A}_{\sigma}\left(\mathbf{Y}, \partial_{x} \mathbf{Y}\right)$ contains the interfacial contribution
- $R H S_{\sigma}(\mathbf{Y})$ corresponds to the source terms

Entropy equation

The mixture entropy verifies the following equation

$$
\partial_{t} \sigma(\mathbf{Y})+\partial_{x} f_{\sigma}(\mathbf{Y})=\mathcal{A}_{\sigma}\left(\mathbf{Y}, \partial_{x} \mathbf{Y}\right)+R H S_{\sigma}(\mathbf{Y})
$$

where

- $f_{\sigma}(\mathbf{Y})=\sum_{k \in \mathcal{K}} m_{k} \sigma_{k} v_{k}$ is the entropy flux
- $\mathcal{A}_{\sigma}\left(\mathbf{Y}, \partial_{x} \mathbf{Y}\right)$ contains the interfacial contribution
- $R H S_{\sigma}(\mathbf{Y})$ corresponds to the source terms
\rightsquigarrow These production terms have to be non-negative to satisfy the second law of thermodynamics

Plan

(1) Generalized model

(2) Definition of the interfacial pressures

(3) Analysis of the convective part

4 Admissible source terms

Approach

The proof relies on the previous ones in different situations: immiscible two, three and then N-phase flow [Coq+02; Hér07; MHR16], or more recently for hybrid mixtures in [HM19; HHQ21].

Goal

Determine interfacial pressure and velocity terms that correspond to the minimal entropy dissipation model: $\mathcal{A}_{\sigma}\left(\mathbf{Y}, \partial_{x} \mathbf{Y}\right)=0$.

Approach

The proof relies on the previous ones in different situations: immiscible two, three and then N-phase flow [Coq+02; Hér07; MHR16], or more recently for hybrid mixtures in [HM19; HHQ21].

Goal

Determine interfacial pressure and velocity terms that correspond to the minimal entropy dissipation model: $\mathcal{A}_{\sigma}\left(\mathbf{Y}, \partial_{x} \mathbf{Y}\right)=0$.
\rightsquigarrow Define new interfacial terms $\left(K_{k, l}\right)$ from $\left(P_{k, l}\right)$, defined for $k=1, \ldots, M$, $l=1, \ldots, N-1$ to rewrite the PDE system that only use the $N-1$ first $\partial_{x} \alpha_{k}$

Approach

The proof relies on the previous ones in different situations: immiscible two, three and then N-phase flow [Coq+02; Hér07; MHR16], or more recently for hybrid mixtures in [HM19; HHQ21].

Goal

Determine interfacial pressure and velocity terms that correspond to the minimal entropy dissipation model: $\mathcal{A}_{\sigma}\left(\mathbf{Y}, \partial_{x} \mathbf{Y}\right)=0$.
\rightsquigarrow Define new interfacial terms $\left(K_{k, l}\right)$ from $\left(P_{k, l}\right)$, defined for $k=1, \ldots, M$, $l=1, \ldots, N-1$ to rewrite the PDE system that only use the $N-1$ first $\partial_{x} \alpha_{k}$
\rightsquigarrow Explicit the condition $\mathcal{A}_{\sigma}\left(\mathbf{Y}, \partial_{x} \mathbf{Y}\right)=0$ by using the independence of the $N-1$ first $\partial_{x} \alpha_{l}$, that give $N-1$ equations for each $l=1, \ldots, N-1$

$$
\mathcal{A}_{\sigma}\left(\mathbf{Y}, \partial_{x} \mathbf{Y}\right)=0 \Longleftrightarrow \forall l \leq N-1, \sum_{k=1}^{M} \frac{1}{T_{k}}\left(v_{k}-V_{I}\right)\left(K_{k, l}+\chi_{k, l} p_{k}\right)=0
$$

Approach

\rightsquigarrow Assume the convex combination (galilean invariance) $V_{I}(\mathbf{Y})=\sum_{k \in \mathcal{K}} \beta_{i} v_{i}$ that give the relations

$$
v_{k}-V_{I}=\sum_{i=1}^{k-1} \sum_{j=1}^{i}\left(-\beta_{j}\right)\left(v_{i}-v_{i+1}\right)+\sum_{i=k}^{M-1} \sum_{j=i+1}^{M}\left(\beta_{j}\right)\left(v_{i}-v_{i+1}\right)
$$

Approach

\rightsquigarrow Assume the convex combination (galilean invariance) $V_{I}(\mathbf{Y})=\sum_{k \in \mathcal{K}} \beta_{i} v_{i}$ that give the relations

$$
v_{k}-V_{I}=\sum_{i=1}^{k-1} \sum_{j=1}^{i}\left(-\beta_{j}\right)\left(v_{i}-v_{i+1}\right)+\sum_{i=k}^{M-1} \sum_{j=i+1}^{M}\left(\beta_{j}\right)\left(v_{i}-v_{i+1}\right)
$$

\rightsquigarrow Each of these equations can be split into $M-1$ new equations for each $i=1, \ldots, M-1$ by using the independence of the $M-1$ velocities differences $v_{i+1}-v_{i}$

$$
\ldots \Longleftrightarrow \forall l \leq N-1, i \leq M-1, \quad \sum_{k=1}^{i} c^{i} \frac{1}{T_{k}} K_{k, l}-\sum_{k=i+1}^{M} c_{i} \frac{1}{T_{k}} K_{k, l}=d_{l}^{i}
$$

Approach

\rightsquigarrow Assume the convex combination (galilean invariance) $V_{I}(\mathbf{Y})=\sum_{k \in \mathcal{K}} \beta_{i} v_{i}$ that give the relations

$$
v_{k}-V_{I}=\sum_{i=1}^{k-1} \sum_{j=1}^{i}\left(-\beta_{j}\right)\left(v_{i}-v_{i+1}\right)+\sum_{i=k}^{M-1} \sum_{j=i+1}^{M}\left(\beta_{j}\right)\left(v_{i}-v_{i+1}\right)
$$

\rightsquigarrow Each of these equations can be split into $M-1$ new equations for each $i=1, \ldots, M-1$ by using the independence of the $M-1$ velocities differences $v_{i+1}-v_{i}$

$$
\ldots \Longleftrightarrow \forall l \leq N-1, i \leq M-1, \quad \sum_{k=1}^{i} c^{i} \frac{1}{T_{k}} K_{k, l}-\sum_{k=i+1}^{M} c_{i} \frac{1}{T_{k}} K_{k, l}=d_{l}^{i}
$$

\rightsquigarrow By adding the balance momentum equation, we obtain, for each $l=1, \ldots, N-1$, a linear systems of size $M \times M$ and of unknowns $\boldsymbol{K}_{l}=\left(K_{1, l}, \ldots, K_{M, l}\right)$

$$
\forall l \leq N-1, \quad \boldsymbol{A} \boldsymbol{K}_{l}=\boldsymbol{d}_{l}
$$

Linear systems

$$
\forall l \leq N-1, \quad \boldsymbol{A} \boldsymbol{K}_{l}=\boldsymbol{d}_{l}
$$

Linear systems

$$
\forall l \leq N-1, \quad \boldsymbol{A} \boldsymbol{K}_{l}=\boldsymbol{d}_{l}
$$

where

$$
\boldsymbol{A}=\left(\begin{array}{ccccc}
c^{1} a_{1} & -c_{1} a_{2} & -c_{1} a_{3} & \ldots & -c_{1} a_{M} \\
c^{2} a_{1} & c^{2} a_{2} & -c_{2} a_{3} & \ldots & -c_{2} a_{M} \\
\ldots & & & & \ldots \\
c^{M-1} a_{1} & c^{M-1} a_{2} & \ldots & c^{M-1} a_{M-1} & -c_{M-1} a_{M} \\
1 & 1 & \ldots & \cdots & 1
\end{array}\right) \in \mathcal{M}_{M}(\mathbb{R})
$$

Linear systems

$$
\forall l \leq N-1, \quad \boldsymbol{A} \boldsymbol{K}_{l}=\boldsymbol{d}_{l}
$$

where

\[

\]

Linear systems

$$
\forall l \leq N-1, \quad \boldsymbol{A} \boldsymbol{K}_{l}=\boldsymbol{d}_{l}
$$

where

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{ccccc}
c^{1} a_{1} & -c_{1} a_{2} & -c_{1} a_{3} & \ldots & -c_{1} a_{M} \\
c^{2} a_{1} & c^{2} a_{2} & -c_{2} a_{3} & \ldots & -c_{2} a_{M} \\
\ldots & & & \ldots & \ldots \\
c^{M-1} a_{1} & c^{M-1} a_{2} & \ldots & c^{M-1} a_{M-1} & -c_{M-1} a_{M} \\
1 & 1 & \ldots & \ldots & 1
\end{array}\right) \in \mathcal{M}_{M}(\mathbb{R}) \\
& \boldsymbol{K}_{l}=\left(K_{1, l}, K_{2, l}, \ldots, K_{M, l}\right)^{\top} \\
& \boldsymbol{d}_{l}=\left(d_{l}^{1}, d_{l}^{2}, \ldots, d_{l}^{M}\right)^{\top}
\end{aligned}
$$

where $a_{k}=T_{k}^{-1}$, and $\left(\boldsymbol{d}_{l}\right)_{l=1, \ldots, N-1}$ depends on the phasic pressures p_{k}, the phasic temperatures T_{k}, and the convex combination of coefficients β_{k}

Regularity of A

Proposition

We have the following expression

$$
\operatorname{det} \boldsymbol{A}=\overline{a_{1}} c_{1}+\overline{a_{M}} c^{M-1}+\sum_{i=2}^{M-1} \overline{a_{i}} \beta_{i} .
$$

Moreover, if the phasic temperatures are all positive, then for any convex combination of V_{I}, $\operatorname{det} \boldsymbol{A}>0$ and so \boldsymbol{A} is regular.

Regularity of A

Proposition

We have the following expression

$$
\operatorname{det} \boldsymbol{A}=\overline{a_{1}} c_{1}+\overline{a_{M}} c^{M-1}+\sum_{i=2}^{M-1} \overline{a_{i}} \beta_{i} .
$$

Moreover, if the phasic temperatures are all positive, then for any convex combination of V_{I}, $\operatorname{det} \boldsymbol{A}>0$ and so \boldsymbol{A} is regular.

Thereom (Existence and uniqueness of the interfacial pressures)

Under the same hypotheses, the interfacial pressures ($K_{k, l}$) are uniquely defined.

Regularity of A

Proposition

We have the following expression

$$
\operatorname{det} \boldsymbol{A}=\overline{a_{1}} c_{1}+\overline{a_{M}} c^{M-1}+\sum_{i=2}^{M-1} \overline{a_{i}} \beta_{i} .
$$

Moreover, if the phasic temperatures are all positive, then for any convex combination of V_{I}, $\operatorname{det} \boldsymbol{A}>0$ and so \boldsymbol{A} is regular.

Thereom (Existence and uniqueness of the interfacial pressures)

Under the same hypotheses, the interfacial pressures ($K_{k, l}$) are uniquely defined.
\rightsquigarrow Remark: the lack of an explicit form of the $\left(K_{k, l}\right)$ has several consequences. For instance, we cannot verify that a flow initially at rest and at temperature and pressure equilibria will remain steady, (RIP condition, [HJ21])

Plan

(1) Generalized model

(2) Definition of the interfacial pressures
(3) Analysis of the convective part

(4) Admissible source terms

Analysis of the convective part

Proposition (Hyperbolicity)

The considered system is hyperbolic under the classical non-resonance condition $c_{k}^{2} \neq\left(v_{k}-V_{I}\right)^{2}$.
\checkmark The proof is close to the immiscible case [MHR16]
\rightsquigarrow Nature of the coupling wave V_{I} and its Riemann invariants must be determined

Analysis of the convective part

Proposition (Hyperbolicity)

The considered system is hyperbolic under the classical non-resonance condition $c_{k}^{2} \neq\left(v_{k}-V_{I}\right)^{2}$.
\checkmark The proof is close to the immiscible case [MHR16]
\rightsquigarrow Nature of the coupling wave V_{I} and its Riemann invariants must be determined

Proposition (Symmetrization)

Under the same non-resonance condition, the system is symmetrizable.
\checkmark The proof is exactly the same than in the immiscible case [MHR16]
\leadsto For a non-resonant initial data, there exists a local-in-time smooth solution to the Cauchy problem (Kato's theorem)

Plan

(1) Generalized model

(2) Definition of the interfacial pressures
(3) Analysis of the convective part
(4) Admissible source terms

Admissible source terms

\rightsquigarrow Source terms are reorganized according to their nature contribution: mechanical, mass transfer, drag effects and thermal

Admissible source terms

\rightsquigarrow Source terms are reorganized according to their nature contribution: mechanical, mass transfer, drag effects and thermal
\rightsquigarrow Constraints are stated to ensure the non-negativity of $R H S_{\sigma}$ (i.e. the growth of the entropy)

Admissible source terms

\rightsquigarrow Source terms are reorganized according to their nature contribution: mechanical, mass transfer, drag effects and thermal
\rightsquigarrow Constraints are stated to ensure the non-negativity of $R H S_{\sigma}$ (i.e. the growth of the entropy)
\checkmark Classical conditions obtained on mass transfer, drag effects and thermal contributions
x Less explicit condition on the mechanical contribution Φ due to the lack of interfacial terms expressions

Conclusion

- Successful generalization
\checkmark Uniquely defined interfacial pressures
\checkmark Hyperbolicity
\checkmark Symmetrization

Conclusion

- Successful generalization
\checkmark Uniquely defined interfacial pressures
\checkmark Hyperbolicity
\checkmark Symmetrization
\rightsquigarrow For given M and N, the expressions of $\left(K_{k, l}\right)$ can be precised and so the following features
\rightsquigarrow Preservation of an initial state at rest, with a temperature and pressure equilibria (RIP condition)
\rightsquigarrow Classical mechanical constraints

Conclusion

- Successful generalization
\checkmark Uniquely defined interfacial pressures
\checkmark Hyperbolicity
\checkmark Symmetrization
\rightsquigarrow For given M and N, the expressions of $\left(K_{k, l}\right)$ can be precised and so the following features
\rightsquigarrow Preservation of an initial state at rest, with a temperature and pressure equilibria (RIP condition)
\rightsquigarrow Classical mechanical constraints
\rightsquigarrow Preprint online

Conclusion

- Successful generalization
\checkmark Uniquely defined interfacial pressures
\checkmark Hyperbolicity
\checkmark Symmetrization
\rightsquigarrow For given M and N, the expressions of ($K_{k, l}$) can be precised and so the following features
\rightsquigarrow Preservation of an initial state at rest, with a temperature and pressure equilibria (RIP condition)
\rightsquigarrow Classical mechanical constraints
\rightsquigarrow Preprint online

Forecast
\rightsquigarrow Numerical study of the case $M=3$ and $N=2$

Conclusion

- Successful generalization
\checkmark Uniquely defined interfacial pressures
\checkmark Hyperbolicity
\checkmark Symmetrization
\rightsquigarrow For given M and N, the expressions of ($K_{k, l}$) can be precised and so the following features
\rightsquigarrow Preservation of an initial state at rest, with a temperature and pressure equilibria (RIP condition)
\rightsquigarrow Classical mechanical constraints
\rightsquigarrow Preprint online

Forecast
\rightsquigarrow Numerical study of the case $M=3$ and $N=2$

> Thank you for your attention!

