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Motivations

e Multiphase flow modelling

o Industrial applications : nuclear safety (loss of coolant scenario in pressurized water
reactors, vapor explosion...)
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Figure: LOCA scenario (IRSN)
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A brief and non-exhaustive historical review

e 1986, Baer and Nunziato: model for a two-phase compressible mixture
@ 1992, Embid and Baer: analysis of this latter model

@ 2002, Coquel, Gallouet, Hérard and Seguin: (Pr, V) entropy-consistent closure, and
jump conditions for a class of two-phase flow models

e 2007, Hérard: three-phase flow model

@ 2014, Coquel, Hérard, Saleh and Seguin: deeper analysis of the two-phase model
(convexity of the entropy, symmetrization)

@ 2016, Miiller, Hantke and Richter: generalization for a mixture of N immiscible
phases

@ 2019, Hérard and Mathis: two-phase flow model with a miscible condition (three
fields)

@ 2021, Hérard, Hurisse and Quibel: three-phase flow model with a miscible condition
(four fields)
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fields)
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(four fields)

Objective

Generalizing these latter works that include the miscible hypothesis to any number of
phases.
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Plan

© Ceneralized model

© Definition of the interfacial pressures

© Analysis of the convective part

@ Admissible source terms
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The mixture

e Mixture of N phases and M fields

» '"phase" means a state of the matter and "field" a component in a given phase

o All the miscible components are contained in the Nth phase

o K = M — N + 1 miscible components

%\

Figure: N phases and M fields mixture

Jean Bussac (LMJL, Université de Nantes) 6 /20



Mixture description

o We note K the set of fields, and each field k is depicted by its state vector
Y. = (ax, pr, Uk, ex), where

«y, is the volume fraction

pr is the phasic density

vy, is the phasic speed

e is the phasic internal energy

vvyyvyYy
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Mixture description

@ We note K the set of fields, and each field k is depicted by its state vector
Y. = (ax, pr, Uk, ex), where

=

«y, is the volume fraction

pr is the phasic density

vy, is the phasic speed

e is the phasic internal energy

vvyyvyYy

o Volumic constraints

{ Zk]\;l o = 1

ap =ay for k> N

e By introducing my = aypx, we define the mixture entropy

o(Y) =Y mpow(Ys),

ke

where o}, is the specific entropy of the phase k.
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System of equations

Fork=1,...,.N

Ora + VI(Y)&cak = (I’k(Y),
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System of equations

Fork=1,...,.N

Ora + V](Y)@Iak; = @ky(Y).

For k € €

Oy (mi) + Oz (mivr) = T'e(Y),

de(myvk) + Oz (myvp + upr) + Z Pri(Y)0eay = Sqr(Y),
1=1,#k

Ot(mi Ex) + Oz (mivr(Ex —l— Z P (Y Y)0,ar = Spr(Y),
k =1,k

Jean Bussac (LMJL, Université de Nantes) 8 /20



System of equations

Fork=1,...,.N

Ora + V](Y)@Iak; = @k(Y),

For k € €

Or(mi) + Oz (mpvr) = Tr(Y),

O (muvr) + O (mrvi + arpr) + Z Pri(Y)0zar = Sq ke (Y),
1=1,#k

Ot(mi Ex) + Oz (mivr(Ex —l— Z P (Y Y)0,ar = Spr(Y),
k =1,k

~+ Closure laws: nonconservative interfacial terms Py ;(Y) and V;(Y) + source terms
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Several constraints

Since the system is isolated, the source terms must verify

STTR(Y) =0, > Sek(Y)=0, > Spi(Y)=0.

kel kel kex

Moreover, as we consider no vacuum occurrence
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Several constraints

Since the system is isolated, the source terms must verify

STTR(Y) =0, > Sek(Y)=0, > Spi(Y)=0.

kel kel kex

Moreover, as we consider no vacuum occurrence

Besides, the interfacial quantities Py ; should cancel each other

Z Z Pk,l(Y)azaz = 0,

keK leX
£k

to preserve the mixture conservative equations on momentum and energy.
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Entropy equation

The mixture entropy verifies the following equation

0o (Y)+ 02 f-(Y) = As(Y,0.Y) + RHS-(Y),

where

o fo(Y) =2 cx mrowuy is the entropy flux
o A,(Y,0,Y) contains the interfacial contribution

e RHS,(Y) corresponds to the source terms
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The mixture entropy verifies the following equation

0o (Y)+ 02 f-(Y) = As(Y,0.Y) + RHS-(Y),

where

o fo(Y) =2 cx mrowuy is the entropy flux
o A,(Y,0,Y) contains the interfacial contribution

e RHS,(Y) corresponds to the source terms

~» These production terms have to be non-negative to satisfy the second law of
thermodynamics
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Plan

© Definition of the interfacial pressures
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Approach

The proof relies on the previous ones in different situations: immiscible two, three and
then N-phase flow [Coq+02; Hér07; MHR16], or more recently for hybrid mixtures in
[HM19; HHQ21].

Goal

Determine interfacial pressure and velocity terms that correspond to the minimal entropy
dissipation model: A,(Y,0,Y) = 0.
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then N-phase flow [Coq+02; Hér07; MHR16], or more recently for hybrid mixtures in
[HM19; HHQ21].

Goal

Determine interfacial pressure and velocity terms that correspond to the minimal entropy
dissipation model: A,(Y,0,Y) = 0.

~> Define new interfacial terms (K%,;) from (Py,), defined for k =1, ..., M,
l=1,...,N — 1 to rewrite the PDE system that only use the N — 1 first 0,

~» Explicit the condition A,(Y,0,Y) = 0 by using the independence of the N — 1 first
Oz, that give N — 1 equations for each [ =1,..., N — 1

M

1
As(Y,0.Y) =0 <= VI<N =1, Y —(vk — Vi)(Kg + xk,ipr) =0
= T
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Approach

~~+ Assume the convex combination (galilean invariance) Vi (Y) = >, _ Bivi that give
the relations

k—1 i M—-1 M
v =Vi=) D (=B —visa) + D D (Bi)(vi —vita)
i=1 j=1 i=k j=i+1
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~~+ Assume the convex combination (galilean invariance) Vi (Y) = >, _ Bivi that give
the relations

k—1 1 M—1
ok = V=YD (=B (i —vig1) + Y Z (B5)(vi — vit1)
i=1 j=1 i=k j=it+l

~» Each of these equations can be split into M — 1 new equations for each
i=1,....,M — 1 by using the independence of the M — 1 velocities differences
Vit1 — V;

i 1 M
. I<N-—-1,i<M-1 Ky — i — K —dl
<:>V7 , 1S s I;CTk k.l k;lc k.l
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i=1 j=1 i=k j=it+l

~» Each of these equations can be split into M — 1 new equations for each
i=1,....,M — 1 by using the independence of the M — 1 velocities differences
Vit1 — V;

i 1 M
. I<N-—-1,i<M-1 Ky — i — K —dl
<:>V7 , 1S s I;CTk k.l k;lc k.l

~» By adding the balance momentum equation, we obtain, for each I =1,...., N — 1, a
linear systems of size M x M and of unknowns K; = (K1, ..., Ka 1)

VI<N-1, AK, =d
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Linear systems

VI<N-1, AK, =d,,
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Linear systems

VI<N-1, AK, =d,,

where
cla —ciaz  —ci1as —aam
ay c’as —C203 Tean
A € Mu(R)
Mg Mg, M Yaymo1 —em—1am
) . 1

K; = (K1, Kz, e Karg) "
dy = (df,d7,....dM")"

where a;, = T,:], and (d;)i=1,....n—1 depends on the phasic pressures py, the phasic
temperatures T}, and the convex combination of coefficients S
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Regularity of A

Proposition

We have the following expression
M—1
det A = a1c1 + awaM_l —+ Z CEﬂZ
i=2

Moreover, if the phasic temperatures are all positive, then for any convex combination of
Vi, det A > 0 and so A is regular.

v
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det A = a1c1 + (LY\{CM_I —+ Z Cf?ﬂl
i=2

Moreover, if the phasic temperatures are all positive, then for any convex combination of
Vi, det A > 0 and so A is regular.

v

Thereom (Existence and uniqueness of the interfacial pressures) J

Under the same hypotheses, the interfacial pressures (K} ;) are uniquely defined.

~» Remark: the lack of an explicit form of the (K%,;) has several consequences. For
instance, we cannot verify that a flow initially at rest and at temperature and
pressure equilibria will remain steady, (RIP condition, [HJ21])

Jean Bussac (LMJL, Université de Nantes) 15 /20



Plan

© Analysis of the convective part
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Analysis of the convective part

Proposition (Hyperbolicity)

The considered system is hyperbolic under the classical non-resonance condition
& # (v — V1)*.

v/ The proof is close to the immiscible case [MHR16]

~» Nature of the coupling wave V and its Riemann invariants must be determined
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The considered system is hyperbolic under the classical non-resonance condition
& # (v — V1)*.

v/ The proof is close to the immiscible case [MHR16]

~» Nature of the coupling wave V and its Riemann invariants must be determined

Proposition (Symmetrization)

Under the same non-resonance condition, the system is symmetrizable. J

v The proof is exactly the same than in the immiscible case [MHR16]

~~ For a non-resonant initial data, there exists a local-in-time smooth solution to the
Cauchy problem (Kato's theorem)
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Admissible source terms

~» Source terms are reorganized according to their nature contribution: mechanical,
mass transfer, drag effects and thermal
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Admissible source terms

~» Source terms are reorganized according to their nature contribution: mechanical,
mass transfer, drag effects and thermal

~~ Constraints are stated to ensure the non-negativity of RH.S, (i.e. the growth of the
entropy)

v Classical conditions obtained on mass transfer, drag effects and thermal
contributions

X Less explicit condition on the mechanical contribution ® due to the lack of
interfacial terms expressions
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Conclusion

@ Successful generalization

v Uniquely defined interfacial pressures
v Hyperbolicity
v Symmetrization
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Thank you for your attention !
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