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Fracture Problem ([, 7]

Fracture problem

® When/where a crack propagates? How much it
propagates and in which direction?

® Ad-hoc criterium needed, e.g.

maximum stress criteria [Erdogan and Sih, '63]
minimum strain energy density criteria [Sih. '73]
maximum energy release rate criteria [Wu, '78]
critical stress or strain criteria [Ainsworth. 03]

® Computationally challenging due to

discontinuities in the displacement field
T o0N

® Discontinuities can be resolved at the element

boundaries by
'99)]

® duplicating nodes [Mo#s et 2l
° remeshing [Bouchard et al., '03]
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Fracture Problem ([, 7]

Variational approach to fracture

Total potential energy: [Ambrosio, Tortorelli '90]

ET) = [ we(u)d+ /g dr
JI

O\

elastic energy fracture energy

® (., critical energy release rate
® amount of strain energy required for the crack propagation

Q
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Phase-field Fracture Model

Regularization of fracture energy

[Bourdin, Francfort, Marigo, '00, '07, '08]

C CZS
/g,,. dl’ =~ e c? dQ+/ ¢ |Ve|? df.
r Q Q

2l 2
reaction term diffusion term
c(z) c(z) c(z)
Jlk jK |
—— x AR x 1 x
-l 1 -lsls Ul

Length-scale parameter I,:
® Controls the thickness of the damaged region

[Braides, '98].

® [" convergence ls — 0 gives rise to a sharp crack surface I'

® Value of I, tied to the refinement as I > h has to be fulfilled [Miehe et al., "10]
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Phase-field Fracture Model @

Phase-field variational form

Total potential energy: [Ambrosio, Tortorelli '90]

E(u,T) = Q\F¢e(u) Q-+ /r G. dr

elastic energy fracture energy

Regularized total potential energy: [Bourdin et al., '00; Miehe et al., "10]

E(u,c) = /Q(l — )2 S (u) + 1y (u) dQ + /sz Ge <2;H &+ % | Ve |2> dQ

elastic energy volumetric approximation of fracture energy

0 Phase field approach:

® The fracture problem is transformed into a

continuous problem

o0 ® The crack is modelled in a diffused manner

® Transition represented by the phase field parameter,
ce[0,1]
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Phase-field Fracture Model L, 71§

Minimization problem

® At each pseudo-time step

(u',c') = argmin E(u,c)
u=utD on 9Q p
dpe20

® Penalty approach to enforce irreversibility condition

~
Y

(u',c") = argmin VY(u,c):=E(u,c)+ 5 / ((c — 71 )% dQ,
Q

—ut - 2
u=u’, on 9Qp .

z ifx<O0
0 otherwise

where, (z)_ := {
® Constrained optimization approach to enforce irreversibility condition
(u*,c') = argmin &E(u,c)

ot
u=u’, on 9Qp

subject to ¢ > ' 7!
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Variational formulation with the penalty approach @

Nonlinear system of equations
® Variational form: Find a pair (u,c) € V! x H'(Q), such that

Vu¥(u,cv) =0, Vve

VU(u,c;w) =0, Ywe H(Q),

where, V' := {u € H'(Q)|u = g' on 0Qp},
VY= {uc H (Q)|u=0o0nd0p}

® Algebraic coupled problem: Find (u*,c*) € R"® x R™ such that
o oy | Ful )|
F(u , € )_ |:Fc(ll*,C*):| =0

® Coupled problem is non-convex

® Slow convergence due to unbalanced and highly localized nonlinearities
® coupling between the displacement and the phase-field
® |ocally varying material stiffness
® steep gradients of the phase-field function
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Variational formulation with the penalty approach @

[Cai, Keyes '02; Dolean et al. '16]

Nonlinear preconditioning

Instead of solving F'(x) = 0, we solve

Properties of the preconditioner G :
® (=~ F~!in some sense
® (G(F(x)) should have more balanced nonlinearities
e If G(y) =0, then y =0, where y = F(x)
® Solving G(F(x)) = 0 should be easier than solving F'(x) =0
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Variational formulation with the penalty approach @

[Cai, Keyes '02; Liu, Keyes '15]

Schwarz Preconditioned IN method

® Employ field-split approach, thus by decomposing x as [u, ¢]|T,

G(F(u,¢)) i= Flu,c) i= {J;u((l‘;gﬂ —

® Explicit knowledge of preconditioner G is typically not available
® Construct F implicitly using knowledge about F' and x

ASPIN: Find F, such that Fy,(u— Fu,c) =0
Find F. such that F.(u,c— F;) =0

Fulu, c)}

= Fa(u,c) = {fc(um)

MSPIN: Find F, such that F\,(u — Fyu,c) =0
Find F. such that F.(u — F,,c— F.) =0

Fu(u, c)}

— Fulwe = [

H. Kothari et al Nonlinear methods for phase-field fracture problems 10



Variational formulation with the penalty approach @

SPIN algorithm

@ For a given u®, ¢(®) perform local /decoupled step:
g
ASPIN: MSPIN:

Find u” by solving Fy, (u*, ¢(¥))=0 Find u* by solving Fy,(u*, ¢(¥))=0
Find ¢* by solving F.(u(®), c¢")=0 Find ¢ by solving Fo(u*,c")=0
@ Eval ditioned residual as 70— [90) —u]
valuate preconditioned residual as A/M T | k) _
© Find p® by solving (]-:L\///‘\,)(l‘)p<"’) = f]-'g‘;/k[ inexactly, such that

= o (k k k
1Fy 2 )@ p® + FE I < all 7 |
O Find o(%) using a backtracking algorithm

[u(kﬂ)

u®) .
B+ | = [ } +a®p®)

(k)
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Variational formulation with the penalty approach @

Jacobian of the preconditioned residual system

® Jacobian F4’ can be written as follows:

OF, -1 roF, OF,
;| 06u 06,  Ou R —
Fa = OF, OF.  OF. where, 0, = u— Fy,0. = c— Fe
00, ou 00,

® Due to continuity of F(x), we know, as F, — 0 and F. — 0
0y —uand 6. — ¢

® Now, Jacobian F4' can be approximated as:

oF, ' roF, OF,
Fl o~ ou ou Oc
A OF., OF. OF.

Oc ou Oc
—_——

F’

® Similar computation can be carried out for the multiplicative variant
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Variational formulation with the penalty approach @

Considered solution strategies

AM-ND: Alternate minimization with exact Newton (direct linear solver)

® AM-NK: Alternate minimization with exact Newton (Krylov linear solver)

AM-INK: Alternate minimization with inexact Newton (Krylov linear solver)

ASPIN: Additive Schwarz preconditioned inexact Newton

MSPIN: Multiplicative Schwarz preconditioned inexact Newton

Implementation details
FEM discretization:

® Finite element framework MQQSE[Permann et al. "20]
Implementation of solution strategies:
4 UtOpia[zu“a"' Kopanicakova et al. "21] (https://bitbucket.org/zulianp/utopia)

® PETSc backend is used for linear algebra and linear solvers (Krylov/direct)
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Variational formulation with the penalty approach @l

Tension test (brutal crack propagation)

il

0.5

0.5

I 0.5

# Global nonlinear its.
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AM-ND
AM-NK
AM-INK
—— ASPIN
MSPIN

C

1.0

0.7

0.5

0.2

0.0

N A Speedup with respect to ‘
Solver | Time (min) | 33 RD AM.NK AM.INK _ASPIN |
AM-ND 243.21
AM-NK 13161 | 1.85
AM-INK 120.64 | 1.88 1.02
ASPIN 12664 | 1.92 .04 1.02
MSPIN 115.34 | 2.11 114 112 .10
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Variational formulation with the penalty approach @l

Shear test (gradual crack propagation)

u
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- AM-ND

AM-NK
AM-INK

—— ASPIN

MSPIN

C

1.0

|O.7

0.5

02

0.0

. ) Speedup with respect to |

Solver | Time (min) | 4yr XD~ AMCNK AM.INK _ASPIN |
AM-ND 5,792.72
AM-NK 3,886.39 | 1.49 - -
AM-INK | 3,476.33 | 1.66 [BP)
ASPIN 11856 | 4886 3278 20.32
MSPIN 11523 | 5027 3372  30.7  1.03
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Variational formulation with the penalty approach @l

L-shaped test (gradual crack propagation)
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77777777

250 - 250 ]

v

iehni

—
=)

d W
L

# Global nonlinear its
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AM-ND
AM-NK
AM-INK

—— ASPIN

MSPIN

1.0
0.7

MSPIN

AM

& A"

0.5
/ &
0.2 | )
00 R R ST
©
: . Speedup with respect to ‘
Solver | Time (min) | x3yr XD AMNK AM.INK ASPIN |
AM-ND 435361 | - - - -
AM-NK 4,492.19 | 0.96 = = =
AM-INK | 3,500.13 | 121 135 = -
ASPIN 556.03 | 7.83 8.08 6.45 -
MSPIN 169.90 | 9.26 9.56 7.6 18
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Variational formulation with box-constraints @

Constrainted optimization approach

Find (uf,c') € V! x H'(Q), such that

(u',c') = argmin ¥(u,c)
u=ul; on 9Qp

subject to ¢ > ¢!t

where V! := {u € H(Q) | u=ul, on 9Qp}
® The energy functional is non-convex

® Bound constrained minimization problem
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Variational formulation with box-constraints @
Trust-region (TR)

arg min f(x)

subject to I < =z

contours of m

fr () = min! mp (sk) = min!
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Variational formulation with box-constraints @

Trust-region algorithm

@ Generate the model problem my(sg) = fr + (gr,Sk) + %{sk,Hksk>
® Solve TR subproblem

arg min my(sy)
sLER™

subject to ||sk|lec < A
sk < l— Xk

S (ertsi)—f(xk)
m(sy)

© Acceptance: p = > n then: xp41 = Xi + Sk,
otherwise x5, 11 = xx, 7 € (0,1)

O Update of the trust-region radius: Ay by means of p
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Variational formulation with box-constraints @

Recursive multilevel trust-region method! (RMTR)

Join mi (sk)

: — at xp
] e Y

1 <xp +sp
at xp
Compute VL, ‘ lTriaI step sy ‘
Project Restrict Prolongate
Construct of fr,

and minimize it within Aﬁ and IF

Ingredients:

1. Transfer operators

2.

3. Multilevel treatment of constraints

4. Ensuring global convergence 1 [Gratton et al., '06; GroB, Krause, '08]
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Variational formulation with box-constraints @

1. Transfer Operators

® Prolongation operator I; : R™~1 — R™
- transfers primal variables, such as correction sj

® Restriction operator R; : R™ — R™-1
- transfers dual variables, such as gradient V f(xy)

R, =(I)"

® Projection operator P; : R™ — R™-1
- transfers primal variables, such as iterate xy,

MOONolLith: [Krause, Zulian "16] https://bitbucket.org/zulianp/par_moonolith
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Variational formulation with box-constraints @

2. Level-dependent objective functions [Brandt '77; Nash "00]

1st order consistency

hi—i(xi—1,0 +s1-1) == fici(xi—1,0 +s1-1) + (0g,81-1)
—_———

coarse level model coupling term
where

(sg — Rthl(Xl,k) — Vflfl(xlfl’()) if <L
~ 1o if =L

® Connects fine level objective function with the coarse level objective function

® First coarse-level correction goes in direction of the restricted fine level
gradient

o FEfficient, if coarse level model is good approximation to the fine level model
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Variational formulation with box-constraints

2. Level-dependent objective functions

How to represent fracture?

® Fracture approximation width
depends on the length-scale
parameter [

the refinement level as [, > h has to
be fullfiled

l ® Length-scale parameter is tied to
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Variational formulation with box-constraints @

2. Level-dependent objective functions
Solution dependent 2nd order consistency

~ 1
hi—1(xi—1,0 + 81-1) == fi1(xi—1,0 +s1-1) +{0g, s1—1)+x1(c, €)5(s1-1,0Hsi1)

modified coarse model

coupling terms

fie1 = U(u,c) := VYe(u)  +xalc,e) ¥s(e,ls) dQ
elastic energy fracture energy
where
SH = Rlv2hl(xl7k)11 — V2fl_1(xl_1,0) if I<L,
’ if 1=1L,
1 if max(c) > € 0 if max(c) > e
x1(c,€) :== i=0,...,nL xa(c,€) = i=0,...nL
0 otherwise 1 otherwise
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Variational formulation with box-constraints @

3. Multilevel treatment of constraints

® Trust-region constraint on given level
Isi-1klloc < Aim1k

® Trust-region constraint from finer level

IL—18i—14 /o0 < 4
® |rreversibility condition

(Li—1si—1,4)s < (L)q
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Variational formulation with box-constraints @

4. Ensuring convergence

® Pre-smoothing/Post-smoothing on each level:
TR algorithm = convergence of given level

Coarse level correction does not exceed: fine level trust-region
fine level constraints

® Measurement of the quality of the coarse level correction

hi(xp6) — hi(xi ke + L-1si-1) fine level model decrease
PLk = :

hi—1(Pixy ) — hi—1(x1-1,+) coarse level model decrease

® Acceptance only if p; > 7, otherwise correction is disposed
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Variational formulation with box-constraints @

Benchmark: 3 fracture modes

u
u
17 —— —
| | U <«
H
¥ —
—u
—
a) Tension b) Shear c) Tear
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Variational formulation with box-constraints

Benchmark: 3 fracture modes

[AREARRpRERRE)
o
N
(¢3)

a) Tension b) Shear c) Tear
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Variational formulation with box-constraints @

Effect of different coarse level models:

10% F T

L — Ist
[|— 2nd
Galerkin
| |— SD 2nd Tension  Shear Tear

1st order 1.17 2.79 3.15
2nd order 1.03 1.71 1.21
Galerkin 1.08 2.59 1.42

o
<

# V-cycles

10! |

Speedup of RMTR method configured with the
solution dependent 2nd order model with respect to
alternative variants: 1st order consistency, 2nd order
consistency and Galerkin model.

t 1072

Number of nonlinear V-cycles over time-steps for
shear test, specimen with 782, 340 dofs. RMTR
was set up with 3 levels.
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Variational formulation with box-constraints

Number of nonlinear iterations over time

T
[ 4 levels 1
5 levels
[|----6 levels

F T T |
[ 4 ref. level 1
103 E 5 ref. level o +4 )
F|----6 ref. level H . il 10

10% £

# V-cycles

# nonlin. it

10" |

100

Il
0.4 0.6 0.8 1

=)
o
=)
=
o
=)
%
e Lo
o

t 102 3 10-2

TR method RMTR method

Number of nonlinear iterations/V-cycles as a function of time. Experiment
performed for shear test.
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Variational formulation with box-constraints

Comparing computational time

St h Monolithic scheme
Example ag. scheme TR RMTR
time time reduction(Stag.) time reduction(Stag.)  reduction(TR)
Tension 9.06 6.41 29.24% 4.18 53.86% 34.79%
Shear 137.72 52.40 61.95% 21.32 84.52% 59.31%
Tear 123.15 48.16 60.89% 15.09 87.75% 68.67%
Execution time of simulations for three fracture modes (782, 340 dofs)

. The time is measured in hours.
Experiment performed in serial.
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Variational formulation with box-constraints @

Computational complexity - RMTR method

1071

E v vl ol Lol L \HHH\é
104 10° 106 107
Number of dofs

Computational complexity of the RMTR method. Experiment performed for tension test with 6 million dofs.
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Variational formulation with box-constraints @l

Large-scale fracture simulation

Targets CPU-based computing architectures
® Implementation as part of library Utopial 2ufian Kopanicakova et al. "17]

Highly optimized (MPI, SIMD) FE assembly of phase-field fracture models
® Generation of stochastic fracture networks in 2D and 3D

Scalable mutlilevel trust-region algorithm (RMTR)[Kopanicakova, Krause 20]

Zulian™, Patrick and Kopanitakova™®, Alena and Nestola, Maria and Fink, Andreas and Fadel, Nur and VandeVondele, Joost and Krause, Rolf
"Large scale simulation of pressure induced phase-field fracture propagation using Utopia” CCF Transactions on High Performance Computing. (2021)
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Variational formulation with b

Strong and weak scaling study

c
. 2 10
/ 07
05
-
02
00
. . - 1,500 —e— Total
Strong scaling ER E —o— Hessian
. B g 1,000 —m— HJPGS
fixed size: 122,657,188 dofs g & s+ MPRGP
= o
L 05
RMTR with 4 levels - £ 50
d g
& 1 0| MMAAAAA—A—A—A—A
0 50 100 150 200 250 100 200
# nodes # nodes
. > @ 600 —e— Total
Weak scaling g e —6— Hessian
g ¢ 00 —m— PGS
size: 1,008,500 - 188,183,524 dofs g 3 s+ MPRGP
= @
]
RMTR with 4 levels 3 E 200
£ F omee—s——
50 100 50 100
# nodes # nodes
Experiment performed at CSCS, Piz Daint supercomputer, XC40 nodes (2 x 18 cores, 64/128 GB RAM). For
T
weak scaling, the parallel efficiency e = %L, where T7, is time of base experiment, while T'p, is runtime on
n
T
n nodes. For strong scaling, e = ’Tb"nb , where n, ny, denotes number of nodes and nodes of base
n
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Conclusion @

Conclusion

Additive and multiplicative Schwarz preconditioned inexact Newton's method
for monolithic phase-field fracture systems

® Decomposition performed using the field-split approach

® Numerical results demonstrate improvement in the performance compared to
the standard AM method
® The largest reduction of computational cost obtained for the problems with
the gradual crack propagation
® The speedup grows with increasing loading increments and the mesh resolution

Globally convergent nonlinear multilevel method

® Globalization performed by means of trust region strategy
® Solution dependent objective functions are employed on every level

® Numerical results suggest very good performance of the RMTR algorithm

® Compared to staggered scheme and single level TR method
® RMTR method is of optimal complexity and scales well

H. Kothari et al Nonlinear methods for phase-field fracture problems 35



_Conclusion L7
References

Publications (selected):

® Kopani¢akova A., Kothari H., Krause R. (2022) Nonlinear Field-Split Preconditioners for Solving
Monolithic Phase-field Models of Brittle Fracture. Under review in Computer Methods in Applied
Mechanics and Engineering

® Kopani¢akova A., Krause R. (2020) A recursive multilevel trust region method with application to fully
monolithic phase-field models of brittle fracture, Computer Methods in Applied Mechanics and
Engineering, 360 (1)

® Zulian™, P., Kopani¢akova™, A., Nestola, M.G.C. et al. (2021) Large scale simulation of pressure
induced phase-field fracture propagation using Utopia. CCF Trans. HPC 3, 407-426

® Bilgen, C., Kopani¢ikovd, A., Krause, R. et al. (2018) A phase-field approach to conchoidal fracture.
Meccanica 53, 1203-1219.

Software:

® Frac SPIN: Implementation of Phase-field fracture and SPIN method
https://bitbucket.org/alena_kopanicakova/pf_frac_spin

® Utopia: A C++ embedded domain specific language for scientific computing
https://bitbucket.org/zulianp/utopia

® Moonolith: A library for parallel L? projections
https://bitbucket.org/zulianp/par_moonolith
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Conclusion @

International Multigrid Conference (IMG) in Lugano

August 22-27, 2022 (img2022.usi.ch)
""
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Thank you for your attention.
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