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Fracture problem
• When/where a crack propagates? How much it

propagates and in which direction?

• Ad-hoc criterium needed, e.g.
• maximum stress criteria [Erdogan and Sih, ’63]

• minimum strain energy density criteria [Sih, ’73]

• maximum energy release rate criteria [Wu, ’78]

• critical stress or strain criteria [Ainsworth, ’03]

• Computationally challenging due to
discontinuities in the displacement field

• Discontinuities can be resolved at the element
boundaries by

• duplicating nodes [Moës et al., ’99]

• remeshing [Bouchard et al., ’03]
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Variational approach to fracture
Total potential energy: [Ambrosio, Tortorelli ’90]

Ẽ(u,Γ) =

∫
Ω\Γ

ψe(u) dΩ︸ ︷︷ ︸
elastic energy

+

∫
Γ

Gc dΓ︸ ︷︷ ︸
fracture energy

• Gc, critical energy release rate
• amount of strain energy required for the crack propagation

H. Kothari et al. Nonlinear methods for phase-field fracture problems 4



Phase-field Fracture Model
Università
della
Svizzera
italiana

Regularization of fracture energy
[Bourdin, Francfort, Marigo, ’00, ’07, ’08]∫

Γ

Gc dΓ ≈
∫
Ω

Gc

2ls
c2 dΩ︸ ︷︷ ︸

reaction term

+

∫
Ω

Gcls
2

|∇c|2 dΩ.︸ ︷︷ ︸
diffusion term

x

c(x)

1

-ls ls
x

c(x)

1

-lsls
x

c(x)

1

-lsls

Length-scale parameter ls:
• Controls the thickness of the damaged region
• Γ convergence [Braides, ’98]: ls → 0 gives rise to a sharp crack surface Γ

• Value of ls tied to the refinement as ls > h has to be fulfilled [Miehe et al., ’10]
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Phase-field variational form
Total potential energy: [Ambrosio, Tortorelli ’90]

Ẽ(u,Γ) =

∫
Ω\Γ

ψe(u) dΩ︸ ︷︷ ︸
elastic energy

+

∫
Γ

Gc dΓ︸ ︷︷ ︸
fracture energy

Regularized total potential energy: [Bourdin et al., ’00; Miehe et al., ’10]

E(u, c) =
∫
Ω

(1− c)2ψ+
e (u) + ψ−

e (u) dΩ︸ ︷︷ ︸
elastic energy

+

∫
Ω

Gc

(
1

2ls
c2 +

ls
2

| ∇c |2
)
dΩ︸ ︷︷ ︸

volumetric approximation of fracture energy

Γls

∂Ω

Ω Phase field approach:
• The fracture problem is transformed into a

continuous problem
• The crack is modelled in a diffused manner
• Transition represented by the phase field parameter,
c ∈ [0, 1]
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Minimization problem
• At each pseudo-time step

(ut, ct) = arg min
u=ut

D
on ∂ΩD

∂tc>0

E(u, c)

• Penalty approach to enforce irreversibility condition

(ut, ct) = arg min
u=ut

D on ∂ΩD

Ψ(u, c) := E(u, c) + γ

2

∫
Ω

(〈c− ct−1〉−)2 dΩ,

where, 〈x〉− :=

{
x if x < 0

0 otherwise
• Constrained optimization approach to enforce irreversibility condition

(ut, ct) = arg min
u=ut

D on ∂ΩD

E(u, c)

subject to c > ct−1
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Nonlinear system of equations
• Variational form: Find a pair (u, c) ∈ Vt ×H1(Ω), such that

∇uΨ(u, c;v) = 0, ∀v ∈ V0

∇cΨ(u, c;w) = 0, ∀w ∈ H1(Ω),

where, Vt := {u ∈ H1(Ω)|u = gt on ∂ΩD},
V0 := {u ∈ H1(Ω)|u = 0 on ∂ΩD}

• Algebraic coupled problem: Find (u∗, c∗) ∈ Rnd × Rn such that

F (u∗, c∗) =

[
Fu(u

∗, c∗)
Fc(u

∗, c∗)

]
= 0

• Coupled problem is non-convex
• Slow convergence due to unbalanced and highly localized nonlinearities

• coupling between the displacement and the phase-field
• locally varying material stiffness
• steep gradients of the phase-field function
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Nonlinear preconditioning[Cai, Keyes ’02; Dolean et al. ’16]

Instead of solving F (x) = 0, we solve

F(x) = G(F (x)︸ ︷︷ ︸
y

) = 0

Properties of the preconditioner G :

• G ≈ F−1 in some sense
• G(F (x)) should have more balanced nonlinearities
• If G(y) = 0, then y = 0, where y = F (x)

• Solving G(F (x)) = 0 should be easier than solving F (x) = 0
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Schwarz Preconditioned IN method[Cai, Keyes ’02; Liu, Keyes ’15]

• Employ field-split approach, thus by decomposing x as [u, c]T , i.e.,

G(F (u, c)) := F(u, c) :=

[
Fu(u, c)
Fc(u, c)

]
:= 0

• Explicit knowledge of preconditioner G is typically not available
• Construct F implicitly using knowledge about F and x

ASPIN: Find Fu such that Fu(u− Fu, c) = 0

Find Fc such that Fc(u, c− Fc) = 0

=⇒ FA(u, c) =

[
Fu(u, c)
Fc(u, c)

]

MSPIN: Find Fu such that Fu(u− Fu, c) = 0

Find Fc such that Fc(u− Fu, c− Fc) = 0

=⇒ FM(u, c) =

[
Fu(u, c)
Fc(u, c)

]
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SPIN algorithm

1 For a given u(k), c(k), perform local/decoupled step:
ASPIN:
Find u* by solving Fu(u*, c(k))=0
Find c* by solving Fc(u(k), c*)=0

MSPIN:
Find u* by solving Fu(u*, c(k))=0
Find c* by solving Fc(u∗, c*)=0

2 Evaluate preconditioned residual as F (k)
A/M

=

[
u(k) − u*

c(k) − c*

]

3 Find p(k) by solving (F̃ ′
A/M

)(k)p(k) = −F (k)
A/M

inexactly, such that

‖(F̃ ′
A/M

)(k)p(k) + F (k)
A/M

‖ ≤ η‖F (k)
A/M

‖

4 Find α(k) using a backtracking algorithm

5
[
u(k+1)

c(k+1)

]
=

[
u(k)

c(k)

]
+ α(k)p(k)
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Jacobian of the preconditioned residual system
• Jacobian FA

′ can be written as follows:

F ′
A =


∂Fu

∂δu
∂Fc

∂δc


−1 

∂Fu

∂δu

∂Fu

∂u
∂Fc

∂u

∂Fc

∂δc

 where, δu = u− Fu, δc = c− Fc

• Due to continuity of F (x), we know, as Fu → 0 and Fc → 0
δu → u and δc → c

• Now, Jacobian FA
′ can be approximated as:

F ′
A ≈


∂Fu

∂u
∂Fc

∂c


−1 

∂Fu

∂u

∂Fu

∂c
∂Fc

∂u

∂Fc

∂c


︸ ︷︷ ︸

F ′

• Similar computation can be carried out for the multiplicative variant
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Considered solution strategies
• AM-ND: Alternate minimization with exact Newton (direct linear solver)
• AM-NK: Alternate minimization with exact Newton (Krylov linear solver)
• AM-INK: Alternate minimization with inexact Newton (Krylov linear solver)
• ASPIN: Additive Schwarz preconditioned inexact Newton
• MSPIN: Multiplicative Schwarz preconditioned inexact Newton

Implementation details
FEM discretization:

• Finite element framework MOOSE[Permann et al. ’20]

Implementation of solution strategies:
• Utopia[Zulian, Kopanicakova et al. ’21] (https://bitbucket.org/zulianp/utopia)

• PETSc backend is used for linear algebra and linear solvers (Krylov/direct)
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Tension test (brutal crack propagation)
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Shear test (gradual crack propagation)
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L-shaped test (gradual crack propagation)
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Constrainted optimization approach

Find (ut, ct) ∈ Vt ×H1(Ω), such that

(ut, ct) = arg min
u=ut

D on ∂ΩD

Ψ(u, c)

subject to c > ct−1

where Vt := {u ∈ H1(Ω) | u = ut
D on ∂ΩD}

• The energy functional is non-convex
• Bound constrained minimization problem
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Trust-region (TR)

arg min
x∈Rn

f(x)

subject to l ≤ x

x

f(x)

xk

mk(sk) = min!

mk

fk(xk) = min!

fk ∆2

∆1

contours of mk

sk1

sk2
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Trust-region algorithm

1 Generate the model problem mk(sk) = fk + 〈gk, sk〉+ 1
2 〈sk,Hksk〉

2 Solve TR subproblem

arg min
sk∈Rn

mk(sk)

subject to ‖sk‖∞ ≤ ∆k

sk ≤ l− xk

3 Acceptance: ρ = f(xk+sk)−f(xk)
m(sk)

≥ η then: xk+1 = xk + sk,
otherwise xk+1 = xk, η ∈ (0, 1)

4 Update of the trust-region radius: ∆k by means of ρ
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Recursive multilevel trust-region method1 (RMTR)

min
xL∈RnL

fL = f
min
sk∈Rn

mk(sk)

subject to ‖sk‖∞ ≤ ∆L
k

lL ≤ xk + sk

Compute ∇fL Trial step sk

Construct coarse local model of fL
and minimize it within ∆L

k and lL

at xk

at xk

Fine level

Coarse level

Restrict ProlongateProject

Ingredients:
1. Transfer operators
2. Level dependent objective functions
3. Multilevel treatment of constraints
4. Ensuring global convergence 1 [Gratton et al., ’06; Groß, Krause, ’08]
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1. Transfer Operators

• Prolongation operator Il : Rnl−1 → Rnl

- transfers primal variables, such as correction sk
• Restriction operator Rl : Rnl → Rnl−1

- transfers dual variables, such as gradient ∇f(xk)

Rl = (Il)
T

• Projection operator Pl : Rnl → Rnl−1

- transfers primal variables, such as iterate xk

MOONoLith:[Krause, Zulian ’16] https://bitbucket.org/zulianp/par_moonolith
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2. Level-dependent objective functions [Brandt ’77; Nash ’00]

1st order consistency

hl−1(xl−1,0 + sl−1) := fl−1(xl−1,0 + sl−1)︸ ︷︷ ︸
coarse level model

+ 〈δg, sl−1〉︸ ︷︷ ︸
coupling term

where

δg :=

{
Rl∇hl(xl,k)−∇fl−1(xl−1,0) if l < L

0 if l = L

• Connects fine level objective function with the coarse level objective function
• First coarse-level correction goes in direction of the restricted fine level

gradient
• Efficient, if coarse level model is good approximation to the fine level model

H. Kothari et al. Nonlinear methods for phase-field fracture problems 22



Variational formulation with box-constraints
Università
della
Svizzera
italiana

2. Level-dependent objective functions

How to represent fracture?

• Fracture approximation width
depends on the length-scale
parameter ls

• Length-scale parameter is tied to
the refinement level as ls > h has to
be fullfiled
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2. Level-dependent objective functions
Solution dependent 2nd order consistency

hl−1(xl−1,0 + sl−1) := f̃l−1(xl−1,0 + sl−1)︸ ︷︷ ︸
modified coarse model

+〈δg, sl−1〉+χ1(c, ε)
1

2
〈sl−1, δHsl−1〉︸ ︷︷ ︸

coupling terms

f̃l−1 := Ψ̃(u, c) :=

∫
Ω

ψe(u)︸ ︷︷ ︸
elastic energy

+χ2(c, ε) ψf (c, ls)︸ ︷︷ ︸
fracture energy

dΩ

where

δH :=

{
Rl∇2hl(xl,k)Il −∇2fl−1(xl−1,0) if l < L,

0 if l = L,

.

χ1(c, ε) :=

1 if max(ci)
i=0,...,nL

> ε

0 otherwise
χ2(c, ε) :=

0 if max(ci)
i=0,...,nL

> ε

1 otherwise
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3. Multilevel treatment of constraints

• Trust-region constraint on given level

‖sl−1,k‖∞ ≤ ∆l−1,k

• Trust-region constraint from finer level

‖Il−1sl−1,∗‖∞ ≤ ∆l

• Irreversibility condition

(Il−1sl−1,∗)i ≤ (ll)i
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4. Ensuring convergence

• Pre-smoothing/Post-smoothing on each level:
TR algorithm =⇒ convergence of given level

• Coarse level correction does not exceed: fine level trust-region
fine level constraints

• Measurement of the quality of the coarse level correction

ρl,k =
hl(xl,k)− hl(xl,k + Il−1sl−1)

hl−1(Plxl,k)− hl−1(xl−1,∗)
=

fine level model decrease
coarse level model decrease

• Acceptance only if ρl,k ≥ η, otherwise correction is disposed
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Benchmark: 3 fracture modes

u
u

u

u

a) Tension b) Shear c) Tear
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Benchmark: 3 fracture modes

a) Tension b) Shear c) Tear .
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Effect of different coarse level models:

0 0.2 0.4 0.6 0.8 1

·10−2

101
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t

#
V
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yc
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s

1st
2nd

Galerkin
SD 2nd

Number of nonlinear V-cycles over time-steps for
shear test, specimen with 782, 340 dofs. RMTR
was set up with 3 levels.

Tension Shear Tear

1st order 1.17 2.79 3.15
2nd order 1.03 1.71 1.21
Galerkin 1.08 2.59 1.42

Speedup of RMTR method configured with the
solution dependent 2nd order model with respect to
alternative variants: 1st order consistency, 2nd order
consistency and Galerkin model.
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Number of nonlinear iterations over time
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Number of nonlinear iterations/V-cycles as a function of time. Experiment
performed for shear test.
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Comparing computational time

Example Stag. scheme Monolithic scheme .
TR RMTR

time time reduction(Stag.) time reduction(Stag.) reduction(TR)

Tension 9.06 6.41 29.24% 4.18 53.86% 34.79%
Shear 137.72 52.40 61.95% 21.32 84.52% 59.31%
Tear 123.15 48.16 60.89% 15.09 87.75% 68.67%

Execution time of simulations for three fracture modes (782, 340 dofs). The time is measured in hours.
Experiment performed in serial.
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Computational complexity - RMTR method

104 105 106 107
10−1

100

101

102

Number of dofs

T
im

e(
s)

Simulation
Ideal

Computational complexity of the RMTR method. Experiment performed for tension test with 6 million dofs.
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Large-scale fracture simulation

• Targets CPU-based computing architectures
• Implementation as part of library Utopia[ Zulian, Kopanicakova et al. ’17]

• Highly optimized (MPI, SIMD) FE assembly of phase-field fracture models
• Generation of stochastic fracture networks in 2D and 3D
• Scalable mutlilevel trust-region algorithm (RMTR)[Kopanicakova, Krause ’20]

Zulian∗ , Patrick and Kopaničáková∗ , Alena and Nestola, Maria and Fink, Andreas and Fadel, Nur and VandeVondele, Joost and Krause, Rolf
”Large scale simulation of pressure induced phase-field fracture propagation using Utopia” CCF Transactions on High Performance Computing. (2021)

H. Kothari et al. Nonlinear methods for phase-field fracture problems 33



Variational formulation with box-constraints
Università
della
Svizzera
italiana

Strong and weak scaling study

Strong scaling
fixed size: 122,657,188 dofs

RMTR with 4 levels

Weak scaling
size: 1,098,500 - 188,183,524 dofs

RMTR with 4 levels

Experiment performed at CSCS, Piz Daint supercomputer, XC40 nodes (2 x 18 cores, 64/128 GB RAM). For

weak scaling, the parallel efficiency e =
Tb
Tn

, where Tb is time of base experiment, while Tn is runtime on

n nodes. For strong scaling, e =
Tbnb
Tnn

, where n, nb denotes number of nodes and nodes of base
experiment, respectivelly.H. Kothari et al. Nonlinear methods for phase-field fracture problems 34
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Conclusion

• Additive and multiplicative Schwarz preconditioned inexact Newton’s method
for monolithic phase-field fracture systems

• Decomposition performed using the field-split approach
• Numerical results demonstrate improvement in the performance compared to

the standard AM method
• The largest reduction of computational cost obtained for the problems with

the gradual crack propagation
• The speedup grows with increasing loading increments and the mesh resolution

• Globally convergent nonlinear multilevel method
• Globalization performed by means of trust region strategy
• Solution dependent objective functions are employed on every level

• Numerical results suggest very good performance of the RMTR algorithm
• Compared to staggered scheme and single level TR method
• RMTR method is of optimal complexity and scales well
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Software:
• Frac SPIN: Implementation of Phase-field fracture and SPIN method

https://bitbucket.org/alena_kopanicakova/pf_frac_spin
• Utopia: A C++ embedded domain specific language for scientific computing

https://bitbucket.org/zulianp/utopia
• Moonolith: A library for parallel L2 projections

https://bitbucket.org/zulianp/par_moonolith
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International Multigrid Conference (IMG) in Lugano
August 22-27, 2022 (img2022.usi.ch)
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Thank you for your attention.
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