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Regularization by noise

Let BH be a fractional Brownian motion with Hurst parameter
H ⩽ 1/2 (Ô⇒ W ∶= B1/2 denotes Brownian motion).

Well known: Reflected Brownian motion solves the following SDE:

Xt = LXt (0) +B
1/2
t , where “LXt (0) = ∫

t

0
δ0(Xr)dr”.

Do we have existence and uniqueness to the SDE

Xt = ∫
t

0
φ(Xr)dr +BH

t , (●)

where φ has a singularity, is a finite measure, or is even in a more
general class of distributions? (see also Nualart and Ouknine (2002),
if H = 1/2 see e.g. Krylov and Röckner (2005), Davie (2007))

We can rephrase (●) by X̃ = X −BH , as

X̃t = ∫
t

0
φ(X̃r +BH

r )dr .

Hope: x ↦ TBH

t φ(x) ∶= ∫
t

0 φ(x +BH
r )dr is regular.
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Averaging operator

Definition

Let w ∈ C([0,T ],R). For bounded measurable φ ∶ R→ R let

Tw
t φ(x) ∶= ∫

t

0
φ(x +wr)dr for (t, x) ∈ [0,T ] ×R.
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Averaging operator for φ = 1[0.1,0.9]

Tw
t 1[0.1,0.9](x) ∶= ∫

t

0
1[0.1,0.9](x +wr)dr for (t, x) ∈ [0,T ] ×R
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Different kinds of solutions

Definition (Adapted vs. path-by-path solutions)

For a bounded measurable function φ, we consider

Xt = ∫
t

0
φ(Xr)dr +BH

t . (2)

Let (Ω,F ,F,P) be a filtered probability space and {BH
t }t∈[0,T ] an

F-fBm defined on it. We call a continuous F-adapted process
{Xt}t∈[0,T ] fulfilling (2) a weak solution.

If X is FBH
-adapted, we call it a strong solution.

We call X ∶ Ω→ C([0,T ],R) a path-by-path solution if it fulfills (2)
for ω ∈ Ω̃ ⊂ Ω with P(Ω̃) = 1.

strong existence weak existence path-by-path existence
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Local time

Definition of local time at x ∈ R
LWt (x) = limε→0

1
2ε ∫

t
0 1{Bε(x)}(Wr)dr

Heuristically “LWt (x) = ∫
t

0 δx(Wr)dr”.

∫
t

0 1A(Wr)dr = ∫A L
W
t (x)dx (Ô⇒ ∫

t
0 f (Wr)dr = ∫R f (x)LWt (x)dx

for bounded measurable f ).
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Fractional Brownian motion

Definition

Let H ∈ (0,1). We call the centered Gaussian process {BH
t }t⩾0 with

covariance function

E[BH
s BH

t ] = 1
2(t

2H + s2H − ∣t − s ∣2H)

a fractional Brownian motion (fBm) with Hurst parameter H.

B1/2 is a Brownian motion.

For H ≠ 1/2, BH is neither Markov nor a (semi)martingale.

BH is almost surely γ-Hölder continuous for γ ∈ (0,H) on any
compact interval.

Lukas Anzeletti SDEs with singular drift June 2022 9 / 23



Fractional Brownian motion

Definition

Let H ∈ (0,1). We call the centered Gaussian process {BH
t }t⩾0 with

covariance function

E[BH
s BH

t ] = 1
2(t

2H + s2H − ∣t − s ∣2H)

a fractional Brownian motion (fBm) with Hurst parameter H.

B1/2 is a Brownian motion.

For H ≠ 1/2, BH is neither Markov nor a (semi)martingale.
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Regularising with fBm

Idea: “rougher noise Ô⇒ more regularisation”

Theorem (Catellier and Gubinelli 2016)

Let φ ∈ Cα for α > 1 − 1
2H . Then there exists a set of full measure w.r.t.

the law of fBm such that there exists a unique solution X ∈ C([0,T ]) to

Xt = ∫
t

0
φ(Xr)dr +BH

t .

In case of φ = δ0 this gives a unique solution for H < 1/4. Main objective:
Establish sharpness of this inequality or extend to larger values of H!
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Averaging operator defined via the local time

Equation of interest

Xt = ∫
t

0
φ(Xr)dr +BH

t ⇐⇒ X̃t = ∫
t

0
φ(X̃r +BH

r )dr , for X̃ = X −BH .

Let φ ∈ Cb(R) and TBH

t φ(x) ∶= ∫
t

0 φ(x +BH
r )dr . Then

∫
t

0
φ(X̃r +BH

r )dr = lim
N→∞

N

∑
i=1
∫

ti+1

ti
φ(X̃ti +BH

r )dr

= lim
N→∞

N

∑
i=1

TBH

ti ,ti+1
φ(X̃ti )“ = ”∫

t

0
TBH

dr φ(X̃r).

Let L denote the local time of BH and φ ∈ Cb(R). Notice that

TBH

s,t φ(x) = ∫R
φ(x + z)Ls,t(z)dz = (φ ⋆ Ľs,t)(x), ∀x ∈ R,

where Ľt(x) = Lt(−x)
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Reformulation as nonlinear Young differential equation

Xt = ∫
t

0
φ(Xr)dr +BH

t (●)

For L sufficiently smooth and φ in an appropriate space of distributions
(Besov space), we can extend the definition of T by

TBH

t φ(x) ∶= ⟨φ,Lt(⋅ − x)⟩.

Definition

Let φ be a distribution such that TBH
φ is sufficiently regular. We call

X ∶ Ω × [0,T ]→ R a path-by-path solution to (●) if, for X̃ = X −BH ,

X̃t = ∫
t

0
TBH

dr φ(X̃r)

holds for almost every realisation of BH .
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Key steps for existence of path-by-path solution

X̃t = ∫
t

0
TBH

dr φ(X̃r)

Determine regularity of TBH
φ via the regularity of the local time of a

fBm (≈ L ∈ C1/2(1−H)(C1/(2H)−1/2)). (also see Harang and Perkowski
(2021))

Extend operator to distributions (in some Besov space).

Reformulate equation as a nonlinear Young integral equation.

Develop additional theory for nonlinear Young integral equations that
makes use of nonnegative increments of TBH

φ.

Search for X̃ in the space of functions with finite 1-variation (via an
Euler scheme - next slide) Ô⇒ ,.

Please give me a function with regular local time

Note that the above approach requires no probability theory, having a
function with sufficiently regular local time is sufficient.
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Theorem

Let η ∈ (0,1] and p ⩾ 1 with 1/p + η > 1. Let A ∈ Cp-var[0,T ](C
η) with

As,t(y) ⩾ 0 for all y ∈ R and all (s, t) ∈ ∆[0,T ]. Then there exists a

solution x ∈ C1-var
[0,T ] to the nonlinear Young equation

xt = ∫
t

0
Adr(xr), ∀t ∈ [0,T ]. (4)

Lukas Anzeletti SDEs with singular drift June 2022 14 / 23



Sketch of the proof

W.l.o.g., let T = 1. For n ∈ N and 0 ⩽ k ⩽ n, let tnk ∶= k/n, x̄n0 ∶= 0 and
define recursively

x̄nk+1 = x̄nk +Atn
k
,tn
k+1

(x̄nk ).

We embed (x̄nk )
n
k=0 into C[0,1] by

xnt = ∑
0⩽k⩽⌊nt⌋

Atn
k
,t∧tn

k+1
(x̄nk ) (5)

= ∫
t

0
Adr(xnr ) + ∑

0⩽k⩽⌊nt⌋
(∫

t∧tnk+1

tnk

Adr(xntn
k
) −Adr(xnr )) . (6)

Let ε > 0. Then for n large and 0 ⩽ s ⩽ u ⩽ 1 with ∣u − s ∣ small

xns,t = [xn]C1-var
[s,u]

⩽ C(p, η) ([A]Cp-var
[s,u](C

η) + [A]Cp-var
[s,u](C

η)[x
n]ηC1-var

[s,u]
+ ε)

Ô⇒ [xn]C1-var
[s,u]

⩽ C(p, η)
[A]Cp-var

[s,u](C
η) + ε

1 − C(p, η)[A]Cp-var
[s,u](C

η)
.
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Regularising with fBm

Theorem (A., Richard, and Tanré 2021)

For H <
√

2 − 1 and φ a nonnegative finite measure, there exists a
path-by-path solution to (●). Furthermore, building on this construction,
we can also construct a weak solution.

Corollary

As a corollary of the general Theorem one gets, for a nonnegative bump
function ξ and ε > 0, a weak solution to

Xt = ∫
t

0
∣Xr ∣−3/4+εξ(Xr)dr +Wt .
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Different notions of uniqueness

Definition (Pathwise uniqueness vs. path-by-path uniqueness)

For a bounded measurable function φ, we consider

Xt = ∫
t

0
φ(r ,Xr)dr +Wt . (●)

We say that pathwise uniqueness holds if for any weak solutions X , Y
defined on the same filtered probability space, X ≡ Y .

We say that path-by-path uniqueness for (●) holds if for any
probability space on which a Brownian motion W is defined, there
exists a null-set N such that for ω ∉ N , there exists a unique solution
to

Xt(ω) = ∫
t

0
φ(r ,Xr(ω))dr +Wt(ω).

path-by-path uniqueness pathwise uniqueness
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Uniqueness and counterexamples

Xt = X0 + ∫
t

0
φ(r ,Xr)dr +Wt , X0 = x0 ∈ Rd (●)

Theorem (Krylov and Röckner 2005)

Let φ ∈ Lq([0,T ],Lp(Rd)) for p ⩾ 2,q > 2 with d/p + 2/q < 1. Then there
exists a pathwise unique strong solution to (●).

Theorem (Davie 2007)

Let φ ∶ [0,T ] ×Rd → Rd be bounded and measurable. Then path-by-path
uniqueness holds.

Counterexamples (Shaposhnikov and Wresch 2020, A. 2022)

One can construct drifts φ ∶ [0,T ] ×Rd → Rd such that

1 there is existence of path-by-path solutions to (●), but there exists no
weak solution;

2 there exists a pathwise unique weak solution to (●), but path-by-path
uniqueness is lost.
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Uniqueness for unbounded functions

Xt = ∫
t

0
φ(Xr)dr +Wt ⇐⇒ X̃t = ∫

t

0
φ(X̃r +Wr)dr (●)

Theorem (A., ongoing work)

Let α > −1/2 and let φ(x) ∶= 1{x≠0}∣x ∣αξ(x) for a bump function ξ. Then
there exists a unique path-by-path solution to equation (●).

Proof.

Let X̃ 1 ≠ X̃ 2 be solutions to (●)

W.l.o.g. ∃ time interval [s, t] on which ∣X̃ 1 +W ∣ > ∣X̃ 2 +W ∣
By monotonicity of φ, on [s, t], φ(X̃ 1 +W ) < φ(X̃ 2 +W ) (if
X̃ 2 +W ≠ 0)

Ô⇒ X̃ 1 − X̃ 2 is monotone on [s, t]. Finding a nonlinear Young
integral equation that is solved by X̃ 1 − X̃ 2, we get

[X̃ 1 − X̃ 2]C1-var
[s,t]

= ∣(X̃ 1 − X̃ 2)s,t ∣ ⩽ C(t − s)γ[X̃ 1 − X̃ 2]C1-var
[s,t]

.

.
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Obstacles in the rigorous proof

1 Ensure sufficient regularity of T X̃ 2+Wφ in order to write X̃ 1 − X̃ 2 as
the solution to a nonlinear Young integral equation

2 Ruling out the possibility that X̃ 2 +W = 0 on a set of positive
measure to ensure that X̃ 1 − X̃ 2 is actually nondecreasing on [s, t]

3 Open problem: How to ensure 2 in the fractional Brownian motion
case?
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Questions please!
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