SDEs with distributional drift and path-by-path solutions

Lukas Anzeletti

joint work with Alexandre Richard 1 and Etienne $\mathsf{Tanr}\acute{e}^2$

¹*CentraleSupélec.* ²*Inria.*

Lukas Anzeletti

3 Path-by-path vs. adapted solutions

Motivation and definitions

2) Existence of a solution via nonlinear Young integration

Path-by-path vs. adapted solutions

Regularization by noise

- Let B^H be a fractional Brownian motion with Hurst parameter $H \leq 1/2$ ($\implies W := B^{1/2}$ denotes Brownian motion).
- Well known: Reflected Brownian motion solves the following SDE:

$$X_t = L_t^X(0) + B_t^{1/2}$$
, where " $L_t^X(0) = \int_0^t \delta_0(X_r) dr$ ".

Regularization by noise

- Let B^H be a fractional Brownian motion with Hurst parameter $H \leq 1/2$ ($\implies W := B^{1/2}$ denotes Brownian motion).
- Well known: Reflected Brownian motion solves the following SDE:

$$X_t = L_t^X(0) + B_t^{1/2}$$
, where " $L_t^X(0) = \int_0^t \delta_0(X_r) dr$ ".

Do we have existence and uniqueness to the SDE

$$X_t = \int_0^t \phi(X_r) dr + B_t^H, \qquad (\bullet)$$

where ϕ has a singularity, is a finite measure, or is even in a more general class of distributions? (see also Nualart and Ouknine (2002), if H = 1/2 see e.g. Krylov and Röckner (2005), Davie (2007))

Regularization by noise

- Let B^H be a fractional Brownian motion with Hurst parameter $H \leq 1/2$ ($\implies W := B^{1/2}$ denotes Brownian motion).
- Well known: Reflected Brownian motion solves the following SDE:

$$X_t = L_t^X(0) + B_t^{1/2}$$
, where " $L_t^X(0) = \int_0^t \delta_0(X_r) dr$ ".

Do we have existence and uniqueness to the SDE

$$X_t = \int_0^t \phi(X_r) dr + B_t^H, \qquad (\bullet)$$

where φ has a singularity, is a finite measure, or is even in a more general class of distributions? (see also Nualart and Ouknine (2002), if H = 1/2 see e.g. Krylov and Röckner (2005), Davie (2007))
We can rephrase (•) by X̃ = X − B^H, as

$$\tilde{X}_t = \int_0^t \phi(\tilde{X}_r + B_r^H) dr.$$

• Hope: $x \mapsto T_t^{B^H} \phi(x) \coloneqq \int_0^t \phi(x + B_r^H) dr$ is regular.

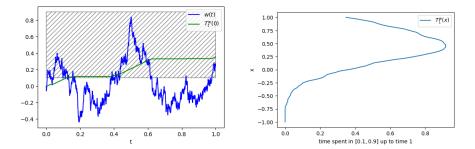
Averaging operator

Definition

Let $w \in \mathcal{C}([0, T], \mathbb{R})$. For bounded measurable $\phi : \mathbb{R} \to \mathbb{R}$ let

$$T_t^w \phi(x) \coloneqq \int_0^t \phi(x+w_r) dr \text{ for } (t,x) \in [0,T] \times \mathbb{R}.$$

$$T_t^w \mathbb{1}_{[0.1,0.9]}(x) \coloneqq \int_0^t \mathbb{1}_{[0.1,0.9]}(x+w_r) dr \text{ for } (t,x) \in [0,T] \times \mathbb{R}$$



For a bounded measurable function ϕ , we consider

$$X_t = \int_0^t \phi(X_r) dr + B_t^H.$$

(2)

For a bounded measurable function ϕ , we consider

$$X_t = \int_0^t \phi(X_r) dr + B_t^H.$$
⁽²⁾

Let (Ω, F, F, P) be a filtered probability space and {B_t^H}_{t∈[0,T]} an F-fBm defined on it. We call a continuous F-adapted process {X_t}_{t∈[0,T]} fulfilling (2) a weak solution.

For a bounded measurable function $\phi,$ we consider

$$X_t = \int_0^t \phi(X_r) dr + B_t^H.$$
⁽²⁾

- Let (Ω, F, F, P) be a filtered probability space and {B_t^H}_{t∈[0,T]} an F-fBm defined on it. We call a continuous F-adapted process {X_t}_{t∈[0,T]} fulfilling (2) a weak solution.
- If X is \mathbb{F}^{B^H} -adapted, we call it a strong solution.

For a bounded measurable function $\phi,$ we consider

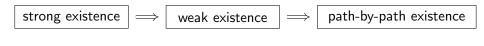
$$X_t = \int_0^t \phi(X_r) dr + B_t^H.$$
⁽²⁾

- Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be a filtered probability space and $\{B_t^H\}_{t \in [0, T]}$ an \mathbb{F} -fBm defined on it. We call a continuous \mathbb{F} -adapted process $\{X_t\}_{t \in [0, T]}$ fulfilling (2) a weak solution.
- If X is \mathbb{F}^{B^H} -adapted, we call it a strong solution.
- We call X : Ω → C([0, T], ℝ) a path-by-path solution if it fulfills (2) for ω ∈ Ω̃ ⊂ Ω with ℙ(Ω̃) = 1.

For a bounded measurable function $\phi,$ we consider

$$X_t = \int_0^t \phi(X_r) dr + B_t^H.$$
⁽²⁾

- Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be a filtered probability space and $\{B_t^H\}_{t \in [0, T]}$ an \mathbb{F} -fBm defined on it. We call a continuous \mathbb{F} -adapted process $\{X_t\}_{t \in [0, T]}$ fulfilling (2) a weak solution.
- If X is \mathbb{F}^{B^H} -adapted, we call it a strong solution.
- We call X : Ω → C([0, T], ℝ) a path-by-path solution if it fulfills (2) for ω ∈ Ω̃ ⊂ Ω with ℙ(Ω̃) = 1.



Definition of local time at $x \in \mathbb{R}$

$$L_t^W(x) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_0^t \mathbb{1}_{\{B_\varepsilon(x)\}}(W_r) dr$$

Definition of local time at $x \in \mathbb{R}$

$$L_t^W(x) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_0^t \mathbb{1}_{\{B_\varepsilon(x)\}}(W_r) dr$$

• Heuristically " $L_t^W(x) = \int_0^t \delta_x(W_r) dr$ ".

Definition of local time at $x \in \mathbb{R}$

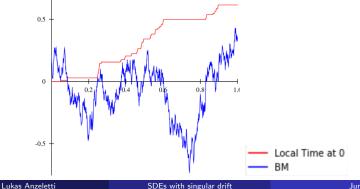
$$L_t^W(x) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_0^t \mathbb{1}_{\{B_\varepsilon(x)\}}(W_r) dr$$

- Heuristically " $L_t^W(x) = \int_0^t \delta_x(W_r) dr$ ".
- $\int_0^t \mathbb{1}_A(W_r) dr = \int_A L_t^W(x) dx \ (\Longrightarrow \ \int_0^t f(W_r) dr = \int_{\mathbb{R}} f(x) L_t^W(x) dx$ for bounded measurable f).

Definition of local time at $x \in \mathbb{R}$

$$L_t^W(x) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_0^t \mathbb{1}_{\{B_\varepsilon(x)\}}(W_r) dr$$

- Heuristically " $L_t^W(x) = \int_0^t \delta_x(W_r) dr$ ".
- $\int_0^t \mathbb{1}_A(W_r) dr = \int_A L_t^W(x) dx \ (\Longrightarrow \ \int_0^t f(W_r) dr = \int_{\mathbb{R}} f(x) L_t^W(x) dx$ for bounded measurable f).



Let $H \in (0,1)$. We call the centered Gaussian process $\{B_t^H\}_{t \ge 0}$ with covariance function

$$\mathbb{E}[B_s^H B_t^H] = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H})$$

a fractional Brownian motion (fBm) with Hurst parameter H.

Let $H \in (0,1)$. We call the centered Gaussian process $\{B_t^H\}_{t \ge 0}$ with covariance function

$$\mathbb{E}[B_s^H B_t^H] = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H})$$

a fractional Brownian motion (fBm) with Hurst parameter H.

• $B^{1/2}$ is a Brownian motion.

Let $H \in (0,1)$. We call the centered Gaussian process $\{B_t^H\}_{t \ge 0}$ with covariance function

$$\mathbb{E}[B_s^H B_t^H] = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H})$$

a fractional Brownian motion (fBm) with Hurst parameter H.

- $B^{1/2}$ is a Brownian motion.
- For $H \neq 1/2$, B^H is neither Markov nor a (semi)martingale.

Let $H \in (0,1)$. We call the centered Gaussian process $\{B_t^H\}_{t \ge 0}$ with covariance function

$$\mathbb{E}[B_s^H B_t^H] = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H})$$

a fractional Brownian motion (fBm) with Hurst parameter H.

- $B^{1/2}$ is a Brownian motion.
- For $H \neq 1/2$, B^H is neither Markov nor a (semi)martingale.
- B^H is almost surely γ -Hölder continuous for $\gamma \in (0, H)$ on any compact interval.

Idea: "rougher noise \implies more regularisation"

Idea: "rougher noise \implies more regularisation"

Theorem (Catellier and Gubinelli 2016)

Let $\phi \in C^{\alpha}$ for $\alpha > 1 - \frac{1}{2H}$. Then there exists a set of full measure w.r.t. the law of fBm such that there exists a unique solution $X \in C([0, T])$ to

$$X_t = \int_0^t \phi(X_r) dr + B_t^H.$$

Idea: "rougher noise \implies more regularisation"

Theorem (Catellier and Gubinelli 2016)

Let $\phi \in C^{\alpha}$ for $\alpha > 1 - \frac{1}{2H}$. Then there exists a set of full measure w.r.t. the law of fBm such that there exists a unique solution $X \in C([0, T])$ to

$$X_t = \int_0^t \phi(X_r) dr + B_t^H.$$

In case of $\phi = \delta_0$ this gives a unique solution for H < 1/4. Main objective: Establish sharpness of this inequality or extend to larger values of H!

Motivation and definitions

3 Path-by-path vs. adapted solutions

Averaging operator defined via the local time

Equation of interest

$$X_t = \int_0^t \phi(X_r) dr + B_t^H \iff \tilde{X}_t = \int_0^t \phi(\tilde{X}_r + B_r^H) dr, \text{ for } \tilde{X} = X - B^H.$$

Averaging operator defined via the local time

Equation of interest

$$X_t = \int_0^t \phi(X_r) dr + B_t^H \iff \tilde{X}_t = \int_0^t \phi(\tilde{X}_r + B_r^H) dr, \text{ for } \tilde{X} = X - B^H.$$

Let $\phi \in \mathcal{C}_b(\mathbb{R})$ and $T_t^{B^H}\phi(x) \coloneqq \int_0^t \phi(x+B_r^H)dr$. Then

$$\int_{0}^{t} \phi(\tilde{X}_{r} + B_{r}^{H}) dr = \lim_{N \to \infty} \sum_{i=1}^{N} \int_{t_{i}}^{t_{i+1}} \phi(\tilde{X}_{t_{i}} + B_{r}^{H}) dr$$
$$= \lim_{N \to \infty} \sum_{i=1}^{N} T_{t_{i}, t_{i+1}}^{B^{H}} \phi(\tilde{X}_{t_{i}}) = \int_{0}^{t} T_{dr}^{B^{H}} \phi(\tilde{X}_{r}).$$

Averaging operator defined via the local time

Equation of interest

$$X_t = \int_0^t \phi(X_r) dr + B_t^H \iff \tilde{X}_t = \int_0^t \phi(\tilde{X}_r + B_r^H) dr, \text{ for } \tilde{X} = X - B^H.$$

Let $\phi \in \mathcal{C}_b(\mathbb{R})$ and $T_t^{B^H}\phi(x) \coloneqq \int_0^t \phi(x+B_r^H)dr$. Then

$$\begin{split} \int_{0}^{t} \phi(\tilde{X}_{r} + B_{r}^{H}) dr &= \lim_{N \to \infty} \sum_{i=1}^{N} \int_{t_{i}}^{t_{i+1}} \phi(\tilde{X}_{t_{i}} + B_{r}^{H}) dr \\ &= \lim_{N \to \infty} \sum_{i=1}^{N} T_{t_{i}, t_{i+1}}^{B^{H}} \phi(\tilde{X}_{t_{i}}) = \int_{0}^{t} T_{dr}^{B^{H}} \phi(\tilde{X}_{r}). \end{split}$$

Let *L* denote the local time of B^H and $\phi \in \mathcal{C}_b(\mathbb{R})$. Notice that

$$T_{s,t}^{B^{H}}\phi(x) = \int_{\mathbb{R}}\phi(x+z)L_{s,t}(z)dz = (\phi \star \check{L}_{s,t})(x), \ \forall x \in \mathbb{R},$$

where
$$\check{L}_t(x) = L_t(-x)$$

Reformulation as nonlinear Young differential equation

$$X_t = \int_0^t \phi(X_r) \, dr + B_t^H \tag{(\bullet)}$$

Reformulation as nonlinear Young differential equation

$$X_t = \int_0^t \phi(X_r) \, dr + B_t^H \tag{(\bullet)}$$

For L sufficiently smooth and ϕ in an appropriate space of distributions (Besov space), we can extend the definition of T by

$$T_t^{B^H}\phi(x) \coloneqq \langle \phi, L_t(\cdot - x) \rangle.$$

Reformulation as nonlinear Young differential equation

$$X_t = \int_0^t \phi(X_r) \, dr + B_t^H \tag{(\bullet)}$$

For L sufficiently smooth and ϕ in an appropriate space of distributions (Besov space), we can extend the definition of T by

$$T_t^{B^H}\phi(x) \coloneqq \langle \phi, L_t(\cdot - x) \rangle.$$

Definition

Let ϕ be a distribution such that $T^{B^H}\phi$ is **sufficiently regular**. We call $X: \Omega \times [0, T] \to \mathbb{R}$ a path-by-path solution to (\bullet) if, for $\tilde{X} = X - B^H$,

$$\tilde{X}_t = \int_0^t T_{dr}^{B^H} \phi(\tilde{X}_r)$$

holds for almost every realisation of B^H .

$$\tilde{X}_t = \int_0^t T_{dr}^{B^H} \phi(\tilde{X}_r)$$

Determine regularity of T^{B^H}φ via the regularity of the local time of a fBm (≈ L ∈ C^{1/2(1-H)}(C^{1/(2H)-1/2})). (also see Harang and Perkowski (2021))

$$\tilde{X}_t = \int_0^t T_{dr}^{B^H} \phi(\tilde{X}_r)$$

- Determine regularity of T^{B^H}φ via the regularity of the local time of a fBm (≈ L ∈ C^{1/2(1-H)}(C^{1/(2H)-1/2})). (also see Harang and Perkowski (2021))
- Extend operator to distributions (in some Besov space).

$$\tilde{X}_t = \int_0^t T_{dr}^{B^H} \phi(\tilde{X}_r)$$

- Determine regularity of T^{B^H}φ via the regularity of the local time of a fBm (≈ L ∈ C^{1/2(1-H)}(C^{1/(2H)-1/2})). (also see Harang and Perkowski (2021))
- Extend operator to distributions (in some Besov space).
- Reformulate equation as a nonlinear Young integral equation.

$$\tilde{X}_t = \int_0^t T_{dr}^{B^H} \phi(\tilde{X}_r)$$

- Determine regularity of T^{B^H}φ via the regularity of the local time of a fBm (≈ L ∈ C^{1/2(1-H)}(C^{1/(2H)-1/2})). (also see Harang and Perkowski (2021))
- Extend operator to distributions (in some Besov space).
- Reformulate equation as a nonlinear Young integral equation.
- Develop additional theory for nonlinear Young integral equations that makes use of nonnegative increments of $T^{B^H}\phi$.

$$\tilde{X}_t = \int_0^t T_{dr}^{B^H} \phi(\tilde{X}_r)$$

- Determine regularity of T^{B^H}φ via the regularity of the local time of a fBm (≈ L ∈ C^{1/2(1-H)}(C^{1/(2H)-1/2})). (also see Harang and Perkowski (2021))
- Extend operator to distributions (in some Besov space).
- Reformulate equation as a nonlinear Young integral equation.
- Develop additional theory for nonlinear Young integral equations that makes use of nonnegative increments of $T^{B^H}\phi$.
- Search for \hat{X} in the space of functions with finite 1-variation (via an Euler scheme **next slide**) $\implies \bigcirc$.

Key steps for existence of path-by-path solution

$$\tilde{X}_t = \int_0^t T_{dr}^{B^H} \phi(\tilde{X}_r)$$

- Determine regularity of *T^{BH}φ* via the regularity of the local time of a fBm (≈ *L* ∈ *C*^{1/2(1-H)}(*C*^{1/(2H)-1/2})). (also see Harang and Perkowski (2021))
- Extend operator to distributions (in some Besov space).
- Reformulate equation as a nonlinear Young integral equation.
- Develop additional theory for nonlinear Young integral equations that makes use of nonnegative increments of $T^{B^H}\phi$.
- Search for \hat{X} in the space of functions with finite 1-variation (via an Euler scheme **next slide**) $\implies \bigcirc$.

Please give me a function with regular local time

Note that the above approach requires no probability theory, having a function with sufficiently regular local time is sufficient.

Lukas Anzeletti

Theorem

Let $\eta \in (0,1]$ and $p \ge 1$ with $1/p + \eta > 1$. Let $A \in C_{[0,T]}^{p\text{-var}}(\mathcal{C}^{\eta})$ with $A_{s,t}(y) \ge 0$ for all $y \in \mathbb{R}$ and all $(s,t) \in \Delta_{[0,T]}$. Then there exists a solution $x \in C_{[0,T]}^{1\text{-var}}$ to the nonlinear Young equation

$$x_t = \int_0^t A_{dr}(x_r), \quad \forall t \in [0, T].$$

$$\tag{4}$$

Sketch of the proof

W.l.o.g., let T = 1. For $n \in \mathbb{N}$ and $0 \le k \le n$, let $t_k^n := k/n$, $\bar{x}_0^n := 0$ and define recursively

$$\bar{x}_{k+1}^n = \bar{x}_k^n + A_{t_k^n, t_{k+1}^n}(\bar{x}_k^n).$$

We embed $(\bar{x}^n_k)^n_{k=0}$ into $\mathcal{C}_{[0,1]}$ by

$$x_t^n = \sum_{0 \le k \le \lfloor nt \rfloor} A_{t_k^n, t \land t_{k+1}^n}(\bar{x}_k^n)$$
(5)

$$= \int_{0}^{t} A_{dr}(x_{r}^{n}) + \sum_{0 \le k \le \lfloor nt \rfloor} \left(\int_{t_{k}^{n}}^{t \land t_{k+1}^{n}} A_{dr}(x_{t_{k}^{n}}^{n}) - A_{dr}(x_{r}^{n}) \right).$$
(6)

Let $\varepsilon > 0$. Then for *n* large and $0 \leq s \leq u \leq 1$ with |u - s| small

$$\begin{aligned} x_{s,t}^{n} &= [x^{n}]_{\mathcal{C}_{[s,u]}^{1-\mathsf{var}}} \leqslant C(p,\eta) \left([A]_{\mathcal{C}_{[s,u]}^{p-\mathsf{var}}(\mathcal{C}^{\eta})} + [A]_{\mathcal{C}_{[s,u]}^{p-\mathsf{var}}(\mathcal{C}^{\eta})} [x^{n}]_{\mathcal{C}_{[s,u]}^{1-\mathsf{var}}}^{\eta} + \varepsilon \right) \\ \implies [x^{n}]_{\mathcal{C}_{[s,u]}^{1-\mathsf{var}}} \leqslant C(p,\eta) \frac{[A]_{\mathcal{C}_{[s,u]}^{p-\mathsf{var}}(\mathcal{C}^{\eta})} + \varepsilon}{1 - C(p,\eta)[A]_{\mathcal{C}_{[s,u]}^{p-\mathsf{var}}(\mathcal{C}^{\eta})}}. \end{aligned}$$

Theorem (A., Richard, and Tanré 2021)

For $H < \sqrt{2} - 1$ and ϕ a nonnegative finite measure, there exists a path-by-path solution to (•). Furthermore, building on this construction, we can also construct a weak solution.

Theorem (A., Richard, and Tanré 2021)

For $H < \sqrt{2} - 1$ and ϕ a nonnegative finite measure, there exists a path-by-path solution to (•). Furthermore, building on this construction, we can also construct a weak solution.

Corollary

As a corollary of the general Theorem one gets, for a nonnegative bump function ξ and $\varepsilon > 0$, a weak solution to

$$X_t = \int_0^t |X_r|^{-3/4+\varepsilon} \xi(X_r) dr + W_t.$$

Motivation and definitions

Existence of a solution via nonlinear Young integration

Definition (Pathwise uniqueness vs. path-by-path uniqueness)

For a bounded measurable function $\phi,$ we consider

$$X_t = \int_0^t \phi(r, X_r) dr + W_t.$$

(•)

Definition (Pathwise uniqueness vs. path-by-path uniqueness)

For a bounded measurable function $\phi,$ we consider

$$X_t = \int_0^t \phi(r, X_r) dr + W_t. \tag{(\bullet)}$$

 We say that pathwise uniqueness holds if for any weak solutions X, Y defined on the same filtered probability space, X ≡ Y.

Definition (Pathwise uniqueness vs. path-by-path uniqueness)

For a bounded measurable function $\phi,$ we consider

$$X_t = \int_0^t \phi(r, X_r) dr + W_t. \tag{(\bullet)}$$

- We say that pathwise uniqueness holds if for any weak solutions X, Y defined on the same filtered probability space, X ≡ Y.
- We say that path-by-path uniqueness for (•) holds if for any probability space on which a Brownian motion W is defined, there exists a null-set N such that for ω ∉ N, there exists a unique solution to

$$X_t(\omega) = \int_0^t \phi(r, X_r(\omega)) dr + W_t(\omega).$$

path-by-path uniqueness

pathwise uniqueness

Uniqueness and counterexamples

$$X_{t} = X_{0} + \int_{0}^{t} \phi(r, X_{r}) dr + W_{t}, \quad X_{0} = x_{0} \in \mathbb{R}^{d}$$
 (•)

Theorem (Krylov and Röckner 2005)

Let $\phi \in L^q([0, T], L^p(\mathbb{R}^d))$ for $p \ge 2, q > 2$ with d/p + 2/q < 1. Then there exists a pathwise unique strong solution to (\bullet) .

Uniqueness and counterexamples

$$X_t = X_0 + \int_0^t \phi(r, X_r) dr + W_t, \quad X_0 = x_0 \in \mathbb{R}^d$$
 (•)

Theorem (Krylov and Röckner 2005)

Let $\phi \in L^q([0, T], L^p(\mathbb{R}^d))$ for $p \ge 2, q > 2$ with d/p + 2/q < 1. Then there exists a pathwise unique strong solution to (\bullet) .

Theorem (Davie 2007)

Let $\phi : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ be bounded and measurable. Then path-by-path uniqueness holds.

Uniqueness and counterexamples

$$X_t = X_0 + \int_0^t \phi(r, X_r) dr + W_t, \quad X_0 = x_0 \in \mathbb{R}^d$$
 (•)

Theorem (Krylov and Röckner 2005)

Let $\phi \in L^q([0, T], L^p(\mathbb{R}^d))$ for $p \ge 2, q > 2$ with d/p + 2/q < 1. Then there exists a pathwise unique strong solution to (\bullet) .

Theorem (Davie 2007)

Let $\phi : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ be bounded and measurable. Then path-by-path uniqueness holds.

Counterexamples (Shaposhnikov and Wresch 2020, A. 2022)

One can construct drifts $\phi : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ such that

- there is existence of path-by-path solutions to (•), but there exists no weak solution;
- there exists a pathwise unique weak solution to (•), but path-by-path uniqueness is lost.

Lukas Anzeletti

Uniqueness for unbounded functions

$$X_t = \int_0^t \phi(X_r) dr + W_t \iff \tilde{X}_t = \int_0^t \phi(\tilde{X}_r + W_r) dr \qquad (\bullet)$$

Theorem (A., ongoing work)

Let $\alpha > -1/2$ and let $\phi(x) \coloneqq \mathbb{1}_{\{x \neq 0\}} |x|^{\alpha} \xi(x)$ for a bump function ξ . Then there exists a unique path-by-path solution to equation (•).

Proof.

• Let
$$\tilde{X}^1 \neq \tilde{X}^2$$
 be solutions to (•)

- W.I.o.g. \exists time interval [s, t] on which $|\tilde{X}^1 + W| > |\tilde{X}^2 + W|$
- By monotonicity of ϕ , on [s, t], $\phi(\tilde{X}^1 + W) < \phi(\tilde{X}^2 + W)$ (if $\tilde{X}^2 + W \neq 0$)
- $\implies \tilde{X}^1 \tilde{X}^2$ is monotone on [s, t]. Finding a nonlinear Young integral equation that is solved by $\tilde{X}^1 \tilde{X}^2$, we get

$$[\tilde{X}^1 - \tilde{X}^2]_{\mathcal{C}^{1\text{-var}}_{[s,t]}} = |(\tilde{X}^1 - \tilde{X}^2)_{s,t}| \leq C(t-s)^{\gamma} [\tilde{X}^1 - \tilde{X}^2]_{\mathcal{C}^{1\text{-var}}_{[s,t]}}.$$

Solution to a nonlinear Young integral equation Solution to a nonlinear Young integral equation

- Ensure sufficient regularity of $T^{\tilde{X}^2+W}\phi$ in order to write $\tilde{X}^1 \tilde{X}^2$ as the solution to a nonlinear Young integral equation
- ⁽²⁾ Ruling out the possibility that $\tilde{X}^2 + W = 0$ on a set of positive measure to ensure that $\tilde{X}^1 \tilde{X}^2$ is actually nondecreasing on [s, t]

- Ensure sufficient regularity of $T^{\tilde{X}^2+W}\phi$ in order to write $\tilde{X}^1 \tilde{X}^2$ as the solution to a nonlinear Young integral equation
- **2** Ruling out the possibility that $\tilde{X}^2 + W = 0$ on a set of positive measure to ensure that $\tilde{X}^1 \tilde{X}^2$ is actually nondecreasing on [s, t]
- Open problem: How to ensure 2 in the fractional Brownian motion case?

- A., Lukas (2022). "Comparison of classical and path-by-path solutions to SDEs". In: arXiv: 2204.07866 [math.PR].
- A., Lukas, Alexandre Richard, and Etienne Tanré (2021). "Regularisation by fractional noise for one-dimensional differential equations with nonnegative distributional drift". In: arXiv: 2112.05685 [math.PR].
- Catellier, R. and M. Gubinelli (2016). "Averaging along irregular curves and regularisation of ODEs". In: *Stochastic Process. Appl.* 126.8, pp. 2323–2366.
- Davie, A. M. (2007). "Uniqueness of solutions of stochastic differential equations". In: *Int. Math. Res. Not. IMRN* 24, Art. ID rnm124, 26.
- Harang, Fabian Andsem and Nicolas Perkowski (2021). "C[∞]-regularization of ODEs perturbed by noise". In: Stoch. Dyn. 21.8, Paper No. 2140010, 29.
- Krylov, N. V. and M. Röckner (2005). "Strong solutions of stochastic equations with singular time dependent drift". In: *Probab. Theory Related Fields* 131.2, pp. 154–196.

Nualart, David and Youssef Ouknine (2002). "Regularization of differential equations by fractional noise". In: *Stochastic Process. Appl.* 102.1, pp. 103–116. ISSN: 0304-4149.

Shaposhnikov, A. and Lukas Wresch (2020). "Pathwise vs. path-by-path uniqueness". In: *Preprint arXiv:2001.02869*.

Questions please!