Influence des caractéristiques sociales dans les modèles épidémiques SIR

CANUM 2022

le 13 juin 2022

ANR SPACE-Covid

Encadré par Y.Mammeri et H.Le Meur (LAMFA). En collaboration avec V.Cardon, S.Thine et R.Caveng (CURAPP).

I. SIR models

- II. Metapopulation models
 - Contact matrix
 - Application to age-structured population
- III. Change of representation
 - Subdivision of population into social classes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The SIR model

Subdivision of population in 3 compartments

- Susceptibles
- Infected
- Recovered

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The SIR model

Population of size N constant.

$$\frac{dS(t)}{dt} = -S(t)F(t)$$
$$\frac{dI(t)}{dt} = S(t)F(t) - \gamma I(t)$$
$$\frac{dR(t)}{dt} = \gamma I(t)$$

with S(t) + I(t) + R(t) = N, $\forall t > 0$ and with $F(t) = \lambda \frac{I(t)}{N}$ the *infection force*. In the following, we set $\lambda = \beta k$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Basic reproduction number R_0

Assuming $S(0) \simeq N$ and I(0) = 1

$$\frac{dI(t)}{dt}\Big|_{t=0} > 0 \iff \lambda \frac{S(0)I(0)}{N} - \gamma I(0) > 0$$
(1)
$$\iff \frac{\lambda}{\gamma} > 1$$
(2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition $R_0 = \frac{\lambda}{\gamma}$

 $R_0 > 1$

・ロト・日本・日本・日本・日本・日本

New compartments

$$\frac{dS}{dt} = -SF \tag{3}$$

$$\frac{dE}{dt} = SF - \delta E \tag{4}$$

$$\frac{dI^{a}}{dt} = (1-p)\delta E - \gamma I^{a} - \mu I^{a}$$
(5)

$$\frac{dI^{s}}{dt} = p\delta E - \gamma I^{s} - \mu I^{s}$$
(6)

$$\frac{lR}{dt} = \gamma (l^a + l^s) \tag{7}$$

$$\frac{dD}{dt} = \mu(I^a + I^s) \tag{8}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Infection force: $F = \frac{\beta}{N}k(I^a + fI^s)$

Hypothesis of compartmental models

homogenous

II. Metapopulation SEIR model

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Incorporing heterogeneity : metapopulation

Subdivision of population of size N into n classes. In class i, we have

$$\frac{dS_i}{dt} = -S_i F_i \tag{9}$$

$$\frac{dE_i}{dt} = S_i F_i - \delta E_i \tag{10}$$

$$\frac{dI_i^a}{dt} = (1-p)\delta E_i - \gamma I_i^a - \mu I_i^a$$
(11)

$$\frac{dI_i^s}{dt} = p\delta E_i - \gamma I_i^s - \mu I_i^s \tag{12}$$

$$\frac{dR_i}{dt} = \gamma (I_i^a + I_i^s) \tag{13}$$

$$\frac{dD_i}{dt} = \mu_i (I_i^a + I_i^s) \tag{14}$$

Infection force:
$$F_i = \frac{\beta}{N} \sum_{j=1}^n \kappa_{ij} (I_j^a + fI_j^s)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Data available from surveys of sizes N_{samp}

B sampled raw matrix of contacts of size n × n. The coefficient b_{ij} is the total number of contacts between participants of the survey of class i and one of their contacts belonging to class j.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\pi = (\frac{N_i}{N})_{1 \le i \le n}$ relative proportions of the classes in the population.

Let k the average number of contacts

$$k_i = \frac{\sum\limits_{j=1}^n b_{ij}}{N_{samp,i}}.$$
(15)

Let C the stochastic matrix

$$c_{ij} = \frac{b_{ij}}{\sum\limits_{j=1}^{n} b_{ij}}.$$
 (16)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Let k the average number of contacts

$$k_i = \frac{\sum\limits_{j=1}^n b_{ij}}{N_{samp,i}}.$$
(15)

Let C the stochastic matrix

$$c_{ij} = \frac{b_{ij}}{\sum\limits_{j=1}^{n} b_{ij}}.$$
 (16)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

We should have

$$c_{ij}k_i\pi_i = c_{ji}k_j\pi_j, \ \forall 1 \le i,j \le n.$$
(17)

Let k the average number of contacts

$$k_i = \frac{\sum\limits_{j=1}^n b_{ij}}{N_{samp,i}}.$$
(15)

Let C the stochastic matrix

$$c_{ij} = \frac{b_{ij}}{\sum\limits_{j=1}^{n} b_{ij}}.$$
 (16)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We should have

$$c_{ij}k_i\pi_i = c_{ji}k_j\pi_j, \ \forall 1 \le i,j \le n.$$
(17)

Definition

From C, k and π , we build κ s.t. $\kappa_{ij} = \frac{c_{ji}k_j}{\pi_i}$.

Example

Subdivision into young (Y) and old (O).

$$\pi = (0.2, 0.8)$$

$$N_{samp} = 1200, N_{samp,Y} = 1000, N_{samp,O} = 200$$

$$B = \begin{pmatrix} 6000 & 4000 \\ 100 & 900 \end{pmatrix}.$$

From B, $N_{samp,Y}$ and $N_{samp,O}$ we derive

$$k = \left(\frac{10000}{N_{samp,Y}}, \frac{1000}{N_{samp,O}}\right) = (10, 5).$$
(18)

and

$$C = \begin{pmatrix} 0.6 & 0.4 \\ 0.1 & 0.9 \end{pmatrix}.$$
 (19)

We then construct κ using C, k and $\pi.$ We have

$$\kappa = \begin{pmatrix} 0.6 \times 10/0.2 & 0.1 \times 5/0.2 \\ 0.4 \times 10/0.8 & 0.9 \times 5/0.8 \end{pmatrix} = \begin{pmatrix} 30 & 2.5 \\ 5 & 5.625 \end{pmatrix}$$
(20)

Age-structured SIR - Numerical results

French contact matrix from [1]

- ▶ *N* = 65000000
- π from National Institute of Statistics and Economic Studies (https://statistiques-locales.insee.fr/)
- Infection Fatality Ratio μ from [2]

Proportion of initial infected P = 0.001 evenly distributed among the different classes.

Population is subdivided into three age groups: 0 to 17, 18 to 64 and 65 or older.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Impact of containment on R_0

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Limitation of contacts within a class

We remove a fraction ν of the contacts made by a class i_0 . To do this, we construct a *raw* contact matrix B_{ν} such that

$$b_{\nu,ij} = (1 - \nu)b_{ij}, \ \forall j, i = i_0$$
 (21)

$$b_{\nu,ij} = b_{ij}, \ \forall i, j \neq i_0.$$

Moreover, we pass from the vector of average contacts k to a vector k_{ν} such that

$$k_{\nu,i} = k_i - \nu k_i c_{i,i_0}, \ \forall i \neq i_0,$$
 (23)

$$k_{\nu,i_0} = k_{i_0}(1-\nu). \tag{24}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We then obtain from B_{ν} , k_{ν} et π a contact matrix κ_{ν} .

Containment of older

Containment of 65 and more

メロト メロト メヨト メヨト

æ

III. Change of representation : from age classes to social classes

・ロト・(型ト・(型ト・(型ト))

Social contact matrix. From σ to τ

We have B_{σ} of size $n \times n$, created from classes $(\sigma_i)_{1 \le i \le n}$. We want B_{τ} describing the contacts between classes $(\tau_i)_{1 \le i \le m}$.

Definition

Let be subdivisions $\sigma = (\sigma_i)_{1 \le i \le n}$ and $\tau = (\tau_i)_{1 \le i \le m}$ of the population.

We call change of representation matrix the matrix R of size $n \times m$ where r_{ij} is the probability that an individual of σ_i belongs to τ_j . We construct a raw contact matrix B_{τ} for the classes $(\tau_i)_{1 \le i \le m}$ in the following manner

$$B_{\tau} = R^{T} B_{\sigma} R. \tag{25}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Social contact matrix. From au to σ

Remark

Let *R* a *change of representation matrix* between classes σ and τ and π relative size of classes σ .

An application of Bayes formula gives \tilde{R} , the *change of* representation matrix from class τ to σ .

$$\tilde{r}_{ij} = \frac{r_{ji}\pi_j}{\sum\limits_{1 \le k \le n} r_{ki}\pi_k}$$
(26)

Proposition

Let R and \tilde{R} matrices of changes in representations between classes σ and τ . Let B a *raw* contact matrix. If the product $R\tilde{R}$ is irreducible and aperiodical, then the sequence $((R\tilde{R})^T B(R\tilde{R}))_n$ has a limit.

Information loss

We quantify information loss with

$$\|Id - (R\tilde{R})\|_2 \tag{27}$$

・ロト・日本・ヨト・ヨー うへの

Example - no information loss

We want to pass from (σ_1, σ_2) to (τ_1, τ_2, τ_3) . Let π the relative proportions of σ in the population. Suppose two different age classes cannot be in the same τ_i class. For example

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0.5 \end{pmatrix}.$$
 (28)

In this case, the matrix \tilde{R} allowing to pass from τ to σ is

$$\tilde{R} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}.$$
(29)

So $R\tilde{R} = I_2$ and $||I_2 - R\tilde{R}|| = 0$.

Example - loss of information

Let us suppose now that for all *i* an individual of the class σ_i has as much chance to belong to each class $\tau_j, 1 \le j \le m$. We then have $r_{ij} = \frac{1}{m}$ and

$$R\tilde{R} = \begin{pmatrix} \pi_1 & \pi_2 \\ \pi_1 & \pi_2 \end{pmatrix}.$$
 (30)

1

Hence
$$||I_2 - R\tilde{R}|| = ((1 - \pi_1)^2 + (1 - \pi_2)^2 + \pi_1^2 + \pi_2^2)^{\frac{1}{2}}$$
.
Starting with raw contact matrix B_1 and applying successive

Starting with *raw* contact matrix B_{σ} and applying successively the transformation to τ and then the transformation to σ , we obtain

$$(R\tilde{R})^{T}B_{\sigma}(R\tilde{R}) = \sum_{i,j} b_{ij} \begin{pmatrix} \pi_{1}^{2} & \pi_{1}\pi_{2} \\ \pi_{1}\pi_{2} & \pi_{2}^{2} \end{pmatrix}.$$
 (31)

Numerical results - containment of white collars

Based on 4 age classes, the population is subdivided into 5 social classes.

	0-17	18-29	White collar Blue collar		60+
0-17	1	0	0	0	0
18-29	0	1	0	0	0
30-60	0	0	0.45	0.55	0
60+	0	0	0	0	1

Table: Representation change matrix used for white collar telework

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\|Id - R\tilde{R}\|_2 = 0$$

Numerical results - containment of white collars

(日)

æ

Numerical results - Containment of the most fragile

	Very good	Good	Medium	Bad
0-15	0.50	0.40	0.08	0.02
16-29	0.50	0.40	0.08	0.02
30-49	0.30	0.47	0.18	0.05
50-74	0.13	0.47	0.32	0.08
75+	0.04	0.28	0.46	0.22

Table: Representation change matrix used for containment of the most fragile

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\|\mathit{Id} - R\tilde{R}\|_2 = 1.93$

Numerical results - Containment of the most fragile

Containment of the most fragile

(日)

æ

Parameters sensitivity

For each input x tested, we run 100 simulations. At each simulation the parameter follows a normal distribution $\mathcal{N}(x, \varepsilon)$.

(日) (四) (日) (日) (日)

Conclusion and perspectives

+ metapopulation : incorporing heterogeneity without intractabilty

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- + exploring new subdivisions of population
 - depending on the notion of contact

Conclusion and perspectives

 metapopulation : incorporing heterogeneity without intractabilty

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- + exploring new subdivisions of population
 - depending on the notion of contact
- reinfection
- mutation
- \blacktriangleright time dependance of κ
- sanitary measures

Merci de votre attention.

 G. Béraud, S. Kazmercziak, P. Beutels, D. Levy-Bruhl, X. Lenne, N. Mielcarek, Y. Yazdanpanah, P.-Y. Boëlle, N. Hens, and B. Dervaux.

The french connection: the first large population-based contact survey in france relevant for the spread of infectious diseases. *PloS one*, 10(7):e0133203, 2015.

 R. J. D. Sorensen, R. M. Barber, D. M. Pigott, A. Carter, C. N. Spencer, S. M. Ostroff, R. R. C, C. Abbafati, C. Adolph, and A. Allorant.

Variation in the covid-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis.

```
The Lancet, 399:1469-88, 2022.
```

Closure of schools

Based on 7 age classes, the population is subdivided into 6 social classes.

Scenario	Relative	Number of	Epidemic	Peak	Number
	size	contacts	size		of Death
Kindergarten	0.03	10.1			
Elementary	0.06	10.8			
Middle school	0.06	12.8			
High school	0.03	14.3			
University	0.08	10			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Table: Decrease (within the total population) of the various indicators between a simulation without contact limitation and a maximum limitation according to the chosen scenario

Closure of schools

Based on 7 age classes, the population is subdivided into 6 social classes.

Scenario	Relative	Number of	Epidemic	Peak	Number
	size	contacts	size		of Death
Kindergarten	0.03	10.1	0.06	0.08	0.03
Elementary	0.06	10.8	0.11	0.16	0.07
College	0.06	12.8	0.12	0.24	0.07
High school	0.03	14.3	0.08	0.16	0.05
University	0.08	10	0.16	0.27	0.12

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Table: Decrease (within the total population) of the various indicators between a simulation without contact limitation and a maximum limitation according to the chosen scenario

Containment of juvenils

(日)

æ

Limitation of youngs and olders

 $\nu=$ 0.25 of removed contacts within total population We remove in Youngs and Old

(日)

э

Isolation Youngs and 65 and more

Limitation of youngs and olders

 $\nu=$ 0.25 of removed contacts within total population We remove in Youngs and Old

1e6 1.0 3.0 8 0-17 Epidemic size 0.6 0.4 0.2 2.5 18-64 6 2.0 65+ Death Part Part Part Total 1.0 2 0.5 0.0 -0.0 0 -0.0 0.5 0.0 0.5 1.0 0.0 0.5 1.0 1.0 v_{α} v_{α} va

Isolation Youngs and 65 and more

▲ロト ▲御 ト ▲ ヨト ▲ ヨト ― ヨー 釣ん()