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Presentation of the system

In this work, we consider a diagonal hyperpolic system of
transport equations given by:

∂tv
α + λα(v)∂xv

α = 0 on (0,+∞)× R, for α = 1, . . . , d,

vα(0, x) = vα0 (x) x ∈ R, for α = 1, . . . , d,

where v(t, x) = (vα(t, x))α=1,...,d, with d ≥ 1 is an integer.
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Conditions on the velocity and the initial data

The velocity is assumed to verify the following regularity:

(K1)


λα ∈ C1(Rd), for α = 1, . . . , d,

there exists M1 > 0 such that for α = 1, . . . , d,
|λα(u)− λα(v)| ≤M1|u− v| for all u, v ∈ Rd.

The initial data is assumed to satisfy the following property:

(K2)


−Mα ≤ vα0 ≤Mα, where Mα > 0

vα0 is nondecreasing,

∂xv
α
0 ∈ L∞(R).

∣∣∣∣∣∣∣∣∣∣
for α = 1, . . . , d.
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Conditions on the velocity

(Nonnegative matrices with nonpositive off-diagonal terms)

(A1)


λ
α
,β(v) ≤ 0 for all v ∈ U and α 6= β with α, β ∈ {1, . . . , d},

Aα,β = inf
v∈U

(
λ
α
,β(v)

)
and

∑
α,β=1,...,d

Aα,βξαξβ ≥ 0 for every ξ = (ξ1, . . . , ξd) ∈ [0,+∞)
d
.

(Diagonally dominant)

(A2) λα,α(v) ≥
∑
α6=β

(λα,β(v))− for all v ∈ U and α = 1, ..., d,

where we note x− = max(0,−x) and

U =

d∏
α=1

[−Mα,Mα].
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Recall of useful results

Theorem (Existence and uniqueness)

Assume that (K1) and (K2) are satisfied. Suppose also that one of
the assumptions (A1) or (A2) is verified. Then, there exists a unique

nondecreasing function v ∈
⋂
T>0

[W 1,∞([0, T )× R)]d solution of the

given system, in distributional sense. Moreover we have for any
t ∈ (0,+∞):∑
α=1,..,d

‖∂xvα(t, ·)‖L∞(R) ≤
∑

α=1,..,d

‖∂xvα0 ‖L∞(R) if (A1) holds,

max
α=1,..,d

‖∂xvα(t, ·)‖L∞(R) ≤ max
α=1,..,d

‖∂xvα0 ‖L∞(R) if (A2) holds.

Uniqueness results for diagonal hyperbolic systems with large and

monotone data (El Hajj, Monneau, Journal of Hyperbolic Differential

Equations-2013)
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The implicit scheme

In order to find a solution which preserves the Lipschitz
estimate, we discretize the system by finite difference implicit
scheme as follows:

∀α ∈ {1, ..., d},



u
α,n+1
i − uα,ni

∆t
+ λ

α
(u
n+1
i )

uα,n+1
i+1 − uα,n+1

i

∆x

 = 0 if λα(un+1
i ) ≤ 0,

u
α,n+1
i − uα,ni

∆t
+ λ

α
(u
n+1
i )

uα,n+1
i − uα,n+1

i−1

∆x

 = 0 if λα(un+1
i ) ≥ 0,

u
α,0
i = uα0 (xi).

In a more compact form, this can be written as follows:


u
α,n+1
i − uα,ni

∆t
−
(
λ
α,n+1
i

)
−

uα,n+1
i+1 − uα,n+1

i

∆x

 +
(
λ
α,n+1
i

)
+

uα,n+1
i − uα,n+1

i−1

∆x

 = 0

u
α,0
i = uα0 (xi).
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Resolution of the scheme

Theorem (Boudjerada, El Hajj, Oussaily (2020))

Assume that assumptions (K1), (K2) and a CFL condition are
satisfied. Let |uα,ni | ≤Mα be given. Then, we get
(i) (Existence)
There exists a unique solution |uα,n+1

i | ≤Mα to the implicit
scheme.
(ii) (Monotonicity)
Moreover if uα,ni is nondecreasing, i.e. satisfies

uα,ni+1 ≥ u
α,n
i for all i ∈ Z, and α = 1, . . . , d,

then uα,n+1
i is also nondecreasing.
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Discrete estimate

Theorem (Boudjerada, El Hajj, Oussaily (2020))

Under the same assumptions considered before and supposing that
(A1) or (A2) is verified, if uα,ni is the solution of the implicit scheme,
then, θα,n

i+ 1
2

is nonnegative for all n ∈ N and verifies the following

estimates:

d∑
α=1

sup
i∈Z

θα,n
i+ 1

2

≤
d∑

α=1

sup
i∈Z

θα,0
i+ 1

2

, if (A1) holds,

max
α=1,...,d

(
sup
i∈Z

θα,n
i+ 1

2

)
≤ max
α=1,...,d

(
sup
i∈Z

θα,0
i+ 1

2

)
, if (A2) holds.

where θα,n
i+ 1

2

=
uα,ni+1 − u

α,n
i

∆x
.
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Convergence to the continuous solution

Theorem (Boudjerada, El Hajj, Oussaily (2020))

Under the same assumptions, let us consider the solution uα,ni of the
scheme given by the existence theorem. Let us call ε = (∆t,∆x) and
uε,α the function defined by

uε,α(n∆t, i∆x) = uα,ni for n ∈ N, i ∈ Z.

Then, as ε goes to zero, the whole sequence (uε,α)ε converges to the
unique Lipschitz solution vα of the continuous problem. Moreover, for
any compact K ⊂ [0,+∞)× R, we have

sup
K∩((∆tN)×(∆xZ))

α=1,...,d

|uε,α − vα| −→ 0 as ε −→ (0, 0).
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Our work with respect to the literature

(Monneau, Monasse (2014)): Convergence result of a
semi-explicit scheme for diagonal non-conservative
hyperbolic system assuming it strictly hyperbolic. This
result was established in a restricted class of solutions
defined by vanishing viscosity solutions.

(El Hajj, Forcadel (2008)): Convergence result of an
explicit scheme to the Lipschitz continuous solution for a
particular (2× 2) Hamilton-Jacobi system was proved in
the framework of dislocation densities.
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Usefull definitions for the proof of the existence

U =

d∏
α=1

[−Mα,Mα]

uni = (uα,ni )α=1,...,d, u
n = (uni )i∈Z

un ∈ UZ if uni ∈ U , for all i ∈ Z

Define on UZ the function Funi =
(
Fαuni

)
α=1,...,d

such that

F
α
un
i

(w) = u
α,n
i +

∆t

∆x

(
(λ
α

(wi))−
(
w
α
i+1 − w

α
i

)
− (λ

α
(wi))+

(
w
α
i − w

α
i−1

))
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Fixed point argument

The scheme is written as: uα,n+1
i = Fαuni

(un+1)

Funi is well-defined contraction on UZ

Fixed point argument implies the existence and uniqueness
of solution of the scheme in UZ
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Preliminaries

Evolution of the discrete gradient

θα,n+1

i+ 1
2

= θα,n
i+ 1

2

− ∆t

∆x

[
(λα,n+1
i+1 )+ + (λα,n+1

i )−

]
θα,n+1

i+ 1
2

+
∆t

∆x
(λα,n+1
i+1 )−θ

α,n+1

i+ 3
2

+
∆t

∆x
(λα,n+1
i )+θ

α,n+1

i− 1
2

The key inequality

θα,n+1

jα+ 1
2

= max
i∈Z

θα,n+1

i+ 1
2

≤ max
i∈Z

θα,n
i+ 1

2

− ∆t

∆x

(
λα,n+1
jα+1 − λ

α,n+1
jα

)
θα,n+1

jα+ 1
2
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Proof of the discrete Lipschitz estimate

max
α=1,...,d

[
max
i∈Z

(
θα,n+1

i+ 1
2

)]
= θα0,n+1

jα0
+ 1

2

≤ max
α=1,...,d

[
max
i∈Z

(
θα,n
i+ 1

2

)]
− ∆t

∆x

(
λα0,n+1
jα0

+1 − λ
α0,n+1
jα0

)
θα0,n+1

jα0
+ 1

2

Use (A2) to prove that

−∆t

∆x

(
λα0,n+1
jα0+1 − λ

α0,n+1
jα0

)
θα0,n+1

jα0+ 1
2

≤ 0.
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Construction of the discrete solution uε

The Q1 extension uε

uε(t, x) =

(
t− tn

∆t

){(
x− xi

∆x

)
un+1
i+1 +

(
1−

x− xi
∆x

)
un+1
i

}

+

(
1−

t− tn
∆t

){(
x− xi

∆x

)
uni+1 +

(
1−

x− xi
∆x

)
uni

}
.

Estimates on uε

‖uε,α‖L∞([0,T ]×R) ≤Mα

‖∂xuε,α‖L∞([0,T ]×R) ≤ G(T, ‖∂xu0‖(L∞(R))d)

‖∂tuε,α‖L∞([0,T ]×R) ≤ 2ΛαG
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Proof of the convergence of the discrete solution

Extraction of a subsequence uε,α that converges to uα

Passing to the limit in the PDE in distributional sense

Showing that uα verifies ∂tu
α + λα(u)∂xu

α = 0

Convergence of the whole sequence based on the
uniqueness of solution in the continuous case.
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Numerical solution for system modeling dislocations

Considering a one-dimensional model describing the dynamics
of dislocations given by ∂tu

1(t, x) = −
(
(u1 − u2)(t, x)

)
∂xu

1(t, x) in (0, T )× R,

∂tu
2(t, x) =

(
(u1 − u2)(t, x)

)
∂xu

2(t, x) in (0, T )× R.

We calculate the numerical solution of the previous system
taking the following initial data:

u1(0, x) =
1

2π
sin (2πx) + x, u2(0, x) = − 1

2π
sin (2πx) + x, ∀x ∈ R.
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Behavior of the viscoplasticity

We simulate below the long-time behavior of the function
(u1 − u2), which reflects the viscoplastic deformation.

Figure 1: Evolution of u1 − u2 over time.
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Work to be started

Establish the error estimate between the numerical solution
and the continuous one.

Numerical study in the case where the solutions are
continuous, inspired by the work of Monneau, Monasse
(2014).

Proposing numerical schemes in the case of BV solutions.
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Thank you for your attention !
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