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I - Additive Manufacturing (a.k.a. 3-d printing)

Structures built layer by layer

No topological constraints on the built structures
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Additive manufacturing

Various materials: plastic, polymer, metal, ceramic...

We focus on metallic additive manufacturing

Various processes: wire, direct energy deposition (DED), layer
by layer...

We focus on powder bed techniques
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Metallic additive manufacturing

Metallic powder melted by a laser or an electron beam.
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Metallic additive manufacturing

G. Allaire, et al. Topology optimization and additive manufacturing



AddUp machine at LURPA (thanks to C. Tournier)

G. Allaire, et al. Topology optimization and additive manufacturing



Additive manufacturing

Very different from classical techniques (molding, milling)

No topological constraints on the built structures

Very complicated structures: new applications, new designs

Possible failures: new constraints !
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Some failures of additive manufacturing...

Thermal stresses and deformations:
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Other failure: overhang limitation

The angle between the structural boundary and the build direction
has an impact on the quality of the processed shape.
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Constraints in Additive Manufacturing

Constraints are required to avoid failures in the fabrication process.
Two typical constraints:

avoid overhangs or almost horizontal surfaces (which cannot
be built),

avoid thermal deformations or thermal residual stresses
which are caused by the high temperatures due to metal
melting.

There are other constraints, not discussed here.
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II - The role of supports

Two constraints related to the fabrication process:

almost horizontal overhang surfaces cannot be realized directly

thermal residual stresses and thermal deformations

Supports can help:

they support inclined surfaces

they fix the shape to the baseplate
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Example 1 of supports

Supports can be full material or a lattice (perforated) material.
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Example 2 of supports

The interface between supports and the part to built can be
pre-cut (courtesy of M. Bihr, Safran).
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Example 3 of supports

The supports can have a tree structure (Magics R©).
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Self-supported structures

Supports have an additional cost and are not easy to remove.

Why not avoiding supports by optimizing the structure to be
self-supported ?

Compliance-optimal MBB beam

Self-supported-optimal MBB beam

Allaire et al., JCP 351, 295-328 (2017).

Unfortunately, sometimes the design is not allowed to be changed
to make it self-supported.
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III - Optimal supports for overhang constraint

design domain D (here, a rectangle)
given structure ω ⊂ D (in red) to be printed and not
optimizable
supports S ⊂ D (in blue) to be optimized
mechanical model in Ω = ω ∪ S
objective function to mitigate overhangs

G. Allaire, et al. Topology optimization and additive manufacturing



Bibliography on support optimization

Many works !
Allaire et al., C. R. Math. Acad. Sci. Paris (2017), Cacace et al.,
Appl. Math. Model. (2017), Calignano, Materials & Design
(2014), Dumas et al., ACM Trans. Graph. (2014), Gaynor and
Guest, SMO (2016), Hu et al., Computer-Aided Design (2015),
Kuo et al., SMO (2018), Langelaar, Additive Manufacturing
(2016), Leary et al., Materials & Design (2014), Mirzendehdel and
Suresh, Computer-Aided Design (2016), Qian, J. Num. Meth.
Eng. (2017), Strano et al., Int. J. Adv. Manufact. Techn. (2013),
Vanek et al., Computer Graphics Forum (2014), etc.

Allaire, Bogosel, Optimizing supports for additive manufacturing,
SMO (2018).
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Shape and topology optimization

Typical formulation

Minimize J(S),

where J(S) is related to the rigidity of the total shape Ω = S ∪ ω.

the structure ω is fixed and only the support S is optimizable

the state equation is posed in the union S ∪ ω
the material parameters may be different in ω and S

Forces: model the ”instability” of inclined regions

Volume constraint for the support Vol(S)
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State equation: linearized elasticity

Pseudo-gravity loads, parallel to the build direction, in ω and S :
− div σ = g(ρωχω + ρSχS) Ω = ω ∪ S

σ = 2µe(u) + λ div u Id Ω
e(u) = 1

2 (∇u +∇tu) Ω
u = 0 ΓD

σ.n = 0 ΓN

Compliance minimization:

J(S) =

∫
ω∪S

g(ρωχω + ρSχS) · u

where χω and χS are the characteristic functions of ω and S .
Typically ρS = 0.
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Shape derivative

Hadamard setting: the support S is perturbed by a vector field
θ ∈W 1,∞(Rd ,Rd)

θ 7→ Sθ := (Id + θ)(S) = {x + θ(x) : x ∈ S}

Because S is restricted to belong to D \ ω, the set of admissible
deformations is defined as

Θad =
{
θ ∈W 1,∞(D,Rd) : ‖θ‖W 1,∞ < 1, θ · n = 0 on ∂D ∪ ∂ω

}
.

Definition. A function J(S) is shape differentiable if the map
θ ∈ Θad 7→ J(Sθ) is Fréchet-differentiable at 0

J(Sθ) = J(S) + J ′(S)(θ) + o(θ), with lim
θ→0

|o(θ)|
‖θ‖W 1,∞

= 0.
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Shape derivative and numerical method

Theorem. The compliance J(S) is shape differentiable and its
derivative is

J ′(S)(θ) =

∫
∂S\∂ω

(−Ae(u) · e(u) + 2ρg · u) θ · n ds

Numerical method (very classical by now):

the support S is represented by a level set function

the shape derivative is used for advecting the level set

an augmented Lagrangian algorithm allows to take into
account constraints
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MBB beam in 2D (supports in grey)
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MBB beam in 3D

Rotation
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Chair in 3D

Rotation Optimization
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Layer by layer modeling

For a final shape Ω = ω ∪ S , define intermediate shapes Ωi of
increasing height hi

Ωi = {x ∈ Ω such that xd ≤ hi} 1 ≤ i ≤ n.
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Multi-layer optimization

Since the fabrication process operates layer by layer, optimize
layer by layer !

Idea already used in previous works (here, we follow G. Allaire
et al., CRAS 2017).

Minimize the sum of compliances of all intermediate shapes
Ωi .

Better modeling but higher computational cost
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Multi-layer optimization

Since the fabrication process operates layer by layer, optimize
layer by layer !

Idea already used in previous works (here, we follow G. Allaire
et al., CRAS 2017).

Minimize the sum of compliances of all intermediate shapes
Ωi .

Better modeling but higher computational cost

Init.

10 Slices

50 Slices
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3D chair, layer by layer

5 and 10 slices
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Simultaneous optimization: structure and support

at every iteration we solve two state equations : one for the
final loads on the structure ω alone and another for the
building loads on the supported structure S ∪ ω
evolve the two shapes simultaneously using two level set
functions for the parametrization

different shape derivatives on ∂ω \ S , ∂S \ ω and ∂ω ∩ ∂S

The MBB example: video
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IV - Optimal supports for thermal deformation

We now optimize supports to minimize thermal deformations or
stresses.

It requires a thermo-mechanical model. For example:

thermo-elasticity and heat equation (not discussed here),

inherent strain model.

Sketch of the layer deformation, which can stop the layer
deposition, because of thermal retraction upon cooling.
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Thermal retraction

Geometry of T-shape (left), vertical displacement (right) induced
by the fabrication process (simulation of a thermo-elastic model).
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Inherent strain model

A well-known model for welding process. No heat equation !

The thermal effects are encoded in a given inherent strain tensor ε∗.

Solve the standard quasi-static elasticity equations with a stress
tensor defined by

σ = σel + σinh with σel = Ae(u) and σinh = Aε∗.

The inherent strain tensor is calibrated by an inverse problem on a
test case. Typically

ε∗ =

 −0.0001 0 0
0 −0.0001 0
0 0 0
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Layer by layer process

Layer by layer construction of the part ω in the build chamber D.

M. Bihr, G. Allaire, X. Betbeder-Lauque, B. Bogosel, F. Bordeu, J.
Querois, Part and supports optimization in metal powder bed
additive manufacturing using simplified process simulation,
CMAME 395, 114975 (2022).
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Layer by layer inherent strain model

The supported structure Ω = ω ∪ S is divided into M layers, and
each intermediate shape is built from the first i layers such that
Ωi = Ω ∩ Di . The model is

−div(σi ) = 0 in Ωi ,

σi = A
(
e(ui ) + ε∗Li

)
with ε∗Li (x) = ε∗χLi (x),

σin = 0 on ΓNi
,

ui = 0 on ΓD ∩ ∂Ωi .

We consider a criterion

J(S) =
M∑
i=1

∫
Ωi

j(ui )dx with j(ui ) = |max(0, ui · ed)|2χLi .

The optimization problem is

min
S⊂D\ω

J(S)

such that |S | = |S0|,
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Shape derivative

Introduce an adjoint state pi solution of −div(Ae(pi )) = −j ′(ui ) in Ωi ,
(Ae(pi ))n = 0 on ΓNi

,
pi = 0 on ΓD .

Proposition. The shape derivative in the direction of the vector
field θ ∈W 1,∞(D,Rd) is given by

J ′(S)(θ) =
M∑
i=1

∫
∂S∩Di

θ · n
(
j(ui ) + A

(
e(ui ) + ε∗Li

)
: e(pi )

)
ds.

Proof. Introducing the Lagrangian

L(Ω, {ui}, {pi}) =
M∑
i=1

∫
Ωi

j(ui ) dx+
M∑
i=1

∫
Ωi

A
(
e(ui ) + ε∗Li

)
: e(pi ) dx

and differentiating L with respect to all the variables give the
desired result.
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Structure to be built

Fixed part ω to build (left) and associated vertical displacements
predicted by the inherent strain model (right).
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Optimal design

Supports S in blue: initial ones (left) and optimized ones (right)
for the fixed part ω in red.
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Convergence history

Convergence history for the objective function J(S) (red) and the
volume |S | (green).
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Experimental validation (with SAFRAN)

Comparison of deformations for an optimized and a non-optimized
structure. Calibration of the inherent strain model.
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V - Supports with imperfect bonding

The interface between supports and the built part is made fragile.

In practice, it is not possible to mesh the fine details at the
interface between the built structure and its supports. All the
more, for optimization purposes...

Therefore, the tree structure or the dotted line of holes for ease of
separation are modeled through an imperfect interface.
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Model of an imperfect interface

An interface Γ separates the built structure ω from its support S .

The interface Γ is imperfect, meaning that the displacement is
discontinuous through Γ and the normal stress is continuous,
proportional to the displacement jump.
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Linear elasticity with an imperfect interface

For a smooth applied load F , the displacement u is the solution of

−div σ(u) = F in ω and in S ,

u = 0 on ΓD ,

σ(u)n = 0 on ΓN ,

[σ(u)ν] = 0 on Γ = ∂S ∩ ∂ω
[u] = −Rσ(u) · ν on Γ = ∂S ∩ ∂ω,

with σ(u) = Ae(u) = 2µe(u) + λdiv u Id , e(u) = 1
2 (∇u +∇tu),

the jump [f ] = fω − fS , ν = nω the normal to Γ.
The matrix R is the compliance (inverse of rigidity) of the interface

R = α(Id − ν ⊗ ν) + βν ⊗ ν,

where α, β > 0 are the tangential and normal compliances.
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Variational formulation with an imperfect interface

Denote by uω and uS the restriction of the displacement u in ω
and S . Define the broken Sobolev space

X0 :=
{
u ∈ L2(Ω)d : uS ∈ H1(S)d , uω ∈ H1(ω)d , u = 0 on ΓD

}
.

Find u ∈ X0 such that, for any v ∈ X0∫
ω
σ(uω) : e(vω) dx +

∫
S
σ(uS) : e(vS) dx +

∫
Γ
R−1[u] · [v ] ds

=

∫
ω∪S

F · v dx ,

where e(u) =
1

2

(
∇u +∇uT

)
is the strain tensor and the stress

tensor is σ(u) = Ae(u) = 2µe(u) + λ div u Id .
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Optimization of mechanical supports for additive
manufacturing

We consider the system of linearized elasticity for ω and S :

the built structure ω (in red) is fixed,

the support S (in blue) is optimized,

the interface Γ = ∂S ∩ ∂ω is imperfect.

Geometrical setting:

by definition, the interface Γ is constrained to belong to ∂ω.

the interface Γ is moving tangentially on ∂ω,

the material parameters between ω and S are often the same.
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Optimization problem

The shape optimization problem is the compliance minimization

inf
S∈Uad

J(S) =

∫
ω∪S

F · u dx ,

where the set of admissible supports is typically

Uad =

{
S ⊂ D \ ω open set such that

∫
S
dx = V0

}
,

where D ⊂ Rd is given and V0 is a prescribed volume.

Reference: G. Allaire, B. Bogosel, M. Godoy, Topology
optimization of supports with imperfect bonding in additive
manufacturing, HAL preprint: hal-03538224 (2022).
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Shape derivative

Theorem. Assume θ · n = 0 on Γ = ∂S ∩ ∂ω. The shape
derivative of the compliance is given by

J ′(S)(θ) =

∫
∂S\∂ω

(−Ae(u) · e(u) + 2F · u) θ · n ds

−
∫
∂Γ

R−1[u] · [u]θ · τ dl

where τ is the tangent vector to ∂ω, normal to Γ, and dl is the
(d − 2) dimensional measure along ∂Γ.

Remark. Only the second term is caused by the varying imperfect
interface.
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Proof of the shape derivative

Lemma.
Assume that Γ is a smooth surface (of co-dimension 1) in Rd and
g ∈ H2(Rd) is a given function. For any θ ∈W 1,∞(Rd ,Rd) the
shape derivative of

J(Γ) =

∫
Γ
g ds

is

〈J ′(Γ), θ〉 =

∫
Γ

(
∂g

∂ν
+ gκ

)
θ · ν ds +

∫
∂Γ

g θ · τ dl ,

where ν is the unit exterior normal vector to Γ, κ is the mean
curvature, τ is the unit tangent vector to Γ such that τ is normal
to both ∂Γ and ν, and dl is the (d − 2) dimensional measure along
∂Γ.
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M-structure (standard test case)

The structure and supports are fixed on the bottom side. The
force is gravity with the same material density.

The ‘M-part’ (light blue) and its support initialization (dark blue).
The domain is D = [−1.6, 1.6]2 and V (ω) = 3.6. The objective
volume for S is Vsup = 1.0
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Optimal supports for the M-structure

Optimized supports for α = β = 0.001 (left), α = β = 20 (center)
and α = β = 50 (right). Perfect interface recovered for small α, β.
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Tangentially weak interface

Optimized supports for α = β = 0.001 (left), α = 20, β = 10
(center) and α = 50, β = 10 (right).
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Normally weak interface

Optimized supports for α = β = 0.001 (left), α = 10, β = 20
(center) and α = 10, β = 50 (right).
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Triangular structure

Supports can be attached to any side, except the upper one.

α = β = 0.001 (upper left), α = β = 50 (upper right),
α = 10, β = 50 (lower left) and α = 50, β = 10 (lower right).
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3D table

weak interface α = β = 400
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3D table (ctd.)

normally weak interface α = 1 and β = 100
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VI - Conclusions and perspectives

Many opportunities for topology optimization in the context of
additive manufacturing !

Many variants of the objective and of the constraints (B.
Bogosel).

Accessibility of supports for their removal (M. Bihr).

Lattice materials (P. Geoffroy-Donders, O. Pantz).

Laser path optimization (M. Boissier, C. Tournier).

Material anisotropy optimization (A. Touiti, F. Jouve).
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