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N
What | will talk about

Consider
—Aug =f in Q, (1)
Ovug + B(x)ug =0  on OQ
and a function
J: B /J (X7 Ug) or / j(x, u?)
Q o
[ —— | —
Distributed criterion Boundary criterion
Consider
B::{ﬁ:ogﬁgla.e. onBQ,/ B:Vg}.
o0
We want to understand the qualitative properties of
max J(3). (PRob)

peB
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N
What do we want?

@ There are two constraints on 3: an equality (L') and an inequality (L°).
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N
What do we want?

@ There are two constraints on 3: an equality (L') and an inequality (L°).

@ Naturally:
Do optimal 3* saturate the L°° constraints?

© In other words, if 3* is optimal, do we have
B* =1, for some measurable [ C Q7

Such functions are called bang-bang functions.
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-
Why do we want it?

@ Natural question in optimisation: are optimisers extreme points of the admissible set?

1 . . .
CF. Kao-Lou-Yanagida, Lamboley-Laurain-Nadin-Privat, Berestycki-Hamel-Roques...
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Why do we want it?

@ Natural question in optimisation: are optimisers extreme points of the admissible set?

@ Corresponds to the optimal design of the border of a natural habitat in mathematical
biology?.

© From a pure "shape optimisation” point of view: approximation of a mixed boundary
condition optimisation problem.

1
CF. Kao-Lou-Yanagida, Lamboley-Laurain-Nadin-Privat, Berestycki-Hamel-Roques...
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(PRrob) as an approximation of a shape. opt. problem

For any ' C 09, |I'| = Vg let vr be the solution of

—Avy=1f inQ,
Ouvr =0 on OO\l (2)
vr =0 onl
and solve
sup J(F) = / j(X, Vr). (PShape)
rcoQ,|r=w Q or 09
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(PRrob) as an approximation of a shape. opt. problem

—Avr=f inQ, .
—Au. =fF in Q
0, =0 OQ\I, ’ 2
=0 on OQ\T, ~ {MENFUS e @)
vr=0 onTl €
and solve
sup J(r) = / J(x,vp). [~ sup / J(x,ug) 3)
rcoQ,|ri=v Q or 9Q [ B=V% 7o§5§% Q or 90

It should be noted that the convergence of ue to vr can be proved rigorously. We hope the
second problem is easier.
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(PRrob) as a relevant problem on its own

Several recent contributions to the study of Robin optimal control problems in different
directions:

@ A shape optimisation approach: 3 is a fixed constant, find the best Q to optimise a
criterion. (Bossel, Daners, Della Pietra-Gavitone for (an)isotropic Faber-Krahn
inequalities, Alvino-Nitsch-Trombetti for Talenti inequalities,
Bucur-Nahon-Nitsch-Trombetti for thermal insulation problems...)

@ Optimising 8 = (x): Homberg-Krumbiegel-Rehberg, Lenhart-Protopopescu-Yong for the
optimisation of tracking-type functionals in parabolic models.

© A closely related problem: Bucur-Buttazzo-Nitsch (x2). Instead of optimising 3 optimise
v = v(x) with

Y(x)0ywy + wy = 0.

While similar, this problem belongs more to the "homogenisation” class of problems than
to the present " potential optimisation” context.

In many of the references above, energetic criteria are considered. Our goal here is to study
non-energetic criteria.
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Our main result

B::{OSBSI,/mﬁ:Vo}.

—Aug =f in Q,

P
Opug + Bug =0 on 0Q. (Prob)

max J(8 :/ j(x, ug) subject to
max (8) QOrm( )
Theorem (M. Privat, 2022, Submitted)

Assume that f > 0 and that
9j
ou

Then any solution of (Preb) is a bang-bang function:

(x,+) > 0 on (0; +00).

B* = 1« for some [* C 09Q.

Note that we do not require any form of convexity a priori, merely the monotonicity of j.
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How would we tackle the shape optimisation problem?

Let's focus on

“Av=f inQ,
sup J(r):= / J(x,vr) subject to ¢ 8,vr =0 on OQ\l,
rcoqQ,|r=v Q or 9 _
vr =0 on 99Q.

A typical tool we could think of is the Buttazzo-DalMaso theorem:

Monotonicity of J for the inclusion+Regularity = Existence of an optimal shape.
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How would we tackle the shape optimisation problem?

In [M. Nadin, Privat, Comm. in PDEs,2022] we observed that the same holds true for bilinear
control problems:

max K(m) := /j(x7 Um) subject to — Aum = mum + F(x, um).
0<m<1 ,fQ m=mg Q

We showed that

(m < m' = K(m) < K(m')) = any optimal m* is bang-bang: m* = 1.

The tools are however completely different.
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Proof (1): first-order derivative of the criterion

We work with J = [, j(ug) (the idea is the same with j(x, u) and Q). The existence is
immediate. We use optimality conditions; we differentiate the equation with respect to 5.
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Proof (1): first-order derivative of the criterion

Consider 3, h and compute the derivative of 3+ ug in the direction h. Let us write

:_ BUB [h]

i Aug =f Aug =0
ap 8VU5+,BU5 =0 8yl)5+ﬁl-l/3 = —hug.
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Proof (1): first-order derivative of the criterion

Consider 3, h and compute the derivative of 3+ ug in the direction h. Let us write
i Odug
ug = O—[h]
B

2 —Aug =f —Aidg =0
0B | Ovug + Bug =0 Oytig + Bug = —hug.

1(8) = /@ NOEYCOLE /8 s ().
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Proof (1): first-order derivative of the criterion

Consider 3, h and compute the derivative of 3+ ug in the direction h. Let us write

:7 8UB [h]

i Aug =f - Aug =0
ap 8Vu5+,3u5 =0 (r‘)yl'lg-l-ﬁl-lg:—hug.
10 = [ itus) - J@ = [ s (ws).

Introduce the adjoint state pg solution of

_Apﬁ =0 .
. As j' > 0 we have pg > 0. (4)
{aupﬁ +Bpg = j'(up)-

Multiplying the equation on iz and integrating by parts we obtain

JB)H = — /m h(usps) = — /BQ hos.
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Proof (1): first-order derivative of the criterion

J(B)[H] = 7/6Q h(usps) = f/aQ hos with &5 > 0.

If B* is optimal and if by contradiction w* = {0 < * < 1} has positive measure the following
holds: for any h € L°°(9R) that is supported in w*

J(8*)[h] = 0.

We now analyse the second-order derivative of J to obtain a contradiction.
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Proof (I1): second-order derivative

Keep on differentiating: we have

—AUB =0 - 7] -’
2iip = 0 L and SO = [+ [ s ()
{8yu5 + Biig = —2hig a0 s s N & s
and
—Apsz =0
Ovpg + Bpg = Jj'(ug).
Thus

J@)th b ==2 [ hisps + [ (ua)id
o0 N
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Proof (I1): second-order derivative

J(8)ih, b = —2 /@Q hiigps + /aﬂj”(u@)u%.

But now recall that

_hzayﬂﬁ+ﬁl'15:>
ug
72/ hu5p5—/ —/3 u)+2,8u)
0 o, 5 5
=g

Using

7/ZA\UB+/\UBAZ=/‘ (Bl,z)\liﬁf/ ((91,\1’5)2
Q Q [o19] onN

with z = ﬂ% (AZ = 2‘VL'15‘2 + 2[15AL'IB) we obtain (Some steps are omitted)

72/ hiigpg :2/ W5 |Vig|? 7/(A\I13)[1§ +/ Ws i
o0 Q Q o0

for an L°° potential W;.
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Proof (I1l): more second-order derivative

Adding the missing terms we get

J(B)[h, h) = 2/Qw,3|vu5|2 —/Q(Awﬁ)u-g +/aQ Wi

We already observed that
infpﬁ >0— inf\UB > 0.

After some technical steps we obtain the estimate

J(B)[h, H] ZA/ Vil — B/ i - c/ 2.
JQ Q o0

To obtain that w* = {0 < 8* < 1} has measure zero, argue by contradiction. Then we need to
exhibit one perturbation h located in w* such that

/|Vug|2 >>/ L':?,+/ i3
Q Q an
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Proof (IV): [, |Vig

2> o005

Back to the analysis of a linear problem: find h located in w* such that

—Au=0
d Vig|? / 2.
{8,,0+Bu — by an /Q| ugl® > oo ug

Introduce the set of eigenfunctions

_AV, =0
WV + BV = N Wy,
JoqVi=1

If —hu writes
oo
—hu = Z a, WV
k=K

then

[e9) S 2 2
. A .12 w2 — Tk T _ 2
U_ZXW@AMW%Hw,zx>Zg,&U

k=K k>K k>K
and we are done!
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But how to find such an h?

But how to find h such that

oo
—hu = Z ak\Uk?
k=K

This amounts to finding h supported in w* such that
—hu € Ny ker(Ty), Tj o L2(w*) D f — / fu;.
- on

But this is just intersecting a finite number of hyperplanes in an infinite dimensional space.
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Proof (V): [o [Vig|* > [ i3

Back to the analysis of a linear problem: find h located in w* such that

—AG=0
d [ [VigP /'2.
{8,,L7+Bl}_—hu an /Q| Gsl” > |, %

Argue by contradiction: imagine there is a constant C such that
2 V12 -2
VheL (w*),/ [Vig|® < C/ ug.
Q Q
L2(w*) is infinite dimensional. Then consider the set

X :={dg,hcl®w)}cCWwH?(Q).

X is infinite dimensional: it has an orthonormal family {vy }xen. By our assumption it is
bounded in W12, By Parseval
v — 0.

By Rellich-Kondrachov, v, — 0 in L2, a contradiction.
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Conclusion of the proof

If w* has positive measure:
@ For any h supported in w there holds J[h] = 0.

Q J>A[,IVil2 =B [qi? = C [y i
© We can find h that satisfies both

/|va|2 >>/u2,/ .
Q Q 0N

(omitted here but easy)
@ The contradiction follows.
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Conclusion

The monotonicity of the functional implies some form of convexity.

Analog of the BDM theorem (see also [M, Nadin, Privat, CPDE, 2022], [M, 2022]). For
instance, minimisation problems enjoy a relaxation phenomenon.

o0

© In [M,Privat, 2022] several other qualitative results about minimisation problems or
minimisation of energetic functionals.

|. Mazari, Y. Privat Optimisation of Robin coefficients 16 / 17



Thank Youl
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