

Stochastic control systems in infinite dimension

Fatima Zahra LAHBIRI, LMAH - Le HavreFatima Zahra LAHBIRI, LMAH - FranceSaid HADD, LAMA - Agadir, Morocco

Résumé

We consider :

- $(\Omega, \mathcal{F}, F, P)$ a filtered probability space.
- $(W(t))_{t\geq 0}$ a one dimensional Brownian motion.
- $A: D(A) \subset H \to H$ a generator of a \mathcal{C}_0 -semigroup $(T(t))_{t>0}$ on H.
- $\mathcal{M} \in \mathcal{L}(H)$ a linear bounded operator.
- $B \in \mathcal{L}(U, H_{-1})$ control operator.

Let $\xi \in L^2_{\mathcal{F}_0}(\Omega, H)$. In the present work, we are concerned with the well-posedness and control properties for distributed stochastic control system

$$\begin{cases} dX(t) = (AX(t) + Bu(t))dt + \mathcal{M}(X(t))dW(t), & t > 0, \\ X(0) = \xi. \end{cases}$$
(1)

More precisely, by assuming that the control operator is admissible in deterministic sense and reformulating the studied stochastic differential equation to an abstract stochastic Cauchy problem on a product space, we given a new proof to the existence of a unique mild solution. We further discuss the notion of exact controllability of such systems. An application to bacterial population systems is given.

Théorème 1. Let (A, B) be admissible. Then there exists a unique mild solution $X(\cdot; \xi, u) \in C_F(0, +\infty; L^2(\Omega, H))$ of (1) such that

$$X(t;\xi,u) = T(t)\xi + \int_0^t T(t-s)\mathcal{M}(X(s,\xi,0))dW(s) + \Phi_t^W u, \qquad t \ge 0,$$

where

$$\Phi_t^W u = \tilde{\Phi}_t u + \int_0^t T(t-s)\mathcal{M}(\Phi_s^W u)dW(s), \quad and$$

$$\Phi_t^W \in \mathcal{L}\left(L_F^2(0,+\infty;U), L_{\mathcal{F}_t}^2(\Omega;H)\right), \quad t \ge 0.$$

See the proof in [1]).

Références

[1] Lahbiri, F. Z., & Hadd, S (2021), A functional analytic approach to infinite dimensional stochastic linear systems, *SIAM Journal on Control and Optimization*, **59**(5), 3762-3786.