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Towards consistency

Robust: resistant to failure.

One way to be robust is to use parsimony:
Parsimony: the principle of using the fewest resources to solve a
problem.

If an algorithm is parsimonious it is self-consistent, meaning the

result represents a possible accurate outcome, even if it's
inaccurate for the given problem.
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Change of coordinates
Simplex V is transformed to reference simplex Y
\7 = Vo].T + [0 Vi

transformation:

[v1

v,,] — [0 e
Simplex U is transformed to simplex X under the same

S.oepl.
vl [xo ...
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Reference simplices
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Binary-valued sign function

. 1 p>0,
sign(p) = {
different signs in a given direction.

0 p<Q0,

We only calculate an intersection between two points if they have
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Hyperplanes of Y

Definition (Simplex 1)

A simplex in R” is the intersection of n+ 1 half-spaces bounded by
n+ 1 hyperplanes.

Let P, = {x € R" | x- e, = 0}. The positive side of P, is the
space {x e R" | x - e, > 0}.
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m-faces of X

Definition (Simplex 2)

A simplex in R” is the convex hull between n + 1 vertices.

An m-face of X is the convex hull between m of its vertices, ie.
three vertices form a triangle, four a tetrahedron, etc.
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X;

Intersection between an m-face of X and m hyperplanes of
Y

o0

€y Xjo * €y
Xin " €n  Xip "€y Xim * €y
1L xj "€y Xip * €y

1 Xin " €y
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Corollary

The numerator of q - e, is shared with the numerators of g - e;
for m values of j, up to a change in sign, where I and I'; have
cardinality m.

Conor McCoid, Martin J. Gander Université de Genéve

Robust intersection algorithms for non-matching grids



Intersections for triangles

y=0

XiYi—=XjYi
Yi—VYi

x=0 Xiy!'_Xl:,Vi

x+y=1

Edge/Line | Distance from 1st vertex | Distance from 2nd vertex
Xj—X,
(1=xi)y;

(A—xi)yj—(1=x)yi
(1
j
—(A—x)yi
Xi+Yi—Xj—Yj

Yi—Vi
—yi)x;i—(1=yj)xi
X5
(A—yi)x;i—(1—y;)xi

Xj+yj—=Xi—Yi
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1st type of intersections for tetrahedra

Plane P H Num. ofqg Num. ofrf;j Num. ofl—qi{—r'j
=0 Xi Y Xi  Zj xi 1l—yi—2z
Xi Y XjZj Xi 1-yi—z
y=0 Vi~ Z Yi Xi yi 1=xi—z
Yi % Yi % i 1-X—z
20 Zi X Zr Vi zi 1—x—y
z X Z Y z 1-x—y
et | ] N | I S i
Yi—2%4 X Xj—2Z Y Xp—Yj %
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Pairings
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2nd type of intersections for tetrahedra

Edge of Y H v,z X,z X,y
Xi Yi Zi Xi Yi oz Xi Yi oz
Num. of ¢ X Y X Yo g XY g
Xk Yk Zk Xk Yk Zk Xk Yk Zk
- Al Ji < Al L=V < Al Ji =
ijk X ) ] . _ v ) ] X N
Num. of 1 — tY 1-x y z xi 1—yi z Xy 1l—z
L= vk k| | X L—yk 2| | % vk 1—2z
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Triplings
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Simplicial intersection algorithm
Step 1: Change of coordinates
[v1

Vn] [Xo
Step 2: Vertices of X in Y

H sign(x;

y
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Simplicial intersection algorithm

Step 3: Intersections of X with Y
Step 3(i): Intersection magnitude

Xjg*€n Xjg €y ... Xj-€y,

J . X - e,7 X, * e,yl el X eVm
ar -y = 1 x; .
Xig "€y o Xjg €y
1 Xip "€y oo Xjp, - €y,
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Simplicial intersection algorithm

Step 3(ii): Intersection signs

If there aren't m
intersections for a given
m-face of X then the signs
of their numerators can be
determined without
calculations. Otherwise,
only one needs to be
calculated and the rest
become known.
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Simplicial intersection algorithm

Step 3(iii): Reverse transformation
v¢ru{o}

w#:vo-l- Z (q#-ey>-v.y
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Simplicial intersection algorithm

Step 4: Vertices of Y in X

At the highest order, every I has 2 planes not inside it. There are
only two intersections for this collection. If they have different
signs for one of the planes not in I then the vertex for the other
plane lies in X.

Essentially, there's one more intersection calculation but since
we're at the highest order the intersection lies in a O-dimensional
space, the vertex of Y.
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Computational examples
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Computational examples
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Computational examples

- PANG2-3D o e e . + PANG2-3D
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Rel. error

Computation time
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Adjacent intersections

At intermediate steps in the algorithm we compare the signs of
intersections to see if we need to calculate an intersection. But
only those pairs of intersections whose edges are on the outside of
X are important; those inside won’t be seen inside the convex
intersection.

An edge will lie outside if the two index sets J and K of its points
differ by one element, ie.

JUK|=[J—1=|K| - 1.

We say the two sets are adjacent.
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Combinadics

Checking which J and K are adjacent can be costly. Luckily,
there's a possible shortcut.

Each J and K represents a combination of the numbers {0, ..., n}
and so can be ranked using the combinatorial number system:

=(5) o+ ()< ()1

whereJ:{cj}j'":1v a<c<- < Cnm.
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Combinadic adjacency matrix
Then, we can construct an adjacency matrix for the nodes N(J):

Forn>m>1

_ ~ An—1 . .
A"mZW"IT ﬁ‘r_ﬂ, O L ] Y
(A%) AL =) Ana

with starting conditions

0 1 1
L@ ) 1 i 110
Al=1|T L AT = ., Ad=11 0 1|. (2
K 1 1 011
1 ... 1 0
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Sign connectivity

We saw how the numerators of g{ - e, are connected, but what
about the denominators? These can be constructed from previous
steps (X, are the vectors x; with j € J, Ir the e, with y € T):

Lemma
Suppose sign (q#\{'} -en> = sign <q#\{1} . en> and an intersection

q#&;‘j}} was calculated for some v € I, then

sign (|1 X[ froy|) =sien ( XJT\{i}’Fu{n}’ ‘XJT\{I'J}I'_’ ‘1 XJT\{J'}’FD
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Sign connectivity

If the intersection q#&'”}} from the last lemma wasn't calculated

then we need another way to find the sign of ‘ J\{,d}lr‘.

Lemma
Suppose sign (q#\{i} . ew) = sign (q#\{j} ~e7> for all v ¢ T. Then,
foralln ¢T,
: T
X i \{} ‘e, q#\{’} ‘1 J\{ }/F’ ‘1 XJ\{_,-}IF’
X o | = J\{J} 7
n Ar S ’ AT ‘
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