Optimal shape of stellarators for magnetic confinement fusion.

In collaboration with Yannick Privat ¹ and Mario Sigalotti²

Rémi Robin, Laboratoire Jacques-Louis Lions, Sorbonne Université, Paris, France

June 15, 2022

1/25

¹Université de Strasbourg

²Inria Paris

- Introduction
 - Stellarators
 - Inverse problem

- Shape optimization
 - Introduction
 - Admissible shapes
 - Reach condition
 - Numerical results

Nuclear fusion confinement

 Goal: Confine a plasma of approx. 150 millions K for as long as possible with a density as high as possible in order to achieve fusion ignition.

Figure: magnetic field lines inside a Tokamac, Inria team TONUS

Nuclear fusion confinement

- Goal: Confine a plasma of approx. 150 millions K for as long as possible with a density as high as possible in order to achieve fusion ignition.
- Solution: a plasma is made of ionized particules, thus interacts with a magnetic field.

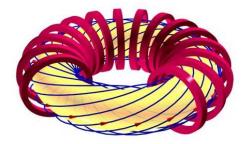


Figure: magnetic field lines inside a Tokamac, Inria team TONUS

Stellarators

Stellarator approach: The magnetic confinement relies mainly on external coils.

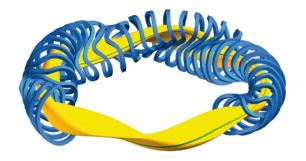


Figure: Wendelstein 7-X, Max-Planck Institut für Plasmaphysik

The plasma shape and the coils are obtained by several optimizations.

Typical approach

• Find a good magnetic field to ensure the plasma confinement.

Typical approach

- Find a good magnetic field to ensure the plasma confinement.
- ② We use a 'Coil winding surface' and find a current-sheet to generate the given B_{target} [Merkel 86].

Figure: Coil winding surface and plasma surface of the NCSX Stellarator.

Typical approach

- Find a good magnetic field to ensure the plasma confinement.
- ② We use a 'Coil winding surface' and find a current-sheet to generate the given B_{target} [Merkel 86].
- (Approximate the current-sheet by several coils)

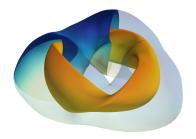


Figure: Coil winding surface and plasma surface of the NCSX Stellarator.

Modelisation

Biot-Savart law in vacuo

$$\forall y \notin S, B(y) = BS(j)(y) = \int_{S} j(x) \times \frac{y - x}{|y - x|^3} dS(x), \tag{1}$$

Modelisation

Biot-Savart law in vacuo

$$\forall y \notin S, B(y) = BS(j)(y) = \int_{S} j(x) \times \frac{y - x}{|y - x|^3} dS(x), \tag{1}$$

plasma-shape objective

$$\chi_B^2(j) = \int_P |\mathsf{BS}(j)(y) - B_{\mathsf{target}}(y)|^2 dy \tag{2}$$

Modelisation

Biot-Savart law in vacuo

$$\forall y \notin S, B(y) = BS(j)(y) = \int_{S} j(x) \times \frac{y - x}{|y - x|^3} dS(x), \tag{1}$$

plasma-shape objective

$$\chi_B^2(j) = \int_P |\mathsf{BS}(j)(y) - B_{\mathsf{target}}(y)|^2 dy \tag{2}$$

The goal

$$\inf_{\substack{j \in L^2(\mathfrak{X}(S))\\ \text{div } j = 0}} \chi_B^2(j) \tag{3}$$

An inverse problem

$$BS(\cdot)$$
 is continuous from $L^2(\mathfrak{X}(S)) \to C^k(P, \mathbb{R}^3)$
 $\implies j \mapsto BS(j)$ is compact (from $L^2(\mathfrak{X}(S)) \to L^2(P, \mathbb{R}^3)$).

- Use a finite dimensional subspace [Merkel 86].
- Use a Tychonoff regularization [Landreman 17].

$$||j||_{L^2}^2 = \int_S |j|^2 dS.$$

Lemma

For any $\lambda > 0$, the problem

$$\inf_{\substack{j \in L^2(\mathfrak{X}(S)) \\ \operatorname{div} j = 0}} \chi_B^2 + \lambda \|j\|_{L^2}^2 \tag{P}$$

admits a unique minimizer

$$j_S = (\lambda \operatorname{Id} + \operatorname{BS}_S^{\dagger} \operatorname{BS}_S)^{-1} \operatorname{BS}_S^{\dagger} B_T.$$
 (4)

8 / 25

Table of Contents

- Introduction
 - Stellarators
 - Inverse problem
- Shape optimization
 - Introduction
 - Admissible shapes
 - Reach condition
 - Numerical results

We want to optimize on both the current sheet and the Coil Winding Surface.

Admissible shapes

- Topology of a torus
- Regular enough
- Far enough to the plasma

Shape optimization problem

$$\inf_{\substack{S \text{ admissible} \\ S \text{ admissible} \\ \text{div } j = 0}} \left(\inf_{j \in L^2(\mathfrak{X}(S))} \chi_B^2 + \lambda \|j\|_{L^2}^2 \right) \tag{SOP}$$

Previous works

First approach in E. J. Paul et al. "An adjoint method for gradient-based optimization of stellarator coil shapes". In: *Nuclear Fusion* 58.7 (2018)

Finite dimensional approach (discretize then optimize)

Previous works

First approach in E. J. Paul et al. "An adjoint method for gradient-based optimization of stellarator coil shapes". In: *Nuclear Fusion* 58.7 (2018)

- Finite dimensional approach (discretize then optimize)
- Regularity of the surface is ensured by non intrinsic cost (Fourier compression).

Previous works

First approach in E. J. Paul et al. "An adjoint method for gradient-based optimization of stellarator coil shapes". In: *Nuclear Fusion* 58.7 (2018)

- Finite dimensional approach (discretize then optimize)
- Regularity of the surface is ensured by non intrinsic cost (Fourier compression).

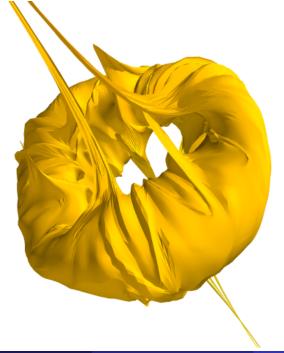
Our contribution

- Existence of a minimizer of the shape optimisation problem,
- Computation of the shape gradient in the set of admissible shapes,
- Numerics based on our approach.

Admissible shapes

Constraints on the set of admissible shapes $S \in \mathcal{O}_{\mathsf{adm}}$:

- S is a orientable surface homotopic to the usual torus.
- dist $(S, P) \geq \delta$
- is in included in a compact set



Admissible shapes

Constraints on the set of admissible shapes $S \in \mathcal{O}_{\mathsf{adm}}$:

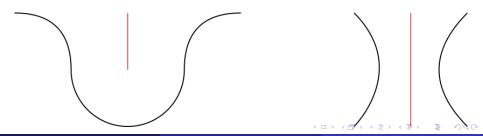
- S is a orientable surface homotopic to the usual torus.
- \bigcirc dist $(S, P) \geq \delta$
- \odot S is in included in a compact set
- Solution Lower bound on the reach of S

Reach

Delfour-Zolesio and Federer

 $V \subset \mathbb{R}^n, \mathsf{Sk}(V)$ is the set of all points in \mathbb{R}^n whose projection onto V is not unique.

$$U_h(V) = \{x \mid d(x, V) < h\}$$
 Reach(V) = sup{h | $U_h(V) \cap Sk(V) = \emptyset$ }



Reach

Theorem[2022, Privat, R., Sigalotti]

The shape optimisation problem

$$\inf_{S \in \mathcal{O}_{\text{adm}}} \inf_{\substack{j \in L^2(\mathfrak{X}(S)) \\ \text{div } j = 0}} \chi_B^2 + \lambda \|j\|_{L^2}^2 \tag{5}$$

admits a minimizer.

Key ingredients of the proof:

- Compactness of $\mathcal{O}_{\mathsf{adm}}$,
- Lower semicontinuity of the cost.
 - Transport j while preserving tangent and divergence free,
 - Use a volumic approximation.

Reach

Theorem[2022, Privat, R., Sigalotti]

The shape optimisation problem

$$\inf_{S \in \mathcal{O}_{\text{adm}}} \inf_{j \in L^2(\mathfrak{X}(S))} \chi_B^2 + \lambda \|j\|_{L^2}^2$$

$$\inf_{\text{div } j = 0} \chi_B^2 + \lambda \|j\|_{L^2}^2$$
(5)

admits a minimizer.

Key ingredients of the proof:

- Compactness of $\mathcal{O}_{\mathsf{adm}}$,
- Lower semicontinuity of the cost.
 - Transport j while preserving tangent and divergence free,
 - Use a volumic approximation.
- ⇒ Development of a general framework in [PRS22a]

• Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon}=\operatorname{Id}+\varepsilon\theta$ induces a diffeomorphism from S to S^{ε}

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon}=\operatorname{Id}+\varepsilon\theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\epsilon}) C(S)}{\epsilon}$

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon}=\operatorname{Id}+arepsilon \theta$ induces a diffeomorphism from S to $S^{arepsilon}$
- \bullet We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\varepsilon}) C(S)}{\varepsilon}$

•

$$\frac{\partial \tilde{C}(S,j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S,j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S,j_S).$$

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{arepsilon}=\operatorname{Id}+arepsilon \theta$ induces a diffeomorphism from S to $S^{arepsilon}$
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\varepsilon}) C(S)}{\varepsilon}$

•

$$\frac{\partial \tilde{C}(S,j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S,j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S,j_S).$$

• The differential of $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ provides a diffeomorphism from $\mathfrak{X}(S)$ to $\mathfrak{X}(S^{\varepsilon})$.

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ induces a diffeomorphism from S to S^{ε}
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\epsilon}) C(S)}{\epsilon}$

•

$$\frac{\partial \tilde{C}(S,j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S,j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S,j_S).$$

- The differential of $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ provides a diffeomorphism from $\mathfrak{X}(S)$ to $\mathfrak{X}(S^{\varepsilon})$.
- Nevertheless the range of \mathscr{F}^0_S by φ^ε does not coincide with $\mathscr{F}^0_{S^\varepsilon}$.

- Let $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ be a perturbations.
- $\varphi^{\varepsilon}=\operatorname{Id}+arepsilon \theta$ induces a diffeomorphism from S to $S^{arepsilon}$
- We want to study $\lim_{\epsilon \to 0} \frac{C(S^{\epsilon}) C(S)}{\epsilon}$

•

$$\frac{\partial \tilde{C}(S,j_S)}{\partial S} = \frac{\partial \tilde{C}}{\partial S}(S,j_S) + \frac{\partial \tilde{C}}{\partial j} \frac{\partial j_S}{\partial S}(S,j_S).$$

- The differential of $\varphi^{\varepsilon} = \operatorname{Id} + \varepsilon \theta$ provides a diffeomorphism from $\mathfrak{X}(S)$ to $\mathfrak{X}(S^{\varepsilon})$.
- Nevertheless the range of \mathscr{F}^0_S by φ^ε does not coincide with $\mathscr{F}^0_{S^\varepsilon}$.

$$\Phi^{\varepsilon}: \mathscr{F}_{S} \longrightarrow \mathscr{F}_{S^{\varepsilon}}$$

$$X \longmapsto \frac{1}{[J(\mu_{S}, \mu_{S}^{\varepsilon})\varphi^{\varepsilon}] \circ \varphi^{-\varepsilon}} (\operatorname{Id} + \varepsilon D\theta) X \circ \varphi^{-\varepsilon}$$

Shape gradient

$$Z_{P}(k) = \int_{P} K(\cdot, y) \times k(y) d\mu_{P}(y)$$

$$\widehat{Z}_{P}(k, j)(x) = \int_{P} D_{x} \left(\frac{x - y}{|x - y|^{3}} \right)^{T} \left(k(y) \times j(x) \right) d\mu_{P}(y), \quad \forall x \in S.$$

For every $\theta \in W^{2,\infty}(\mathbb{R}^3,\mathbb{R}^3)$ one has

$$\langle dC(S), \theta \rangle = \int_{S} \theta \cdot (X_1 - \operatorname{div}_{S}(X_2)_{i:}) d\mu_{S}$$

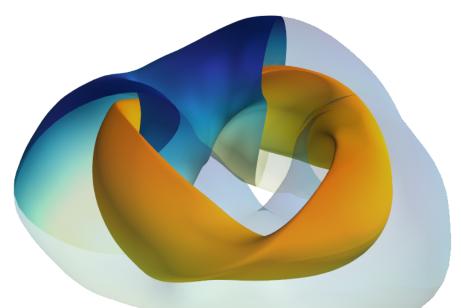
where

$$X_1 = -2\widehat{Z}_P(\mathsf{BS}_S j_S - B_T, j_S) \tag{6}$$

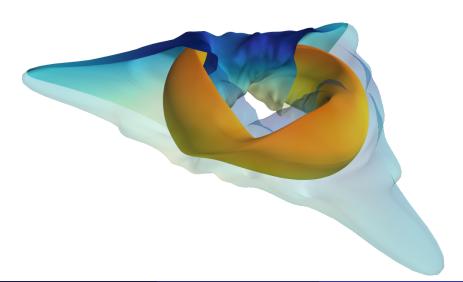
$$X_2 = -2Z_P(BS_S j_S - B_T)j_S^T + 2\lambda j_S j_S^T - \lambda |j_S|^2 (I_3 - \nu \nu^T),$$
 (7)

where for $i \in \{1, 2, 3\}$, $(X_2)_{i:}$ denotes the *i*-th line of X_2 seen as a column vector, and ν denotes the outward normal vector on $S = \partial V$.

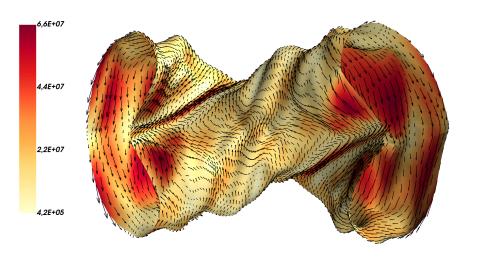
Reference



After optimization



For a different λ



Prospects

- Collaboration with Renaissance fusion³ for industrial applications,
- Use more complex costs in the shape optimization (Laplace forces).

Thank you for your attention !

3https://stellarator.energy/

- M. Landreman. "An Improved Current Potential Method for Fast Computation of Stellarator Coil Shapes". In: Nuclear Fusion 57.4 (2017)
- E. J. Paul et al. "An adjoint method for gradient-based optimization of stellarator coil shapes". In: *Nuclear Fusion* 58.7 (2018)
- Y. Privat, R. Robin, and M. Sigalotti. "Optimal Shape of Stellarators for Magnetic Confinement Fusion". In: J. Math. Pures Appl. (9) (2022)
- Y. Privat, R. Robin, and M. Sigalotti. Existence of surfaces optimizing geometric and PDE shape functionals under reach constraint. 2022. arXiv: 2206.04357 [math]
- R. Robin and F. Volpe. "Minimization of magnetic forces on Stellarator coils". In: Nuclear Fusion (2022)

Cohomology and divergence free vector fields on the torus

Hodge decomposition

On a closed Riemannian manifold M

$$L_p^2(M)=B_p\oplus B_p^*\oplus \mathscr{H}_p,$$

where

- B_p is the L^2 -closure of $\{d\alpha \mid \alpha \in \Omega^{p-1}(M)\}$,
- B_p^* is the L^2 -closure of $\{d^*\beta \mid \beta \in \Omega^{p+1}(M)\}$ $\{d^*\}$ is the coderivative,
- \mathscr{H}_p is the set $\{\omega \in \Omega^p(M) \mid \Delta_H \omega = 0\}$ of harmonic p-forms with Δ_H the Hodge Laplacian.

Thus for a flat Torus T, we only need to characterizes $B_1^*(T)$ and $\mathcal{H}_1(T)$.

- $B_1^*(T)$ is the L^2 -closure of the 1-forms $\frac{\partial \Phi}{\partial u} dv \frac{\partial \Phi}{\partial v} du$ for $\Phi \in \mathscr{C}^{\infty}(T)$.
- $\mathcal{H}_1(T)$ is a two-dimensional vector space as $b_1 = 2$. $\mathcal{H}_1(T) = \{\lambda_1 du + \lambda_2 dv \mid (\lambda_1, \lambda_2) \in \mathbb{R}^2\}.$

In vacuo Maxwell equations on a toroidal 3D domain

Let P a be toroidal domain. Let Γ be a toroidal loop inside P and denote by I_p the electric current-flux across any surface enclosed by Γ (also equal to the circulation of B along Γ).

Lemma

Let $B \in \mathcal{C}^{\infty}(P,\mathbb{R}^3)$ such that $\operatorname{div} B = 0$ and $\operatorname{curl} B = 0$ in P. Let g be the normal magnetic field on ∂P . Then g and I_p determine completely the magnetic field B in P. Besides, there exists a constant C>0 such that for every other magnetic field \tilde{B} with the same total poloidal currents, $|B-\tilde{B}|_{L^2(P,\mathbb{R}^3)} \leq C|g-\tilde{g}|_{L^2(\partial P)}$ where \tilde{g} is the normal component of $\tilde{B}|_{\partial P}$.

Idea: consider the cochain complex

$$\mathscr{C}^{\infty}(P) \xrightarrow{\operatorname{\mathsf{grad}}} \mathscr{C}^{\infty}(P, \mathbb{R}^3) \xrightarrow{\operatorname{\mathsf{curl}}} \mathscr{C}^{\infty}(P, \mathbb{R}^3) \xrightarrow{\operatorname{\mathsf{div}}} \mathscr{C}^{\infty}(P).$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ()