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Rémi Robin,
Laboratoire Jacques-Louis Lions, Sorbonne Université, Paris, France
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Nuclear fusion confinement

Goal: Confine a plasma of approx. 150 millions K for as long as
possible with a density as high as possible in order to achieve fusion
ignition.

Solution: a plasma is made of ionized particules, thus interacts with a
magnetic field.

Figure: magnetic field lines inside a Tokamac, Inria team TONUS

R. Robin (LJLL, Sorbonne Université) Optimal shape of stellarators for magnetic confinement fusion. June 15, 2022 3 / 25



Nuclear fusion confinement

Goal: Confine a plasma of approx. 150 millions K for as long as
possible with a density as high as possible in order to achieve fusion
ignition.

Solution: a plasma is made of ionized particules, thus interacts with a
magnetic field.

Figure: magnetic field lines inside a Tokamac, Inria team TONUS
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Stellarators

Stellarator approach: The magnetic confinement relies mainly on external
coils.

Figure: Wendelstein 7-X, Max-Planck Institut für Plasmaphysik

The plasma shape and the coils are obtained by several optimizations.
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Typical approach

1 Find a good magnetic field to ensure the plasma confinement.

2 We use a ’Coil winding surface’ and find a current-sheet to generate
the given Btarget [Merkel 86].

3 (Approximate the current-sheet by several coils)

Figure: Coil winding surface and plasma surface of the NCSX Stellarator.
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Modelisation

Biot-Savart law in vacuo

∀y 6∈ S ,B(y) = BS(j)(y) =

ˆ
S
j(x)× y − x

|y − x |3
dS(x), (1)

plasma-shape objective

χ2
B(j) =

ˆ
P
|BS(j)(y)− Btarget(y)|2dy (2)

The goal

inf
j∈L2(X(S))

div j=0

χ2
B(j) (3)
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An inverse problem

BS(·) is continuous from L2(X(S))→ C k(P,R3)
=⇒ j 7→ BS(j) is compact (from L2(X(S))→ L2(P,R3)).

Use a finite dimensional subspace [Merkel 86].

Use a Tychonoff regularization [Landreman 17].

‖j‖2
L2 =

ˆ
S
|j |2dS .
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Lemma

For any λ > 0, the problem

inf
j∈L2(X(S))

div j=0

χ2
B + λ‖j‖2

L2 (P)

admits a unique minimizer

jS = (λ Id + BS†S BSS)−1 BS†S BT . (4)
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We want to optimize on both the current sheet and the Coil Winding
Surface.

Admissible shapes

Topology of a torus

Regular enough

Far enough to the plasma

Shape optimization problem

inf
S admissible

 inf
j∈L2(X(S))

div j=0

χ2
B + λ‖j‖2

L2

 (SOP)
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Previous works

First approach in E. J. Paul et al. “An adjoint method for gradient-based
optimization of stellarator coil shapes”. In: Nuclear Fusion 58.7 (2018)

Finite dimensional approach (discretize then optimize)

Regularity of the surface is ensured by non intrinsic cost (Fourier
compression).

Our contribution

Existence of a minimizer of the shape optimisation problem,

Computation of the shape gradient in the set of admissible shapes,

Numerics based on our approach.
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Admissible shapes

Constraints on the set of admissible shapes S ∈ Oadm:

1 S is a orientable surface homotopic to the usual torus.

2 dist(S ,P) ≥ δ
3 S is in included in a compact set

4 H2(S) ≤ AM
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Admissible shapes

Constraints on the set of admissible shapes S ∈ Oadm:

1 S is a orientable surface homotopic to the usual torus.

2 dist(S ,P) ≥ δ
3 S is in included in a compact set

4 H2(S) ≤ AM

5 Lower bound on the reach of S
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Reach

Delfour-Zolesio and Federer
V ⊂ Rn, Sk(V ) is the set of all points in Rn whose projection onto V is
not unique.

Uh(V ) = {x | d(x ,V ) < h}

Reach(V ) = sup{h | Uh(V ) ∩ Sk(V ) = ∅}
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Reach

Theorem[2022, Privat, R. , Sigalotti]

The shape optimisation problem

inf
S∈Oadm

inf
j∈L2(X(S))

div j=0

χ2
B + λ‖j‖2

L2 (5)

admits a minimizer.

Key ingredients of the proof:

Compactness of Oadm,

Lower semicontinuity of the cost.

Transport j while preserving tangent and divergence free,
Use a volumic approximation.

=⇒ Development of a general framework in [PRS22a]
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Shape gradient tool

Let θ ∈W 2,∞(R3,R3) be a perturbations.

ϕε = Id +εθ induces a diffeomorphism from S to Sε

We want to study limε→0
C(Sε)−C(S)

ε

∂C̃ (S , jS)

∂S
=
∂C̃

∂S
(S , jS) +

∂C̃

∂j

∂jS
∂S

(S , jS).

The differential of ϕε = Id +εθ provides a diffeomorphism from X(S)
to X(Sε).

Nevertheless the range of F 0
S by ϕε does not coincide with F 0

Sε .

Φε : FS −→ FSε

X 7−→ 1

[J(µS , µ
ε
S)ϕε] ◦ ϕ−ε

(Id +εDθ)X ◦ ϕ−ε
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Shape gradient

ZP(k) =

ˆ
P
K (·, y)× k(y) dµP(y)

ẐP(k , j)(x) =

ˆ
P
Dx

(
x − y

|x − y |3

)T (
k(y)× j(x)

)
dµP(y), ∀x ∈ S .

For every θ ∈W 2,∞(R3,R3) one has

〈dC (S), θ〉 =

ˆ
S
θ · (X1 − divS(X2)i :) dµS

where

X1 = −2ẐP(BSS jS − BT , jS) (6)

X2 = −2ZP(BSS jS − BT )jTS + 2λjS j
T
S − λ|jS |2(I3 − ννT ), (7)

where for i ∈ {1, 2, 3}, (X2)i : denotes the i-th line of X2 seen as a column
vector, and ν denotes the outward normal vector on S = ∂V .
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After optimization
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For a different λ
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Prospects

Collaboration with Renaissance fusion3 for industrial applications,

Use more complex costs in the shape optimization (Laplace forces).

Thank you for your attention !

3https://stellarator.energy/
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Cohomology and divergence free vector fields on the torus

Hodge decomposition

On a closed Riemannian manifold M

L2
p(M) = Bp ⊕ B∗p ⊕Hp,

where

Bp is the L2-closure of {dα | α ∈ Ωp−1(M)},
B∗p is the L2-closure of {d∗β | β ∈ Ωp+1(M)} (d∗ is the coderivative),

Hp is the set {ω ∈ Ωp(M) | ∆Hω = 0} of harmonic p-forms with ∆H

the Hodge Laplacian.

Thus for a flat Torus T , we only need to characterizes B∗1 (T ) and H1(T ).

B∗1 (T ) is the L2-closure of the 1-forms ∂Φ
∂u dv −

∂Φ
∂v du for Φ ∈ C∞(T ).

H1(T ) is a two-dimensional vector space as b1 = 2.
H1(T ) = {λ1du + λ2dv | (λ1, λ2) ∈ R2}.
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In vacuo Maxwell equations on a toroidal 3D domain

Let P a be toroidal domain. Let Γ be a toroidal loop inside P and denote
by Ip the electric current-flux across any surface enclosed by Γ (also equal
to the circulation of B along Γ).

Lemma

Let B ∈ C∞(P,R3) such that divB = 0 and curlB = 0 in P.
Let g be the normal magnetic field on ∂P. Then g and Ip determine
completely the magnetic field B in P. Besides, there exists a constant
C > 0 such that for every other magnetic field B̃ with the same total
poloidal currents, |B − B̃|L2(P,R3) ≤ C |g − g̃ |L2(∂P) where g̃ is the normal

component of B̃|∂P .

Idea: consider the cochain complex

C∞(P)
grad // C∞(P,R3)

curl // C∞(P,R3)
div // C∞(P).
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