Schémas HHT-alpha et prédicteurs-correcteurs pour le contact dynamique avec méthode de Nitsche

Hao HUANG^{1,2}, Franz CHOULY², Guillaume DROUET¹, Nicolas PIGNET¹

¹EDF Lab

²Institut de Mathématiques de Bourgogne Université de Bourgogne

Juin 2022

H. HUANG (EDF Lab, IMB)

CANUM 2022

Juin 2022

Table des matières

Traitements des C.L.s Signorini (en statique)

- Méthode de pénalisation
- Méthode de Nitsche

Élastodynamique

Schémas en temps

- Schéma HHT-alpha
- Schéma point mieux implicite
- Schéma TRBDF2
- Schéma hybride
- 5 Conclusion

3

CANUM 2022

Table des matières

Traitements des C.L.s Signorini (en statique

- Méthode de pénalisation
- Méthode de Nitsche

Élastodynamique

4) Schémas en temps

- Schéma HHT-alpha
- Schéma point mieux implicite
- Schéma TRBDF2
- Schéma hybride
- 5 Conclusion
- 6 Annexe
- Référence

3 / 28

CANUM 2022

- CIFRE entre EDF Lab et Université de Bourgogne.
- Problèmes de contact en dynamique :
 - Élements finis en espace;
 - Différences finies en temps;
 - Oscillations parasites;
 - Perte d'énergie numérique.

CANUM 2022

Problème de Signorini unilatéral sans frottement

Domaine lipschitzien $\Omega \subset \mathbb{R}^d$, $(d \in \{1, 2, 3\})$. $\Gamma := \partial \Omega = \Gamma_N \cup \Gamma_D \cup \Gamma_C$ le bord de Ω .

Trouver $\mathbf{u}:\Omega\times[0,T]\to\mathbb{R}^d,$ tel que ces équations soient satisfaites :

$$\begin{split} \rho \ddot{\mathbf{u}} - \operatorname{div}(\sigma(\mathbf{u})) - \mathbf{f} &= \mathbf{0}, \quad \operatorname{dans} \Omega, \quad (\mathbf{i}) \\ \sigma(\mathbf{u}) &= \mathcal{A} \epsilon(\mathbf{u}), \quad \operatorname{dans} \Omega, \quad (\mathbf{ii}) \\ \mathbf{u} &= \mathbf{0}, \quad \operatorname{sur} \Gamma_D, \quad (\mathbf{iii}) \\ \sigma(\mathbf{u}) \cdot \mathbf{n} &= \mathbf{f}_N, \quad \operatorname{sur} \Gamma_N, \quad (\mathbf{iv}) \\ u_n &\leq 0, \quad \sigma_n(\mathbf{u}) \leq 0, \quad u_n \sigma_n(\mathbf{u}) = 0, \quad \operatorname{sur} \Gamma_C, \quad (\mathbf{v}) \\ \mathbf{u}(\cdot, 0) &= \mathbf{u}_0, \quad \dot{\mathbf{u}}(\cdot, 0) = \dot{\mathbf{u}}_0, \quad \operatorname{dans} \Omega. \quad (\mathbf{vi}) \end{split}$$

Table des matières

Introduction

Traitements des C.L.s Signorini (en statique)

- Méthode de pénalisation
- Méthode de Nitsche

Élastodynamique

4) Schémas en temps

- Schéma HHT-alpha
- Schéma point mieux implicite
- Schéma TRBDF2
- Schéma hybride
- 5 Conclusion
- 6 Annexe
- Référence

CANUM 2022

Juin 2022

Le problème faible (sans contact) :

$$\begin{array}{l} \text{Trouver } \mathbf{u}^h \in V^h, \ \text{t.q.} \\ a(\mathbf{u}^h, \mathbf{v}^h) = l(\mathbf{v}^h), \forall \mathbf{v}^h \in V^h, \end{array} \end{array}$$

en vérifiant les conditions aux limites, où $a(\mathbf{u}^h, \mathbf{v}^h) := \int_{\Omega} \sigma(\mathbf{u}^h) : \epsilon(\mathbf{v}^h) \, \mathrm{d}\Omega$

et
$$l(\mathbf{v}^h) := \int_{\Omega} \mathbf{f} \cdot \mathbf{v}^h \, \mathrm{d}\Omega + \int_{\Gamma_N} \mathbf{f}_N \cdot \mathbf{v}^h \, \mathrm{d}\Gamma.$$

Problème d'optimisation :

Trouver
$$\mathbf{u}^h \in V^h$$
, minimisant $J(\mathbf{u}^h) = \frac{1}{2}a(\mathbf{u}^h, \mathbf{u}^h) - l(\mathbf{u}^h).$

Méthode de pénalisation pour le contact statique

En ajoutant une fonction de pénalité :

Trouver
$$\mathbf{u}_{\epsilon}^{h} \in V^{h}$$
, minimisant $J_{\epsilon}(\mathbf{u}^{h}, \epsilon) = J(\mathbf{u}^{h}) + f_{\epsilon}(\mathbf{u}^{h})$.

Traditionnellement :

$$f_{\epsilon}(\mathbf{u}^{h}) = \frac{\epsilon}{2} \left\| \left[u_{n}^{h} \right]_{\mathbb{R}^{+}} \right\|_{\Gamma_{C}}^{2}.$$

Par dérivée fonctionnelle :

$$a(\mathbf{u}^h_{\epsilon},\mathbf{v}^h) + \epsilon \int_{\Gamma_C} \left[u^h_{\epsilon,n} \right]_{\mathbb{R}+} \cdot v^h_n \mathrm{d}\Gamma = l(\mathbf{v}^h).$$

[Kikuchi and Oden, 1988, Oden, 1981, Oden and Kikuchi, 1982, Chouly and Hild, 2013b]

Trouver
$$\mathbf{u}^h \in V^h$$
 t.q.
 $a_{\theta,\gamma_N}(\mathbf{u}^h, \mathbf{v}^h) + \int_{\Gamma_C} \frac{1}{\gamma_N} [P_{1,\gamma_N}^n(\mathbf{u}^h)]_{\mathbb{R}^-} P_{\theta,\gamma_N}^n(\mathbf{v}^h) \, \mathrm{d}\Gamma = l(\mathbf{v}^h), \, \forall \mathbf{v}^h \in V^h,$

où :

$$\begin{aligned} a_{\theta,\gamma_N}(\mathbf{u}^h, \mathbf{v}^h) &= a(\mathbf{u}^h, \mathbf{v}^h) - \int_{\Gamma_C} \frac{\theta}{\gamma_N} \sigma_n(\mathbf{u}^h) \sigma_n(\mathbf{v}^h) \mathsf{d}\Gamma, \\ P^n_{\theta,\gamma_N}(\mathbf{v}^h) &= \theta \sigma_n(\mathbf{v}^h) - \gamma_N v_n^h, \\ \gamma_{N|T\cap\Gamma_C} &= \frac{\gamma_0}{h_T}, \\ \theta \in \{-1, 0, 1\}. \end{aligned}$$

[Nitsche, 1971, Stenberg, 1995, Chouly and Hild, 2013a, Chouly et al., 2015b].

Table des matières

Introduction

Traitements des C.L.s Signorini (en statique)

- Méthode de pénalisation
- Méthode de Nitsche

Élastodynamique

Schémas en temps

- Schéma HHT-alpha
- Schéma point mieux implicite
- Schéma TRBDF2
- Schéma hybride
- 5 Conclusion
- 6 Annexe
- Référence

CANUM 2022

Juin 2022

Problème de contact en dynamique

Problème d'EF en dynamique (d'éléments P1/P2) :

Pénalisation

$$\begin{array}{l} \text{Trouver } \mathbf{u}^h : [0,T] \to V^h, \ \text{t.q.} \ : \\ \int_{\Omega} \rho \ddot{\mathbf{u}}^h \cdot \mathbf{v}^h \mathrm{d}\Omega + a(\mathbf{u}^h,\mathbf{v}^h) + \epsilon \int_{\Gamma_C} \left[u_n^h \right]_{\mathbb{R}+} \cdot v_n^h \mathrm{d}\Gamma = l(\mathbf{v}^h), \ \forall \mathbf{v}^h \in V^h \end{array}$$

ou

Nitsche

Trouver
$$\mathbf{u}^h : [0,T] \to V^h$$
, t.q. :

$$\int_{\Omega} \rho \ddot{\mathbf{u}}^h \cdot \mathbf{v}^h \mathrm{d}\Omega + a_{\theta,\gamma_N}(\mathbf{u}^h, \mathbf{v}^h) + \int_{\Gamma_C} \frac{1}{\gamma_N} [P_{1,\gamma_N}^n(\mathbf{u}^h)]_{\mathbb{R}^-} P_{\theta,\gamma_N}^n(\mathbf{v}^h) \mathrm{d}\Gamma$$

$$= l(\mathbf{v}^h), \ \forall \mathbf{v}^h \in V^h$$

H. HUANG (EDF Lab, IMB)

Image: A match a ma

э

Méthode de redistribution de masse

Problème lié à la méthode numérique pour le contact : oscillations parasites.

Idée : « éliminer la masse » pour des nœuds en contact :

$$m_{ij}^{Mod} = 0, \ \forall i \in I_C \text{ ou } \forall j \in I_C.$$

Des quantités à conserver pour un choix de modification : masse totale, centre de gravité et moments d'inerties.

$$\begin{array}{l} \text{Minimiser} \left(\mathbb{M}^{Mod} - \mathbb{M}\right) \text{ sous contraintes} \\ X^T \left(\mathbb{M}^{Mod} - \mathbb{M}\right) X = 0, \\ X^T \left(\mathbb{M}^{Mod} - \mathbb{M}\right) Y_k = 0(1 \le k \le d), \\ Y_k^T \left(\mathbb{M}^{Mod} - \mathbb{M}\right) Y_l = 0(1 \le k, l \le d), \\ \text{où} : \quad X = \frac{1}{\sqrt{d}}(1, \cdots, 1)^T, \\ \frac{1}{\sqrt{d}} \sum y_i e_i \cdot e_j = x_k. \end{array}$$
[Khenous et al., 2008, Dabachi et al., 2013]

Redistribution de la masse sur $\left[0,1\right]$ avec 10 ou 100 éléments P1 :

Résumé numérique

Les simulations sont réalisées via GetFEM, en utilisant les éléments de Lagrange P1(pour les tests 1D)/P2(pour les tests 2D). Linéarisation par méthode de Newton semi-lisse.

Barre compressée

- Encastrée en haut, libre en bas avec obstacle rigide à x = 0;
- Sans gravité ;
- Initialement compressée à mi-hauteur.

[Dabaghi et al., 2013]

Rebond d'une bille

Rebond d'une bille 2D (élastique) sur obstacle (rigide) :

- Diamètre de la bille : 20;
- Hauteur initiale : 2;
- Maillage triangulaire d'ordre 2.

H. HUANG (EDF Lab, IMB)

CANUM 2022

Juin 2022

Table des matières

Traitements des C.L.s Signorini (en statique)

- Méthode de pénalisation
- Méthode de Nitsche

Élastodynamique

Schémas en temps

- Schéma HHT-alpha
- Schéma point mieux implicite
- Schéma TRBDF2
- Schéma hybride
- 5 Conclusion
- 6 Annexe

CANUM 2022

$$\begin{split} \mathbf{u}^{h,n+1} &= \mathbf{u}^{h,n} + \Delta t \mathbf{v}^{h,n} + \frac{\Delta t^2}{2} \left(\left(1 - 2\tilde{\beta} \right) \mathbf{a}^{h,n} + 2\tilde{\beta} \mathbf{a}^{h,n+1} \right) \\ \mathbf{v}^{h,n+1} &= \mathbf{v}^{h,n} + \Delta t \left((1 - \tilde{\gamma}) \mathbf{a}^{h,n} + \tilde{\gamma} \mathbf{a}^{h,n+1} \right) \\ \mathbf{M} \mathbf{a}^{h,n+1} + (1 - \tilde{\alpha}) \mathbf{B} (\mathbf{u}^{h,n+1}) + \tilde{\alpha} \mathbf{B} (\mathbf{u}^{h,n}) = (1 - \tilde{\alpha}) \mathbf{L}^{h,n+1} + \tilde{\alpha} \mathbf{L}^{h,n}, \end{split}$$

où
$$\tilde{\alpha} \in \left[0, \frac{1}{3}\right], \tilde{\beta} = \frac{1}{4} \left(1 + \tilde{\alpha}\right)^2, \tilde{\gamma} = \frac{1}{2} + \tilde{\alpha}.$$

- Inconditionnellement stable pour un système linéaire;
- Précision d'ordre 2 si $\tilde{\alpha} = 0$;
- Amortissement des hautes fréquences pour $\tilde{\alpha}$ non-nul;
- Schéma Newmark si $\tilde{\alpha} = 0$ ($\tilde{\beta}$ et $\tilde{\gamma}$ peuvent encore varier);

• Schéma Crank-Nicolson (trapèze implicite) si $\tilde{\alpha} = 0, \tilde{\beta} = \frac{1}{4}, \tilde{\gamma} = \frac{1}{2}$. [Hilber et al., 1977]

Schéma Crank-Nicolson et HHT - Barre compressée

Comparaison entre méthode de pénalisation et de Nitsche

La méthode de Nitsche (rouge et orange) respecte mieux la condition de non-pénétration que la pénalisation (verte et bleu).

H. HUANG (EDF Lab, IMB)

CANUM 2022

Juin 2022

•en

CANUM 2022

Juin 2022

$$\begin{aligned} \mathbf{u}^{h,n+1} &= \mathbf{u}^{h,n} + \Delta t \mathbf{v}^{h,n} + \frac{\Delta t^2}{4} \left(\mathbf{a}^{h,n} + \mathbf{a}^{h,n+1} \right) \\ \mathbf{v}^{h,n+1} &= \mathbf{v}^{h,n} + \frac{\Delta t}{2} \left(\mathbf{a}^{h,n} + \mathbf{a}^{h,n+1} \right) \\ \mathbf{M} \left(\frac{1}{2} \mathbf{a}^{h,n} + \frac{1}{2} \mathbf{a}^{h,n+1} \right) + \mathbf{B} \left(\frac{1}{2} \mathbf{u}^n + \frac{1}{2} \mathbf{u}^{h,n+1} \right) = \frac{1}{2} \mathbf{L}^n + \frac{1}{2} \mathbf{L}^{n+1}, \end{aligned}$$

- Inconditionnellement stable pour un système linéaire;
- Précision d'ordre 2;
- Conservation d'énergie dans le domaine linéaire.

Schéma point mieux implicite - Barre compressée

Schéma point mieux implicite - pénalisation et Nitsche

CANUM 2022

Juin 2022

Schéma point mieux implicite - Barre compressée

Schéma point mieux implicite - avec méthode de redistribution de masse

Schéma TRBDF2 :

(TRapèze - Backward Differentialtion Formula d'ordre 2)

$$\tilde{\mathbf{v}}^{h,n+\tilde{\gamma}} = \mathbf{v}^{h,n} + \frac{\tilde{\gamma}\Delta t}{2} \left(\mathbf{a}^{h,n} + \tilde{\mathbf{a}}^{h,n+\tilde{\gamma}} \right),\tag{i}$$

$$\tilde{\mathbf{u}}^{h,n+\tilde{\gamma}} = \mathbf{u}^{h,n} + \tilde{\gamma} \Delta t \tilde{\mathbf{v}}^{h,n} + \frac{\tilde{\gamma}^2 \Delta t^2}{4} \left(\tilde{\mathbf{a}}^{h,n} + \tilde{\mathbf{a}}^{h,n+\tilde{\gamma}} \right), \qquad \text{(ii)}$$
$$\mathbf{M} \tilde{\mathbf{a}}^{h,n+\tilde{\gamma}} + \mathbf{B} \tilde{\mathbf{u}}^{h,n+\tilde{\gamma}} - \mathbf{L}^{n+\tilde{\gamma}}$$

$$\mathbf{v}^{h,n+1} = \frac{1}{\tilde{\gamma}(2-\tilde{\gamma})} \tilde{\mathbf{v}}^{h,n+\tilde{\gamma}} - \frac{(1-\tilde{\gamma})^2}{\tilde{\gamma}(2-\tilde{\gamma})} \mathbf{v}^{h,n} + \frac{1-\tilde{\gamma}}{2-\tilde{\gamma}} \Delta t \tilde{\mathbf{a}}^{h,n+\tilde{\gamma}}, \quad (\text{iv} \mathbf{v}^{h,n+1} - \frac{1}{\tilde{\gamma}} \tilde{\mathbf{v}}^{h,n+\tilde{\gamma}}, \mathbf{v}^{(1-\tilde{\gamma})^2} \mathbf{v}^{h,n} + \frac{1-\tilde{\gamma}}{\tilde{\gamma}} \Delta t \tilde{\mathbf{a}}^{h,n+\tilde{\gamma}}, \quad (\mathbf{v}^{h,n+1} - \tilde{\gamma}) \mathbf{v}^{h,n+1} = \frac{1}{\tilde{\gamma}} \tilde{\mathbf{v}}^{h,n+\tilde{\gamma}}, \quad (\mathbf{v}^{h,n+1} - \tilde{\gamma}) \mathbf{v}^{h,n+1} = \frac{1}{\tilde{\gamma}} \tilde{\mathbf{v}}^{h,n+1} = \frac{1}{\tilde{\gamma}} \tilde{\mathbf{v}}^{h,n+\tilde{\gamma}}, \quad (\mathbf{v}^{h,n+1} - \tilde{\gamma}) \mathbf{v}^{h,n+1} = \frac{1}{\tilde{\gamma}} \tilde{\mathbf{v}}^{h,n+1} = \frac{1}{\tilde{\gamma}} \tilde{\mathbf{v}}^{h,n+1}$$

$$\mathbf{M} \mathbf{a}^{h,n+1} + \mathbf{B} \mathbf{u}^{h,n+1} = \mathbf{L}^{n+1}.$$
(v)

• Schéma prédicteur-correcteur implicite;

• Paramètre $\tilde{\gamma}$ prend souvent la valeur $2-\sqrt{2}$. [Bank et al., 1985, Bathe, 2007]

CANUM 2022

Schéma hybride

Une « discrétisation hybride » pour le traitement de contact (par méthode de Nitsche ou pénalisation).

$$\begin{split} \mathbf{u}^{h,n+1} &= \mathbf{u}^{h,n} + \Delta t \mathbf{v}^{h,n} + \frac{\Delta t^2}{4} \tilde{\mathbf{a}}^{h,n+\frac{1}{2}}, \\ \mathbf{v}^{h,n+1} &= \mathbf{v}^{h,n} + \frac{\Delta t}{2} \tilde{\mathbf{a}}^{h,n+\frac{1}{2}}, \\ &< \rho \tilde{\mathbf{a}}^{h,n+\frac{1}{2}}, \mathbf{v}^h >_{\Omega} + a_{\theta,\gamma_N} (\mathbf{u}^{h,n+\frac{1}{2}}, \mathbf{v}^h) + \\ &\int_{\Gamma_C} \Phi_C (\mathbf{u}^{h,n}, \mathbf{u}^{h,n+1}) P_{\theta,\gamma_N}^n (\mathbf{v}^h) \mathsf{d}\Gamma + \\ &\int_{\Gamma_C} \Phi_M (\mathbf{u}^{h,n}, \mathbf{u}^{h,n+1}) P_{\theta,\gamma_N}^n (\mathbf{v}^h) \mathsf{d}\Gamma = \frac{1}{2} \mathbf{L}^n + \frac{1}{2} \mathbf{L}^{n+1}, \end{split}$$

$$\begin{split} & \mathbf{o}\hat{\mathbf{u}} : \Phi_{C}(\mathbf{u}^{h,n},\mathbf{u}^{h,n+1}) := \frac{1}{\gamma_{n}}H(-P_{1,\gamma_{N}}^{n}(\mathbf{u}^{h,n}))[P_{1,\gamma_{N}}^{n}(\mathbf{u}^{h,n+\frac{1}{2}})]_{\mathbb{R}^{-}}, \\ & \Phi_{M}(\mathbf{u}^{h,n},\mathbf{u}^{h,n+1}) := \frac{1}{\gamma_{n}}H(P_{1,\gamma_{N}}^{n}(\mathbf{u}^{h,n}))\frac{1}{2}([P_{1,\gamma_{N}}^{n}(\mathbf{u}^{h,n})]_{\mathbb{R}^{-}} + [P_{1,\gamma_{N}}^{n}(\mathbf{u}^{h,n+1})]_{\mathbb{R}^{-}}), \\ & \text{et } \mathbf{u}^{h,n+\frac{1}{2}} = \frac{1}{2}(\mathbf{u}^{h,n} + \mathbf{u}^{h,n+1}). \\ & r.q.: \mathbf{v}^{h} \text{ est } la \text{ fonction } de \text{ test, alors } \mathbf{v}^{h,n}, \mathbf{v}^{h,n+1} \text{ sont respectivement } les \text{ champs } de \\ & \text{vitesse } a \text{ l'instant } t^{n} \text{ et } t^{n+1}. \text{ [Chouly et al., 2015a]} \end{split}$$

Schéma hybride - Barre compressée

CANUM 2022

Juin 2022

Résultats pour le rebond de bille

H. HUANG (EDF Lab, IMB)

CANUM 2022

Juin 2022

Table des matières

Traitements des C.L.s Signorini (en statique)

- Méthode de pénalisation
- Méthode de Nitsche

) Élastodynamique

4) Schémas en temps

- Schéma HHT-alpha
- Schéma point mieux implicite
- Schéma TRBDF2
- Schéma hybride

5 Conclusion

Annexe

26 / 28

CANUM 2022

Juin 2022

Conclusion

- HHT- α :
 - dissipation d'énergie pour hautes fréquences ;
 - perturbation supplémentaire pour discontinuité en vitesse.

• TRBDF2 :

- compromis entre dissipation d'énergie et oscillations parasites ;
- comportement intéressant sur la pression de contact avec la méthode de redistribution de masse.
- Nitsche hybride :
 - très robuste même pour Δt relativement grand ;
 - faible dissipation d'énergie;
 - plus d'itérations de Newton.

Merci pour votre écoute !

3

H. HUANG (EDF Lab, IMB)

CANUM 2022

< ≣ ▶ < ≣ ▶ Juin 2022

- ∢ ศ⊒ ▶

Petit résumé pour mes schémas basés sur HHT-alpha

Schéma HHT- α pour un problème linéaire :

$$\left(\frac{\mathbf{M}}{\tilde{\beta}\Delta t^2} + (1-\tilde{\alpha})\mathbf{K}\right)\mathbf{u}^{n+1} = \mathbf{L}^{n+1-\tilde{\alpha}} - \mathbf{M}\tilde{\mathbf{a}} - \tilde{\alpha}\mathbf{K}\mathbf{u}^n,$$

où $\tilde{\mathbf{a}} = -\frac{\mathbf{u}^n}{\bar{\beta}\Delta t^2} - \frac{\mathbf{v}^n}{\bar{\beta}\Delta t} - \frac{1-2\bar{\beta}}{2\bar{\beta}}\mathbf{a}^n$. 3 moyens différents à imposer les conditions de Signorini :

• Nitsche implicite (et pénalité standard implicite) :

$$\left(\frac{\mathbf{M}}{\tilde{\beta}\Delta t^2} + (1 - \tilde{\alpha})(\mathbf{K} + \mathbf{A})\right)\mathbf{u}^{n+1} = \mathbf{L}^{n+1-\tilde{\alpha}} - \mathbf{M}\tilde{\mathbf{a}} - \tilde{\alpha}(\mathbf{K} + \mathbf{A})\mathbf{u}^n$$

- IMEX-HHT : $\left(\frac{\mathbf{M}}{\tilde{\beta}\Delta t^{2}} + (1-\tilde{\alpha})\mathbf{K}\right)\mathbf{u}^{n+1} = \mathbf{L}^{n+1-\tilde{\alpha}} - \mathbf{M}\tilde{\mathbf{a}} - \tilde{\alpha}\mathbf{K}\mathbf{u}^{n} - \mathbf{A}\mathbf{u}^{n}$
- Pénalité inverse implicite :

$$\left(\frac{\mathbf{M}}{\tilde{\beta}\Delta t^2} + (1-\tilde{\alpha})\mathbf{K} + \mathbf{A}\right)\mathbf{u}^{n+1} = \mathbf{L}^{n+1-\tilde{\alpha}} - \mathbf{M}\tilde{\mathbf{a}} - \tilde{\alpha}\mathbf{K}\mathbf{u}^n$$

Références I

Bank, R. E., Coughran, W. M., Fichtner, W., Grosse, E. H., Rose, D. J., and Smith, R. K. (1985).

Transient simulation of silicon devices and circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 4(4) :436–451.

Bathe, K.-J. (2007).

Conserving energy and momentum in nonlinear dynamics : a simple implicit time integration scheme.

Computers & structures, 85(7-8) :437-445.

Chouly, F. and Hild, P. (2013a).

A nitsche-based method for unilateral contact problems : numerical analysis. *SIAM Journal on Numerical Analysis*, 51(2) :1295–1307.

Chouly, F. and Hild, P. (2013b).

On convergence of the penalty method for unilateral contact problems. Applied Numerical Mathematics, 65 :27–40.

Références II

Chouly, F., Hild, P., and Renard, Y. (2015a).

A nitsche finite element method for dynamic contact : 2. stability of the schemes and numerical experiments.

ESAIM : Mathematical Modelling and Numerical Analysis, 49(2) :503–528.

Chouly, F., Hild, P., and Renard, Y. (2015b).

Symmetric and non-symmetric variants of nitsche's method for contact problems in elasticity : theory and numerical experiments.

Mathematics of Computation, 84(293) :1089–1112.

Dabaghi, F., Petrov, A., Pousin, J., and Renard, Y. (2013).

Numerical approximations of a one dimensional elastodynamic contact problem based on mass redistribution method.

Hilber, H. M., Hughes, T. J., and Taylor, R. L. (1977).

Improved numerical dissipation for time integration algorithms in structural dynamics.

Earthquake Engineering & Structural Dynamics, 5(3) :283–292

Références III

Khenous, H. B., Laborde, P., and Renard, Y. (2008).

Mass redistribution method for finite element contact problems in elastodynamics. *European Journal of Mechanics-A/Solids*, 27(5) :918–932.

Kikuchi, N. and Oden, J. T. (1988).

Contact problems in elasticity : a study of variational inequalities and finite element methods.

SIAM.

Nitsche, J. (1971).

Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind.

In Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, volume 36, pages 9–15. Springer.

Oden, J. (1981).

Exterior penalty methods for contact problems in elasticity.

Nonlinear finite element analysis in structural mechanics, pages 655-665

Image: Image:

Oden, J. and Kikuchi, N. (1982).

Finite element methods for constrained problems in elasticity.

International Journal for Numerical Methods in Engineering, 18(5):701–725.

Stenberg, R. (1995).

On some techniques for approximating boundary conditions in the finite element method.

Journal of Computational and applied Mathematics, 63(1-3) :139-148.

