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Summary

• Why do we need all-regime well-balanced numerical methods to study 
convection ?

• The new solver as a algorithmic simplification of an existing method*

• Numerical results

• Why does it works ? -Flux splitting approach-
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*Chalons et al. 2016 An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes 



Star’s structure: the convective zone  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Thermally driven hydrodynamical convection
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Physical problem: Condition for the convection instability in 
star’s atmospheres

Under which conditions on the vertical profiles (temperature, pressure etc.. ) will the 
convective motion start after we apply a perturbation ?
 
Two approaches to compare and cross validate: 

        -Analytical: Using the linear stability analysis of Tremblin et al. 2019 

-> Encapsulates most known convective instabilities and predicts new ones, 
-> *Easy* to extend to additional physics (MHD). 

         -Numerical: Via  finite volume simulation using a stable well-balanced, all-regime method 

-> Allows to conserve the conservative quantities up to machine precision. 
-> Good behavior at low speed, at the beginning of the instability (all-regime), 
-> Does not generate numerical perturbation around the initial equilibrium (well-balanced),
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Physical problem: Condition for the convection instability in star’s 
atmospheres. Importance of the well-balanced property
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Physical problem: Condition for the convection instability in star’s 
atmospheres. Importance of the well-balanced property
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All Regime and/or Well balanced methods -some previous works-
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-J. M. Greenberg et al. Analysis and approximation of conservation laws with source terms. 

-L. Gosse. A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. 

-F. Bouchut. Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. 

-P. Chandrashekar et al. A second order well-balanced finite volume scheme for Euler equations with gravity. 

-C. Chalons et al. A large time-step and well-balanced Lagrange-projection type scheme for the shallow-water equations 

-C. Chalons et al. An all-regime Lagrange-projection-like scheme for the gas dynamics equations on unstructured meshes. 

-T. Padioleau et al. A high-performance and portable all-Mach regime flow solver code with well-balanced gravity,application to 
compressible convection. 



Euler’s equations for fluid dynamics

∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x (uρu + P) = ρg,

∂t(ρE) + ∂x(uρE + Pu) = ρug,

Desired properties of a numerical method:

-> Stability, namely positive preserving and entropy inequality: 

                                  

-> All-regime: The Discretization error has to be independent of the mach number . 
-> Well-balanced: Preserves the hydrostatic equilibrium  exactly 

—> The splitted acoustic/transport solver of Chalons et al. 2016 satisfies all properties ! 

ρ > 0, P > 0,  and ∂tρs + ∂xuρs ≥ 0,

Ma
∂xP = − ρ∂xϕ, u0 = 0
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The splitted acoustic/transport solver of Chalons et al. 2016

∂tρ + ρ∂xu = 0
∂t(ρu) + ρu∂xu + ∂xp = ρg

∂t(ρE) + ρE∂xu + ∂x(pu) = ρug

∂tρ + u∂xρ = 0
∂t(ρu) + u∂x(ρu) = 0

∂t(ρE) + u∂x(ρE) = 0

Acoustic system  Ac Transport system T

The idea is to resolve both system successively:  : 
 
  1) Starting from , compute  by approximating   
  2) Starting from , compute  by approximating 

Un+1 = T(Ac(Un)) = T(UAc)

(ρ, ρu, ρE)n (ρ, ρu, ρE)Ac Ac
(ρ, ρu, ρE)Ac (ρ, ρu, ρE)n+1 T
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The splitted acoustic/transport solver of Chalons et al. 2016

reads:

ρn+1
j = ρn

j −
Δt
Δx [u*,nρAc]j±1/2

(ρu)n+1
j = (ρu)n

j −
Δt
Δx [u*,n(ρu)Ac + Π*,n]j±1/2

+ Δt{ρg}n
j

(ρE)n+1
j = (ρE)n

j −
Δt
Δx [u*,n(ρE)Ac + Πu*,n]j±1/2

+ Δt{ρug}n
j
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Our new method:

reads:

ρn+1
j = ρn

j −
Δt
Δx [u*,nρn]j±1/2

(ρu)n+1
j = (ρu)n

j −
Δt
Δx [u*,n(ρu)n + Π*,n]j±1/2

+ Δt{ρg}n
j

(ρE)n+1
j = (ρE)n

j −
Δt
Δx [u*,n(ρE)n + Πu*,n]j±1/2

+ Δt{ρug}n
j
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Our new method, advantages

reads: ρn+1
j = ρn

j −
Δt
Δx [u*,nρn]j±1/2

(ρu)n+1
j = (ρu)n

j −
Δt
Δx [u*,n(ρu)n + Π*,n]j±1/2

+ Δt{ρg}n
j

(ρE)n+1
j = (ρE)n

j −
Δt
Δx [u*,n(ρE)n + Πu*,n]j±1/2

+ Δt{ρug}n
j

- Easy to implement (Easy to plug in a flux based finite volume code) 
- Easy to combine with a high order algorithm (MUSCL, WENO, MOOD etc…) 
- Memory print is dramatically reduced (no need for an intermediate array) -> HPC 
- Same good properties as the splitted method  
- Stencil reduction 2->1 
- Half CFL condition (no miracle…) 
- Entirely new kind of mathematical background: Flux splitting method* instead of 
operator splitting. 
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*Intensively studied by Steger & Warming, Zha & Bilgen, Liou & Steffen, Jameson, Bouchut, Toro 
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Numerical results, Sod’s shock tube (stable)
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Numerical results, Atmosphere at rest (Well-Balanced)
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Numerical results, Rayleigh-Taylor inst. (All-Regime)
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Numerical results, Gresho Vortex (All-Regime)
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20

*Chalons et al. 2016 An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes 

• Why do we need all-regime well-balanced numerical methods to study 
convection ?

• The new solver as a algorithmic simplification of an existing method*

• Numerical results

• Why does it works ? -Flux splitting approach-



Why does it works? -Relaxation and Flux splitting-

∂tρ + ∂x(ρu) = 0
∂t(ρu) + ∂x(uρu + Π) = − ρ∂xϕ

∂t(ρE) + ∂x(uρE + Πu) = − ρu∂xϕ
∂t(ρΠ) + ∂x (uρΠ + a2u) = ρλ(p − Π)

∂t(ρ𝒯) = 0

∂tρ + 2∂x(ρu) = 0
∂t(ρu) + 2∂x(uρu) = 0

∂t(ρE) + 2∂x(uρE) = 0
∂t(ρΠ) + 2∂x(uρΠ) = 0

∂t(ρ𝒯) + 2∂x(uρ𝒯) = 0

∂tρ = 0
∂t(ρu) + 2∂x(Π) = − 2ρ∂xϕ

∂t(ρE) + 2∂x(Πu) = − 2ρu∂xϕ
∂t(ρΠ) + 2∂x (a2u) = 0

∂t(ρ𝒯) − 2∂xu = 0,

Advection system Pressure system
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Why does it works? -The averaging interpretation-

Un

UA

Un+1 =
UP + UA

2

UP

Advection step Pressure step

Average Average
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Why does it works ? -time consistency-

Un+1
j =

UA
j + UP

j

2
=

ρn
j −

Δt
Δx [u*,nρn]j±1/2

(ρu)n
j −

Δt
Δx [u*,n(ρu)n + Π*,n]j±1/2

+Δt{ρg}n
j

(ρE)n
j −

Δt
Δx [u*,n(ρE)n + Πu*,n]j±1/2

+Δt{ρug}n
j

The update is consistent with the Euler system because of the factor 2 in fluxes of the sub-systems. 
—>The associated waves are twice as fast. 
—>In practice, it means that we have to use a CFL number < 0.5
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Why does it works ? -stability of the Advection flux udpate-

∀b ∈ {u, E, Π, 𝒯} (ρb)A
i = (ρb)n

i −
Δt
Δx (u*i+1/2(ρbn)i+1/2 − u*i−1/2(ρb)n

i−1/2),

↔ bA
j = a1 bn

j+1 + a2 bn
j + a3 bn

j−1

Convex combination under CFL condition  !
Δt
Δx (u*,+

j+1/2 − u*,−
j−1/2) <

1
2
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With  and all a1 + a2 + a3 = 1 aj > 0



Why does it works ? -stability of the Advection flux update-

Since  is concave:(𝒯, E, u) → s(𝒯, e(E, u))

(ρs)A
j − (ρs)n

j + 2
Δt
Δx (u*j+1/2(ρs)n

j+1/2 − u*j−1/2(ρs)n
j−1/2) ≥ 0 *
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∀b ∈ {u, E, Π, 𝒯} bA
j = a1 bn

j+1 + a2 bn
j + a3 bn

j−1 convex combination

Entropy inequality for the advection fluxes!

*Subtlety : (ρs)A
j = ρA

j s (𝒯A
j , eA

j )



Why does it works ? -stability of the Pressure flux update-

Exact same steps as in Chalons et al. 2016 provide:

(ρs)P
j − (ρs)n

j + 2
Δt
Δx (qn

j+1/2 − qn
j−1/2) ≥ 0 *

Where the flux function is consistent with 0, under the pressure CFL condition. 

-Result comes from the resolution of the LD Riemann problem for the pressure system 
-The entropy inequality can be violated for low values of the Low-Mach correction -> 
Checkerboard modes, not AP
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*Subtlety : (ρs)P
j = ρA

j s (𝒯P
j , eA

j )



Why does it works ? -stability of the full scheme-

→
(ρs)P

j + (ρs)A
j

2
− (ρs)n

j +
Δt
Δx (u*j+1/2(ρs)n

j+1/2 + qn
j+1/2 − u*j−1/2(ρs)n

j−1/2 − qn
j−1/2) ≥ 0

We have   

By concavity of 

(ρs)n+1
j >

(ρs)P
j + (ρs)A

j

2

η : (ρ, ρ𝒯, ρu, ρE) ↦ ρs ( ρ𝒯
ρ

,
(ρE)

ρ
−

(ρu)2

2ρ2 )
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(ρs)P
j − (ρs)n

j + 2
Δt
Δx (qn

j+1/2 − qn
j−1/2) ≥ 0

(ρs)A
j − (ρs)n

j + 2
Δt
Δx (u*j+1/2(ρs)n

j+1/2 − u*j−1/2(ρs)n
j−1/2) ≥ 0

(ρs)n+1
j



Why does it works ? -stability of the full scheme-

Full entropy inequality:

28

(ρs)n+1
j − (ρs)n

j +
Δt
Δx (u*j+1/2(ρs)n

j+1/2 + qn
j+1/2 − u*j−1/2(ρs)n

j−1/2 − qn
j−1/2) ≥ 0

Is indeed a discrete equivalent of: 

∂tρs + ∂xuρs ≥ 0.

(ρs)n+1
j



Conclusion-perspectives

• The procedure was also applied successfully to splitted Lagrange-projection methods for 
other systems; -Ideal MHD, M1 model for radiative transfer. Should also work for shallow-
water equations and the 5 equations two phases flow model.

• The flux-based update we obtained was successfully plugged in existing MUSCL and 
MOOD based codes,

• Implicit/explicit approach for the low Mach CFL issue should be straightforward,

• One important issue remains: The checkerboard modes.

• Main takeaway: If you use a splitted method, give the un-splitting a shot !
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Thanks for your attention
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Why does it works ? -stability of the advection step-

∀b ∈ {u, E, Π, 𝒯} (ρb)A
i = (ρb)n

i −
Δt
Δx (u*i+1/2(ρbn)i+1/2 − u*i−1/2(ρb)n

i−1/2),

↔ ( ρb
ρ )

A

j
= λ(+1)

j ( ρb
ρ )

n

j+1
+ λ(0)

j ( ρb
ρ )

n

j
+ λ(−1)

j ( ρb
ρ )

n

j−1
.

λ(+1)
j = −

Δt
Δx

u*,−
j+1/2 (

ρn
j+1

ρA
j ), λ(0)

j = [1 −
Δt
Δx (u*,+

j+1/2 − u*,−
j−1/2)] (

ρn
j

ρA
j ), λ(−1)

j =
Δt
Δx

u*,+
j−1/2 (

ρn
j−1

ρA
j ) .

ρA
j = −

Δt
Δx

u*,−
j+1/2ρn

j+1 +
Δt
Δx

u*,+
j−1/2ρn

j−1 + [1 −
Δt
Δx (u*,+

j+1/2 − u*,−
j−1/2)] ρn

j ,  we have 

  : convex combination under CFL condition  !λ(+1)
j + λ(0)

j + λ(−1)
j = 1

Δt
Δx (u*,+

j+1/2 − u*,−
j−1/2) < 1

Where

Since 
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Why does it works ? -stability of the advection step- simplifier

∀b ∈ {u, E, Π, τ}, ( ρb
ρ )

A

j
= λ(+1)

j ( ρb
ρ )

n

j+1
+ λ(0)

j ( ρb
ρ )

n

j
+ λ(−1)

j ( ρb
ρ )

n

j−1
, λ(+1)

j + λ(0)
j + λ(−1)

j = 1

Noting , we have that:  by concavitye(u, E) = E −
1
2

u2 eA
j > en

j+1λ
(+1)
j + en

j λ(0)
j + en

j−1λ
(−1)
j

Since  is concave too:(𝒯, E, u) → s(𝒯, e(E, u))

ρA
j s (𝒯A

j , eA
j ) − ρn

j sn
j +

Δt
Δx (u*j+1/2ρn

j+1/2s
n
j+1/2 − u*j−1/2ρn

j−1/2s
n
j−1/2) ≥ 0
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Why does it works ? -stability of the Pressure step-

Exact same steps as in Chalons et al. 2016 provide:

ρP
j s (𝒯P

j , eP
j ) − ρn

j s (1/ρn
j , en

j ) +
Δt
Δx (qn

j+1/2 − qn
j−1/2) ≥ 0

Where the flux function is consistent with 0, under the pressure CFL condition. 

-Result comes from the resolution of the LD Riemann problem for the pressure system 
-The entropy inequality can be violated for low values of the Low-Mach correction -> 
Checkerboard modes, not AP
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Why does it works ? -stability of the full scheme- simplifier

ρP
j s (𝒯P

j , eP
j ) − ρn

j s (1/ρn
j , en

j ) +
Δt
Δx (qn

j+1/2 − qn
j−1/2) ≥ 0

ρA
j s (𝒯A

j , eA
j ) − ρn

j sn
j +

Δt
Δxj

(u*j+1/2ρn
j+1/2s

n
j+1/2 − u*j−1/2ρn

j−1/2s
n
j−1/2) ≥ 0

→
ρP

j s (𝒯P
j , eP

j ) + ρA
j s (𝒯A, eA

j )
2

− ρn
j s (1/ρn

j , en
j ) +

Δt
2Δx (u*j+1/2ρn

j+1/2s
n
j+1/2 + qn

j+1/2 − u*j−1/2ρn
j−1/2s

n
j−1/2 − qn

j−1/2) ≥ 0

We need  ρn+1
j s(1/ρn+1

j , en+1
j ) >

ρP
j s (𝒯P

j , eP
j ) + ρA

j s (𝒯A
j , eA

j )
2
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Why does it works ? -stability of the full scheme- simplifier

We need  ρn+1
j s(1/ρn+1

j , en+1
j ) >

ρP
j s (𝒯P

j , eP
j ) + ρA

j s (𝒯A
j , eA

j )
2

ρn+1
j s (1/ρn+1

j , en+1
j ) = ρn+1

j s
1

ρn+1
j

,
(ρE)n+1

j

ρn+1
j

−
1
2 (

(ρu)n+1
j

ρn+1
j )

2

= η (ρn+1
j , 1, (ρu)n+1

j , (ρE)n+1
j )

= η (ρn+1
j , (ρ𝒯)n+1

j , (ρu)n+1
j , (ρE)n+1

j ) = η ∑
k=A,P

ρk
j

2
, ∑

k=A,P

(ρ𝒯)k
j

2
, ∑

k=A,P

(ρu)k
j

2
, ∑

k=A,P

(ρE)k
j

2
.

Lemma:  is concave, thus:η

ρn+1
j s (1/ρn+1

j , en+1
j ) ≥ ∑

k=A,P

1
2

η (ρk
j , (ρ𝒯)k

j , (ρu)k
j , (ρE)k

j ) = ∑
k=A,P

1
2

ρk
j s (𝒯k

j , ek
j )

We define η : (ρ, ρ𝒯, ρu, ρE) ↦ ρs ( ρ𝒯
ρ

,
(ρE)

ρ
−

(ρu)2

2ρ2 )
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