A new brittle-elastoviscoplastic fluid based on the Drucker-Prager plasticity

Pierre Saramito¹ CNRS, Lab. J. Kuntzmann, Grenoble, France

Motivation: sea ice

 sea ice drift: due to ocean currents and wind

 accelerated: due to global heating

[Polar region atlas, CIA, 1978]

Motivation: sea ice

deformation rate $|D(\boldsymbol{u})|$

velocity |**u**|

[Kwok 2010] satellite observation

⇒ piecewise constant velocity localization, fracture network Progressive damage

pierre.saramito@math.cnrs.fr 4

Outline

- 1. Rheology and thermodynamics
- 2. The new BEVP model
- 3. Numerical experiments

 $\implies \text{elastoviscoplastic fluid} \\ \underset{\text{extension: } \mu, \nu(d)}{\text{extension: } \mu, \nu(d)} \\ \text{some parameters depend upon damage } d$

[Saramito 2007]

Why thermodynamics ?

- it has a physical meaning
- it directly leads to constitutive equations
- it leads to well-posed math problems avoids fields to tend to infinity...
- it permits efficient numerical methods

Thermodynamics

variables

- γ : deformation tensor
- γ_p : its irreversible part
- d : damage

 $\dot{\boldsymbol{\gamma}}, \dot{\boldsymbol{\gamma}}_p, \dot{\boldsymbol{d}}$: rate variables

• functions

- $\psi(\gamma, \gamma_p, d)$: Helmholtz free energy $\phi(\dot{\gamma}, \dot{\gamma}_p, \dot{d})$: dissipation potential
- \Rightarrow constitutive equations

$$\sigma = \rho \frac{\partial \psi}{\partial \gamma} + \frac{\partial \phi}{\partial \dot{\gamma}}$$
$$0 = \rho \frac{\partial \psi}{\partial \gamma_p} + \frac{\partial \phi}{\partial \dot{\gamma}_p}$$
$$0 = \rho \frac{\partial \psi}{\partial d} + \frac{\partial \phi}{\partial \dot{d}}$$

standard generalized materials

[Germain 1973 ; Moreau 1974 ; Halphen & Nguyen 1975 ; Saramito 2016] pierre.saramito@math.cnrs.fr 8 Example 1: Maxwell viscoelatic fluid

- variables : γ, γ_p
- functions

$$\psi(\boldsymbol{\gamma}, \boldsymbol{\gamma}_{p}) = \frac{G}{\rho} |\boldsymbol{\gamma} - \boldsymbol{\gamma}_{p}|^{2}$$
$$\phi(\dot{\boldsymbol{\gamma}}, \dot{\boldsymbol{\gamma}}_{p}) = \eta |\dot{\boldsymbol{\gamma}}_{p}|^{2}$$

 \Rightarrow constitutive equations

$$\sigma + pI = \sigma_e$$

 $\frac{\dot{\sigma}_e}{G} + \frac{\sigma_e}{\eta} = 2\dot{\gamma}$

where $\sigma_e = 2G\gamma_e = \text{elastic stress}$ From kinematics: $\dot{\gamma} \rightarrow D(\boldsymbol{u})$ and $\dot{\sigma}_e \rightarrow \boldsymbol{\tilde{\sigma}_e}$ Present choice 1: Hooke's elasticity

- variables : γ, γ_p, d
- Helmholtz free energy

$$\psi(\gamma, \gamma_p, d) = \frac{G(d)}{\rho} |\gamma - \gamma_p|^2 + \frac{\lambda(d)}{2\rho} \operatorname{tr}(\gamma - \gamma_p)^2$$
$$\implies \sigma_e = \rho \frac{\partial \psi}{\partial \gamma}$$
$$= 2G(d)\gamma_e + \lambda(d) \operatorname{tr}(\gamma_e) I \qquad \text{elastic stress}$$

with
$$G(d) = rac{E(d)}{2(1 + \nu(d))}$$

 $\lambda(d) = rac{E(d) \ \nu(d)}{(1 + \nu(d))(1 - 2\nu(d))}$

Lamé coefs

and $E(d) = (1 - d)E_0$ $\nu(d) = \nu_0 + (\nu_1 - \nu_0)d$ Kachanov's elastic modulus increasing Poisson ratio, $\nu_1 \geqslant \nu_0$

pierre.saramito@math.cnrs.fr 10

data from: [Weiss Schulson, J Phys D, 2009]

 $\begin{aligned} \mathbf{\mathcal{T}}_{\mu,\sigma_{y}} &= \text{ translated Drucker-Prager cone} \\ &= \left\{ \boldsymbol{\sigma}_{e} \in \mathbb{R}_{s}^{N \times N} ; | \mathbf{dev} \, \boldsymbol{\sigma}_{e} | - \boldsymbol{\sigma}_{y} \leqslant \frac{\mu}{\sqrt{N}} \operatorname{tr} \boldsymbol{\sigma}_{e} \right\}_{\text{pierre.saramito@math.cnrs.fr}} 11 \end{aligned}$

Present choice 3: brittle damage

Damage evolution:

$$\dot{d}=0$$
 when $\sigma_e\in \mathcal{T}_{\mu,\sigma_c}$
 $\dot{d}>0$ otherwise

Two embedded DP cones

 $\sigma_y < \sigma_c \Rightarrow T_{\mu,\sigma_y} \subset T_{\mu,\sigma_c}$

 \Rightarrow plasticity, then damage

Present BEVP model

Dissipation potential

$$\phi(\dot{\gamma}, \dot{\gamma}_{p}, \dot{d}) = \eta_{s} |\dot{\gamma}|^{2} + \underbrace{\eta |\dot{\gamma}_{p}|^{2} + (\mathscr{I}_{-\tau_{\mu,\sigma_{y}}})^{*}(\dot{\gamma}_{p})}_{\phi_{p}(\dot{\gamma}_{p})} + \phi_{d}(\dot{d})$$

Main results

- satisfies the second principle of thermodynamics
- satisfies the Onsager symmetry principle

[Saramito, JNNFM, 2021]

Problem statement

(P): find d, γ_e , **u**, p such that

$$\begin{cases} \dot{d} - \nabla \phi_d^*(d, \gamma_e) = 0\\ \nabla_{e} + \nabla \phi_p^*(d, \gamma_e) - D(\boldsymbol{u}) = 0\\ \rho \dot{\boldsymbol{u}} - \operatorname{div} \boldsymbol{\sigma} = \boldsymbol{f}\\ \operatorname{div} \boldsymbol{u} = 0\\ +B.C. + I.C. \end{cases}$$

with
$$\sigma = -p\mathbf{I} + 2\eta_s D(\mathbf{u}) + \sigma_e$$

 $D(\mathbf{u}) = \frac{\nabla \mathbf{u} + \nabla \mathbf{u}^T}{2}$
 $\overline{\gamma}_e = \partial_t \gamma_e + (\mathbf{u} \cdot \nabla) \gamma_e - \nabla \mathbf{u} \gamma_e - \gamma_e \nabla \mathbf{u}^T$

Nonlinear Oldroyd-like + kinetic eqn for d

 \rightarrow classical structure

[Saramito, JNNFM, 2021]

Uniaxial compression benchmark

Uniform random heterogeneity

$$egin{array}{rll} \sigma_{y0}({m x}) &=& ar{\sigma}_{y0} \left(1+0.3\,\chi({m x})
ight) \ \sigma_c({m x}) &=& ar{\sigma}_c \left(1+0.3\,\chi({m x})
ight) \ \chi({m x}) &\in& [-1,1] \end{array}$$

 \rightarrow breaks symmetry

Damage value

Deformation rate

Averaged normal stress on top boundary

$$\overline{\sigma}_n(t) = \frac{2}{L} \int_{top} \sigma_{yy} \, \mathrm{d}x$$

Four flow regimes γ_1 : first plastic even γ_2 : first damage γ_3 : post-failure

Post-failure: deformed geometry & yield surfaces

 \overline{U}

0

Dissipation: Clausius-Duhem

$$w = -\rho\dot{\psi} + \boldsymbol{\sigma}:\dot{\boldsymbol{\gamma}}$$
$$= w_{\rho} + w_{d} \ge 0$$

pierre.saramito@math.cnrs.fr 21

Conclusion

New BEVP model

- second principle of thermodynamics
- link : soft solids & complex fluids
- new Drucker-Prager viscoplastic fluid model

Perspectives

- sea-ice \rightarrow climate changes
- earth cracks
- granular matter & suspensions

More reading

paper: Saramito, JNNFM, 2021

book: Saramito, *Complex fluids* Springer, 2016

code: Saramito, 2018 Rheolef FEM C++ library Free software: GPL licence http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef

Mathématiques et Applications 79

Complex fluids Modeling and Algorithms

Pierre Saramito

Discretization

Parameter set

param	value	dimension	num	ber	value	expression
L	200×10^{3}	m	W	e	5×10^{-4}	$U(\eta_s+\eta_0)/(LE_0)$
U	2×10^{-3}	$m.s^{-1}$	We	d	10 ⁻⁷	$U\eta_d/(LE_0)$
E ₀	28×10^{6}	Pa	γ_y	,	1.8×10^{-3}	σ_{y0}/E_0
σ_{y0}	50×10^{3}	Pa	γ_{c}	:	2×10^{-3}	σ_c/E_0
σ_c	56×10^{3}	Pa	ν_0)	0.30	
η_0	$1.4 imes 10^{12}$	Pa.s	ν_1		0.49	
η_s	1.4×10^{8}	Pa.s	μ		0.7	
η_d	2.8×10^{8}	Pa.s	1 -	α	10 ⁻⁴	$\eta_s/(\eta_s+\eta_0)$

Viscoelasticity: expansion

$$\stackrel{\scriptscriptstyle imes}{\gamma}_e +
abla \phi^*_{\pmb{
ho}}(\pmb{\sigma}_e) - D(\pmb{u}) = 0$$

where

$$\boldsymbol{\sigma}_{e} = 2G(d)\boldsymbol{\gamma}_{e} + \lambda(d)\operatorname{tr}(\boldsymbol{\gamma}_{e})\boldsymbol{I}$$
$$\nabla \phi_{p}^{*}(\boldsymbol{\sigma}_{e}) = \frac{\kappa_{\mu,\sigma_{y}}(\boldsymbol{\sigma}_{e})}{2\eta(1+\mu^{2})} \left(\boldsymbol{\sigma}_{e} - \frac{\xi_{\mu,\sigma_{y}}(\boldsymbol{\sigma}_{e})}{\sqrt{N}\mu}\boldsymbol{I}\right)$$

 and

$$\kappa_{\mu,\sigma_{y}}(\boldsymbol{\sigma}_{e}) = \begin{cases} 1 + \mu^{2} & \text{when } -\mu^{2} |\mathbf{dev} \, \boldsymbol{\sigma}_{e}| \geq \sigma_{y} - \frac{\mu}{\sqrt{N}} \operatorname{tr} \boldsymbol{\sigma}_{e} \\ 1 - \frac{\sigma_{y} - \frac{\mu}{\sqrt{N}} \operatorname{tr} \boldsymbol{\sigma}_{e}}{|\mathbf{dev} \, \boldsymbol{\sigma}_{e}|} & \text{when } -\mu^{2} |\mathbf{dev} \, \boldsymbol{\sigma}_{e}| < \sigma_{y} - \frac{\mu}{\sqrt{N}} \operatorname{tr} \boldsymbol{\sigma}_{e} \\ < |\mathbf{dev} \, \boldsymbol{\sigma}_{e}| \\ 0 & \text{otherwise} \end{cases}$$
$$\xi_{\mu,\sigma_{y}}(\boldsymbol{\sigma}_{e}) = \min \left(\sigma_{y}, \quad \frac{\mu \operatorname{tr} \boldsymbol{\sigma}_{e}}{\sqrt{N}} - \mu^{2} |\mathbf{dev} \, \boldsymbol{\sigma}_{e}| \right)$$

pierre.saramito@math.cnrs.fr 26

Damage: expansion

$$\dot{d} = \nabla \phi_d^*(d)$$

$$egin{aligned}
abla \phi^*_d(d) &= rac{(1-d) \; \kappa_{\mu,\sigma_e}(\sigma_e)}{2\eta_d(1+\mu^2)} \; Y \ Y &= -\left\{2G'(d) oldsymbol{\gamma}_e + \lambda'(d) \operatorname{tr}(oldsymbol{\gamma}_e) I
ight\} : oldsymbol{\gamma}_e \end{aligned}$$