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Introduction
®0

Dengue

Aedes aegypti

* Mosquito-borne viral infection found in tropical and
subtropical regions around the world.

® It occurs in urban and peri-urban areas, with peak
transmission during the rainy season.

* Four types of viruses (DENV-1, DENV-2, DENV-3,
DENV-4), which transmit through the bite of infected

Aedes aegypti and Aedes albopictus female
mosquitoes during the daytime.
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oe

Dengvaxia

The first commercialized vaccine is CYD-TDV, marketed as
dengvaxia by Sanofi Pasteur.

It was licensed in December 2015 and approved in 11
countries including Philippines.

It is a live attenuated chimeric product made using
recombinant DNA technology by replacing the PrM
(pre-membrane) and E (envelope) structural genes of yellow
fever attenuated 17D strain vaccine with those from the four
dengue serotypes.

It should be administered in three doses of 0.5 mL
subcutaneous (SC) six months apart.

It is indicated for the prevention of dengue fever caused by
dengue virus serotypes 1, 2, 3 and 4 in subjects aged 9 to 45
years with a history of dengue virus infection and living in
areas endemic.
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Description of the Model
0@000

The dynamics of humans is @—@

_ abpln(t) i

sty = —Zels, :
Ity = a’g”é;) (bnSh(t) + Ehgh(f)) — Ynln(t) — Snln(t)

S = anh(t) - G

Ru(t) = dnln(t)
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Description of the Model
0@000

The dynamics of humans is @—@

_ abpln(t) i

s = -2l “m
/,/,(l‘) = a’g”é;) (thj(f) + Ehgh(f)) — Yaln(t) — dnln(t)
S = anh(t) - G
Ru(t) = 6nl(2)
H(t)=0
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Description of the Model
[e]e] le]e}

The dynamics of mosquitoes is:

abmlh(1) -

Su(t) =~ 25 Su(0) ~ unSu(t) + o(M(0)
() = 0800 — inin(t)
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Description of the Model
[e]e] le]e}

The dynamics of mosquitoes is:

abm Ih(t) o o

Su(t) =~ 25 Su(0) ~ unSu(t) + o(M(0)
L) = ab,_";(’;)(”sma)—umlm(t).

M (t) = (ame™ "0 — um)M(t) := g(M)
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Description of the Model
[e]e] le]e}

The dynamics of mosquitoes is:

abmlh(1) -

Su(t) =~ 25 Su(0) ~ unSu(t) + o(M(0)
() = 0800 — inin(t)

M (t) = (ame™ "0 — um)M(t) := g(M)

P.-A. Bliman, D. Cardona-Salgado, Y. Dumont, and O. Vasilieva (2019)
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Description of the Model
[e]e]e] lo}

Global Well-posedness Theorem "

The domain Q defined by
Q:{UeRi;ogsh+lh+§h+R,,=Ho,

058m+lm§maX<5 Mo)} (1)

is positively invariant. In particular, for an initial datum in €2, there exists a
unique global in time solution U in C(R4, ).
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Description of the Model
[e]e]ee] ]

Disease Free Equilibrium
Ei = (S;,0,S;, R;,0,0)
E: = (83.0.8;, Ry, 5 1n (22),0)

Hm

Y.Mammeri, C.Mentuda Control strategies fmor dengue



Description of the Model
[e]e]ee] ]

Disease Free Equilibrium
Ei = (S;,0,S;, R;,0,0)
E: = (85,0, Ay 5-1n (22) ,0)

@b In (21 ) (b S; +5, S} )

Hgﬂmﬁm(7h+5h)

Ro < 1 where Rg = \/
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Description of the Model
[e]e]ee] ]

Disease Free Equilibrium
Er =(S;,0,S;, R;,0,0)
E: = (83.0.8;, Ry, 5 1n (22),0)

@b In (21 ) (b S; +5, S} )
HE 11mBm(h+5h)

O Ilfam < pm, then E; is globally asymptotically stable.
® Ifam > um and R > 1, then E, is globally asymptotically stable.

Ro < 1 where Rg = \/
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Description of the Model
[e]e]ee] ]

Disease Free Equilibrium
Ei = (S;,0,S;, R;,0,0)
E: = (85,0, Ay 5-1n (22) ,0)

@b In (21 ) (b S; +5, S} )
Hgﬂmﬁm(7h+5h)

Ro < 1 where Rg = \/

Theorem

O Ilfam < pm, then E; is globally asymptotically stable.
® Ifam > um and R > 1, then E, is globally asymptotically stable.

The basic reproduction number Ro has a biological meaning when am > pm.
It means that the average number of new infected humans is proportional to
the transmission rate due by biting during the infection period 1/(y» + ) and
mosquitoes life expectancy 1/ um.
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Optimal Control Problem
®0000000

Optimal Control Problem

We consider the objective function
T(wy, wa, wm) = [} In(t) + 3 (Arw2(t) + Asw(t) + Amwi(t)) ot

subject to
_ abpIm(t)Sh(t) _

Si() = e Wi (1)Sn(t)
C aln(t) (baSa(t) + BrSa(1))
I(t) = m — Yalo(t) — Snln(t)
fé/g(t) = 'thh(t) - %:)Im(t) = Wa(t)éh(t)
Ri(t) = Snln(t)
(1) = 222250 4 g(9) — umSn(t) = w050
In(t) = %jsm(t) — pmlm(t) — Win(t)Im(t)

Y.Mammeri, C.Mentuda Control strategies fmor dengue




Optimal Control Problem
®0000000

Optimal Control Problem

We consider the objective function
T(wy, wa, wm) = [} In(t) + 3 (Arw2(t) + Asw(t) + Amwi(t)) ot

subject to
_ abpIm(t)Sh(t) B

Sh(t) = . wi (£)Sh(1)
L aln(t) (BaSh(t) + BrSn(1))
I(t) = m — Yalo(t) — Snln(t)
fé/g(t) = 'thh(t) - %:)Im(t) = Wa(t)éh(t)
Ri(t) = Snln(t)
(1) = 222250 4 g(9) — umSn(t) = w050
In(t) = %jsm(t) — pmlm(t) — Win(t)Im(t)

Y.Mammeri, C.Mentuda Control strategies fmor dengue




Optimal Control Problem
®0000000

Optimal Control Problem
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Optimal Control Problem
®0000000

Optimal Control Problem

We consider the objective function
T(wy, wa, wm) = [} In(t) + 3 (Arw2(t) + Asw(t) + Amwi(t)) ot

subject to
_ abpIm(t)Sh(t) _

Si() = e Wi (1)Sn(t)
C aln(t) (baSa(t) + BrSa(1))
I(t) = m — Yalo(t) — Snln(t)
fé/g(t) = 'thh(t) - %:)Im(t) = Wa(t)éh(t)
Ri(t) = Snln(t)
(1) = 225D 4 g() — amSut) — w0500
In(t) = %jsm(t) — pmlm(t) — Win(t)Im(2)
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Optimal Control Problem
O®@000000

There exists an optimal control w* = (wy (t), ws (t), wny(t)) such that

j(w1*7 W;7 WI;) = n‘]inWEW j(W17 Ws, Wm)

under the constraint (Sh, In, 5,,, Ry, Sm, Im) is a solution of the system.
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Optimal Control Problem
O®@000000

Lemma

There exists an optimal control w* = (wy (t), ws (t), wny(t)) such that
j(w1*7 W;7 WI;) = rnir1W€W j(W17 Ws, Wm)

under the constraint (Sh, In, 5,,, Ry, Sm, Im) is a solution of the system.

e

We used the Pontryagin’s maximum principle to find the optimal control w* that
minimizes, at each instant ¢, the Hamiltonian given by

1
H=3 (Ih+ AW + Agws + Anw?)
abylmS| aby S, =
+ A —M—W1Sn>+>\3 Yol — 2 w8
Ho HO

al, thh + b,,Sh
" ) — Ynlh — 5h/h> + X4(Snln) ®)

+ A5

+g(M) — imSm — WmSm)

abml,,sm R >
- — Wmim ) .

A
+ As Fo

I G
( abm InSm
(=
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Optimal Control Problem
[e]e] le]e]ele]e]

Lemma |

There exist the adjoint variables \i,i = 1,2, --- ,6 of the system (2) that satisfy
the following backward in time system of ODE:

N (S T

f% = 14 Da(—7h — 3n) + AgTh + A — As abzfm 42 ab,”f’"

_% = A2 aéliolm + A3 <_é;ihlm = W3>

— % =0

—% =)\ al;:fh + X2 ath,,:I;aEhgh — A3 a%fh + As%‘i — Xe(1tm + Wm)
with the transversality condition A\(T) = 0. )
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Optimal Control Problem
O00@0000

Mheorom

The optimal control variables are given by
wy(t) = max (O,min (/\1—8’7, WH))
A
w3 (t) = max (O,min <>\38h, WH>>
As
wp(t) = max (O, min (/\58747—’_)\6%, WM))
m y
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Optimal Control Problem
[e]e]ee] lelele]

Numerical Simulation of Optimal Control

The parameters are taken from Indonesia. (Braselton, lurii. [2015].)
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Optimal Control Problem
[e]e]ee] lelele]

Numerical Simulation of Optimal Control

The parameters are taken from Indonesia. (Braselton, lurii. [2015].)

We compare vaccination, vector control, and the combination.

Algorithm 2 Computation of optimal control of dengue-dengvaxia model

Given U° = (10%,0,0,0,10°,10°) as initial datum , a final time T > 0 and a
tolerance ¢ > 0.
Let w?, w2, wd, randomly chosen following AV(0, 1).
while ||[VH(w", U",\")|| > ¢, do
solve the forward system u”,
solve the backward system A",
update w”
solve the gradient VH(w", U", \")
end while
w* =w".
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Optimal Control Problem
[e]e]ele]e] lele]

Responses comparison for infected humans

6000 —— Vaccination and Vectorial
—— Vectorial
—— Vaccination
5000 —— Without control
- Secondary only
4000
s’ 3000
2000
1000
0
0 20 40 60 80 100
Time

Control strategies fi
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Optimal Control Problem
00000080
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Optimal control

Optimal Control Problem
O000000e
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Mosquito Life Cycle
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Accounting the Life Cycle of Mosquito
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Mosquito Life Cycle
®000000

Accounting the Life Cycle of Mosquito

Female needs blood

Mating
for egg production

Oviposition, eggs laid most times

Adult emerges slightly above the water level

from the pupa Wmago

Adult insect

i__4 Pupa

Moulting between each stage — .
Fourth larval stage I‘J First larval stage

7 Second larval stage

N

When covered with water,
larvae emerge from eggs

Third larval stage

© Biogents, . Schleip

Figura 1: Life cycle of Aedes mosquitoes.




Mosquito Life Cycle
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Accounting the Life Cycle of Mosquito

adult mosquito

+ larva

<.F




Mosquito Life Cycle
[e]e] le]elele)

Governing Equation

The equation that governs the dynamics of the metamorphosis of mosquito po-

pulation is
E'(t) = am(Sm(t)+ In(t)) —ve.LE(t) — neE(t)
L'(t) = ~erE(t) —ypL(t) — pL(t)
P(t) = ~LpL(t) —p.s,P(t) — upP(t)

for young mosquito
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Mosquito Life Cycle
[e]e] le]elele)

Governing Equation

The equation that governs the dynamics of the metamorphosis of mosquito po-

pulation is
E'(t) = am(Sm(t)+ In(t)) —ve.LE(t) — neE(t)
L'(t) = ~erE(t) —ypL(t) — pL(t)
P(t) = ~LpL(t) —p.s,P(t) — upP(t)

for young mosquito and of the adult mosquito is

Su(t) = p.5,P(t) — 1aSm(t) — abmln(t)Sm(t)
() = abmlh(t)Sm(t) — paln(t)

with total population of Ma = Sy + Im, My = E+ L+ P
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Mosquito Life Cycle
[e]e]e] lelele)

Control Strategy

Copepode
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Mosquito Life Cycle
[e]e]e] lelele)

Control Strategy
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Mosquito Life Cycle
[e]e]e] lelele)

Control Strategy

Copepods are natural enemies of the
first and second instar of mosquito
larvae. Large sized cyclopoid
copepods act as predators of mosquito
larvae which strongly influence the
mosquito larval population.
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Mosquito Life Cycle
[e]e]e] lelele)

Control Strategy

Copepods are natural enemies of the
first and second instar of mosquito
larvae. Large sized cyclopoid
copepods act as predators of mosquito Space Spraying or Fogging
larvae which strongly influence the
mosquito larval population.
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Mosquito Life Cycle
[e]e]e]e] lele)

Control Strategy

¢ Copepode

L'(t) = ve L E(t) — yL,pL(t) — peL(2)
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Mosquito Life Cycle
[e]e]e]e] lele)

Control Strategy

¢ Copepode

L'(t) = ve L E(8) — yupL(t) — peL(t) —wyL(t)
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Mosquito Life Cycle
[e]e]e]e] lele)

Control Strategy

¢ Copepode
| L'(t) = v, E(t) — pL() — pL(t) —wy (1)
* Pesticide

Si(t) = p,5, P(t) — 1aSm(t) — abmls(t)Sm(t)
In(t) = @bmln(t)Sm(t) — praln(t)
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Mosquito Life Cycle
[e]e]e]e] lele)

Control Strategy

¢ Copepode
| L'(t) = veLE(t) — ywpL(t) — pil(t) —wyL(D) |
* Pesticide

S4(t) = vp.5, P(t) — 11aSm(t) — @bmlh(t)Sm(t)—WaSm(t)
I(t) = @bmln(t)Sm(t) — rualm(t)
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Mosquito Life Cycle
[e]e]e]e] lele)

Control Strategy

¢ Copepode
| L'(t) = veLE(t) — ywpL(t) — pil(t) —wyL(D) |
* Pesticide

S4(t) = vp.5, P(t) — 11aSm(t) — @bmlh(t)Sm(t)—WaSm(t)
1,(2) = abmln(£)Sm(t) — palm(t)—waln(t)
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Mosquito Life Cycle
0000080

Optimal Solutions of the Infected Huma

Copepode & Pesticide 1e6 Pesticide & Vaccination

—
|
=

L D
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0 i o
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Time Time
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n — —
12 [\ .

e

Time




Optimal Con

Mosquito Life Cycle
O00000e
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Spatial Distribution
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Dengue Model with Spatial Distribution
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Spatial Distribution
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Dengue Model with Spatial Distribution

Consider a domain Q c R2.
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Spatial Distribution
®0000000000

Dengue Model with Spatial Distribution

Consider a domain Q c R2.

Diffusion coefficient J

D(X,y):Dmin+a]:l(X,y)+5]:f(X,y) (4)
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Spatial Distribution

®0000000000

Dengue Model with Spatial Distribution

Consider a domain Q c R2.

Diffusion coefficient J

D(X,y):Dmin+a]:[(X,y)+5]:f(X,y) (4)

* Dpin as the minimal diffusion value in the absence of resources perception

* Fi(x,y) and F¢(x, y) as the dispersion kernels that covered the entire
landscape of the involved resources

° « and g are coefficients used to weight the differential impact of resources
on the diffusion intensity
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Spatial Distribution
O®000000000

Dengue Model with Spatial Distribution

Consider a domain Q c R2.

Diffusion coefficient J

D(x,y) = Dmin + aFi(X,y) + BFi(X, y) (5)

2 _q Ki(d) x (X, y)

Fley) = = Kd)
Fi(x.y) = 20 K/Z(Z)f?/(g(x’ y)
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Spatial Distribution
O®000000000

Dengue Model with Spatial Distribution

Consider a domain Q c R2.

Diffusion coefficient J

D(x,y) = Dmin + aFi(X,y) + BFi(X, y) (5)

2 _q Ki(d) x (X, y)
20 Ki(d)

g Ki(d) xH(x, y)
2o Ki(d)

-Ff(X7.y) =

]:/(Xv}/) =

with
Ki(d) = e
K/(d) — e—C/d
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Spatial Distribution
[e]e] lele]e]ee]ele]e)

Dengue Model with Spatial Distribution

Defining the population density of adults mosquito for every (x, y) € Q and we

have
aSm(t, X, y) _ _
8t —’YP,SmP(taX:Y) ,LLASm(t,X,y) (6)
— abmin(t, X, ¥)Sm(t, x,y) + D(X, y)ASn(t, X, y)
alm(t7 X, y) _ _
S = abnh(t, X, ¥)Sn(t, X, y) = paln(t X, y) %

+ D(X,y)Alm(t,X,y)
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Spatial Distribution
[e]e] lele]e]ee]ele]e)

Dengue Model with Spatial Distribution

Defining the population density of adults mosquito for every (x, y) € Q and we

have
aSm(t, X, y) _ _
8t —’YP,SmP(taX:Y) ,LLASm(t,X,y) (6)
— abmin(t, X, ¥)Sm(t, x,y) + D(x, y)ASn(t, x,y)
alm(t7 X, y) _ _
S = abnh(t, X, ¥)Sn(t, X, y) = paln(t X, y) %

+ D(X,y)A/m(t, X7y)
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Spatial Distribution
0O00@0000000

Theorem: Global Well-posedness

Let 0 < Sho, Ih,0, Rno < Hoand 0 < Eg, Lo, Po < My, 0 < Sio, Imo < Mayo
where Hy, My o and M, are the initial population density for human, young
mosquito and adult mosquito population, respectively. Then there exists a
unique global in time weak solution U € L* (R, L*°(Q))?, of the initial
boundary value problem. Moreover, the solution is nonnegative, S, + I < Hp
and E+ L+ P < Myo Sn+ Im < Magp.
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Spatial Distribution
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Optimal Control of the Dengue Model with Spatial Distribution
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Spatial Distribution
[e]e]e]e] le]ele]ele]e)

Optimal Control of the Dengue Model with Spatial Distribution

Consider the problem
m|n|m|ze J(U,w) where 7(U,w) = [, fo X, t))dtdX
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Spatial Distribution
[e]e]e]e] le]ele]ele]e)

Optimal Control of the Dengue Model with Spatial Distribution

Consider the problem
m|n|m|ze J(U,w) where 7(U,w) = [, fo X, t))dtdX

such that

1 1 1
f(U, w, (x, 1)) = In(x, t) + §Ayw'¢‘(x, t) + EAAWA?(X, t) + EAHWE,(X, 1),
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Spatial Distribution
[e]e]e]e] le]ele]ele]e)

Optimal Control of the Dengue Model with Spatial Distribution

Consider the problem
m|n|m|ze J(U,w) where 7(U,w) = [, fo X, t))dtdX

such that
1 1 1
f(U, w, (x, 1)) = In(x, t) + §Ayw'¢‘(x, t) + EAAWA?(X, t) + EAHWE,(X, 1),
subject to

h(U, U, w, (x,1)) =0
9(U(0), w) = (Eo, Lo, Po, Sm,0, Im,0, Sh,0 In,0, Rh,0)
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Spatial Distribution
[e]e]e]e]e] lele]ele]e)

There exists the adjoint variables \;,i = 1,2, - | 6 that satisfy the following
backward in time system of partial differential equations

_w =M% Ope + (A (X 1) = Aa(x: O)eL

*% = Xa(x, ) (e + wy) + (Aa(x, t) — Aa(x, )P

*% = Xs(x, e + (As(X, 1) — Xa(X, )vp, 5
,% — DAN = =21 (%, o + Aa(X, )(1a + wa) + (Ma(X, 1) — As(X, 1)) abmln(x, 1)
_% — DAXs = — A1 (X, f)am + As(X, D)(1a + wa) + (e (X, 1) — Ar(X, 1))abnSh(x, 1)

‘% = X6(X, Wi + (X6 (X, 1) — Az (x, 1)) abnlm(x, 1)

_W =14+ (0 1) — As(x, 0)on + (Aa(X 1) — As(X, 1))@bmSm(x. 1)

- Pe0D _ (xgtx, 1) — rstx, O
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There exists the adjoint variables \;,i = 1,2, - | 6 that satisfy the following
backward in time system of partial differential equations

B d/\1¢§;(’ 2 - A (X e + (A (6 1) = Ao (X, ) ve,L

_ dAz(S:(, ) _ Ao (X, £) (e + wy) + (A2(x, 1) — Xa(x, t)vLp

_ dxssf, ) _ As(x, e + (As(x, 1) — Xa(X, D)vp, s
,aMa(;m ) DAXs = — A1 (X, D)am + Ma(X, 1)(1ea + Wa) + (Ma(X, ©) — As(x, 1))abmln(x, 1)
_axsa(;m D _ pars = A1 (%, Bam + As(X, D) (14 + wa) + (As(X, ) — A7(X, £))abySh(x, 1)

_ dAGC(i:(, ) _ e(X, DWW + (e (X, 1) — A7 (X, 1)) abpln(x, )

- dh;:’ D _ 14 (1) = sl D) + (Aa(x, 1) = As(x, D)abmSm(x, 1

B d)\ac(lj(’ ) - (Aa(x, ) = As(x, )

with the transversality condition A"(x, T) = 0
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There exists the adjoint variables \;,i = 1,2, - | 6 that satisfy the following
backward in time system of partial differential equations

S PD e, e+ (a1 = el D
~ D 0, 00+ W) + a6, ) = Ao, D)
~ D st + s, 1) = Ml D)5
76”‘;;’ D DANG = — X (x Dam + Aa(x (11 + Wa) + (Ra(x. 1) — As(x, £))abmlh(x, 1)
_8A5a(f’ D DANs = —A(x, ) + As(x )11 + Wa) + (o(x. 1) — A7(x, 1))abnSn(x. 1)
_ dAGC(i:" D X0, ) + Qva(x, ) — A7(x, ) abnhm(x, £)
_ ‘”7;;" D _ 14 (a(x, 1) = Ra(x, D)o+ (a(, £) = As(X, 1)) abmSm(x, 1)
~ LD _ (g0, ) = Aax, )
dt
with the transversality condition A" (x, T) = 0 and boundary conditions
W7 = Sl ang xen] _ sgenl o
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Optimal Control of the Dengue Model with Spatial Distribution

Furthermore, the optimal control variable w* is defined as

wy (1) max (0, min (ALL, WM>>
“Ay
wa(t) = max (O,min (()\4,'7—’_7/4)\58'7), WM)>
—Aa

wh(t) = max (O,min ()\Ssh, WH)> .
.

Y.Mammeri, C.Mentuda Control strategies fmor dengue



Spatial Distribution
0OO000000@000

Numerical Simulation of the Model with Spatial Distribution
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Numerical Simulation of the Model with Spatial Distribution
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Numerical Simulation of the Model with Spatial Distribution
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Numerical Simulation of the Model with Spatial Distribution
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Conclusion

* Dengue vaccine is recommended to individuals who have been infected by
one serotype of dengue.

¢ Following Ross’model, we build a mathematical model where secondary
susceptible individuals partake in the infection.
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Conclusion

Dengue vaccine is recommended to individuals who have been infected by
one serotype of dengue.

Following Ross’model, we build a mathematical model where secondary
susceptible individuals partake in the infection.

Optimal control showed vaccinating only the secondary susceptibles offer
few benefits compared without control, and constant effort is necessary.
Our results shows that the combination of copepode and pesticide is a
good strategy for eliminating infected humans and mosquito population.
Although the elimination of infected humans is slow.

The combination of pesticide and vaccination seams less efficient than the
combination of copepode and pesticide. It takes a shorter time to reduce
the number of mosquito with a reduce duration of application of the control.

Thank you for your
attention!
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Sensitivity Analysis

We compute the maximum number of infected humans by varying Dpmin between
0.1to0 1, ¢1, ¢, « and 8 between 10~ to 1072,

D min

648.04 648.06 648.08
I I I

Maximum value of Iy,

648.02
I

648.00
I

0.1 0.325 0.775 1
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