Comparison between pharmacological, ecological and pollutant control strategies for dengue

Cheryl Q. Mentuda^{1,2} Youcef Mammeri¹

¹Laboratoire Amiénois de Mathématique Fondamentale et Appliquée CNRS UMR 7352, Université de Picardie Jules Verne, France

²Department of Mathematics, Caraga State University, Butuan City, Philippines

45eme Congrès National d'Analyse Numérique 14 June 2022

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Content	S				Juden Verne

Introduction

- ② Description of the Model
- Optimal Control Problem
- Mosquito Life Cycle
- Spatial Distribution

6 Conclusion

Introduction •••	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Dengue	د				There have

- Mosquito-borne viral infection found in tropical and subtropical regions around the world.
- It occurs in urban and peri-urban areas, with peak transmission during the rainy season.
- Four types of viruses (DENV-1, DENV-2, DENV-3, DENV-4), which transmit through the bite of infected Aedes aegypti and Aedes albopictus female mosquitoes during the daytime.

Aedes aegypti

Aedes albopictus

Introduction O	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Dengva	xia				UNIVERSITE Pleasedie Jules Verne

- The first commercialized vaccine is CYD-TDV, marketed as dengvaxia by Sanofi Pasteur.
- It was licensed in December 2015 and approved in 11 countries including Philippines.
- It is a live attenuated chimeric product made using recombinant DNA technology by replacing the PrM (pre-membrane) and E (envelope) structural genes of yellow fever attenuated 17D strain vaccine with those from the four dengue serotypes.
- It should be administered in three doses of 0.5 mL subcutaneous (SC) six months apart.
- It is indicated for the prevention of dengue fever caused by dengue virus serotypes 1, 2, 3 and 4 in subjects aged 9 to 45 years with a history of dengue virus infection and living in areas endemic.

 μ_m

 μ_m

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion 000
				őn /	R _h
			S_h $ab_h \frac{l_m}{H}$		

Sm

 $ab_m \frac{l_h}{H}$

The dynamics of mosquitoes is:

$$\begin{aligned} S'_m(t) &= -\frac{ab_m I_h(t)}{H(t)} S_m(t) - \mu_m S_m(t) + g(M(t)) \\ I'_m(t) &= \frac{ab_m I_h(t)}{H(t)} S_m(t) - \mu_m I_m(t). \end{aligned}$$

 $a \overline{b}_h \frac{I_m}{H}$

Im

Ŝ_h

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
	00000	0000000	0000000		000
					(R_h)

$$S'_{m}(t) = -\frac{ab_{m}I_{h}(t)}{H(t)}S_{m}(t) - \mu_{m}S_{m}(t) + g(M(t))$$
$$I'_{m}(t) = \frac{ab_{m}I_{h}(t)}{H(t)}S_{m}(t) - \mu_{m}I_{m}(t).$$

•
$$M'(t) = (\alpha_m e^{-\beta_m M(t)} - \mu_m) M(t) := g(M)$$

Introduction 00	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
					R _h
			S_h $ab_h \frac{I_m}{H}$	l_h	

Sm

 $ab_m \frac{l_h}{H}$

The dynamics of mosquitoes is:

$$S'_{m}(t) = -\frac{ab_{m}I_{h}(t)}{H(t)}S_{m}(t) - \mu_{m}S_{m}(t) + g(M(t))$$

$$I'_{m}(t) = \frac{ab_{m}I_{h}(t)}{H(t)}S_{m}(t) - \mu_{m}I_{m}(t).$$

•
$$M'(t) = (\alpha_m e^{-\beta_m M(t)} - \mu_m) M(t) := g(M)$$

P.-A. Bliman, D. Cardona-Salgado, Y. Dumont, and O. Vasilieva (2019)

a b_h

 I_m

Ŝ,

Introduction 00	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion 000
Results					UNIVERSITÉ Pleasda Jules Come

Global Well-posedness Theorem

The domain Ω defined by

$$\Omega = \left\{ U \in \mathbb{R}^{6}_{+} : 0 \leq S_{h} + I_{h} + \widetilde{S}_{h} + R_{h} = H_{0}, \\ 0 \leq S_{m} + I_{m} \leq \max\left(\frac{\alpha_{m}}{\beta_{m}\mu_{m}}, M_{0}\right) \right\}$$
(1)

is positively invariant. In particular, for an initial datum in Ω , there exists a unique global in time solution U in $\mathcal{C}(\mathbb{R}_+, \Omega)$.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
00	00000	0000000	0000000	00000000000	000

•
$$E_1 = (S_h^*, 0, \widetilde{S}_h^*, R_h^*, 0, 0)$$

• $E_2 = \left(S_h^*, 0, \widetilde{S}_h^*, R_h^*, \frac{1}{\beta_m} \ln\left(\frac{\alpha_m}{\mu_m}\right), 0\right)$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
00	00000	0000000	0000000	00000000000	000

•
$$E_1 = (S_h^*, 0, \widetilde{S}_h^*, R_h^*, 0, 0)$$

• $E_2 = \left(S_h^*, 0, \widetilde{S}_h^*, R_h^*, \frac{1}{\beta_m} \ln\left(\frac{\alpha_m}{\mu_m}\right), 0\right)$
• $\mathcal{R}_0 < 1$ where $\mathcal{R}_0 = \sqrt{\frac{a^2 b_m \ln\left(\frac{\alpha_m}{\mu_m}\right)(b_h S_h^* + \widetilde{b}_h \widetilde{S}_h^*)}{H_0^2 \mu_m \beta_m (\gamma_h + \delta_h)}}$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
	00000				

•
$$E_1 = (S_h^*, 0, \widetilde{S}_h^*, R_h^*, 0, 0)$$

• $E_2 = \left(S_h^*, 0, \widetilde{S}_h^*, R_h^*, \frac{1}{\beta_m} \ln\left(\frac{\alpha_m}{\mu_m}\right), 0\right)$
• $\mathcal{R}_0 < 1$ where $\mathcal{R}_0 = \sqrt{\frac{a^2 b_m \ln\left(\frac{\alpha_m}{\mu_m}\right) (b_h S_h^* + \widetilde{b}_h \widetilde{S}_h^*)}{H_0^2 \mu_m \beta_m (\gamma_h + \delta_h)}}$

Theorem

If α_m < μ_m, then E₁ is globally asymptotically stable.
 If α_m > μ_m and R₀ > 1, then E₂ is globally asymptotically stable.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
	00000				

•
$$E_1 = (S_h^*, 0, \widetilde{S}_h^*, R_h^*, 0, 0)$$

• $E_2 = \left(S_h^*, 0, \widetilde{S}_h^*, R_h^*, \frac{1}{\beta_m} \ln\left(\frac{\alpha_m}{\mu_m}\right), 0\right)$
• $\mathcal{R}_0 < 1$ where $\mathcal{R}_0 = \sqrt{\frac{a^2 b_m \ln\left(\frac{\alpha_m}{\mu_m}\right) (b_h S_h^* + \widetilde{b}_h \widetilde{S}_h^*)}{H_0^2 \mu_m \beta_m (\gamma_h + \delta_h)}}$

Theorem

1 If $\alpha_m < \mu_m$, then E_1 is globally asymptotically stable.

2 If $\alpha_m > \mu_m$ and $\mathcal{R}_0 > 1$, then E_2 is globally asymptotically stable.

The basic reproduction number \mathcal{R}_0 has a biological meaning when $\alpha_m > \mu_m$. It means that the average number of new infected humans is proportional to the transmission rate due by biting during the infection period $1/(\gamma_h + \delta_h)$ and mosquitoes life expectancy $1/\mu_m$.

Introduction	Description of the Model	Optimal Control Problem •••••••	Mosquito Life Cycle	Spatial Distribution	Conclusion 000
Optima	I Control Proble	m			UNIVERSITÉ Preurdie Judes Verne

$$\mathcal{J}(w_1, w_3, w_m) = \int_0^T I_h(t) + \frac{1}{2} \left(A_1 w_1^2(t) + A_3 w_3^2(t) + A_m w_m^2(t) \right) dt$$

$$S'_{h}(t) = -\frac{ab_{h}l_{m}(t)S_{h}(t)}{H_{0}} - w_{1}(t)S_{h}(t)$$

$$I'_{h}(t) = \frac{aI_{m}(t)\left(b_{h}S_{h}(t) + \tilde{b}_{h}\tilde{S}_{h}(t)\right)}{H_{0}} - \gamma_{h}l_{h}(t) - \delta_{h}l_{h}(t)$$

$$\tilde{S}'_{h}(t) = \gamma_{h}l_{h}(t) - \frac{a\tilde{b}_{h}\tilde{S}_{h}(t)l_{m}(t)}{H_{0}} - w_{3}(t)\tilde{S}_{h}(t)$$

$$R'_{h}(t) = \delta_{h}l_{h}(t)$$

$$S'_{m}(t) = -\frac{ab_{m}l_{h}(t)S_{m}(t)}{H_{0}} + g(M(t)) - \mu_{m}S_{m}(t) - w_{m}(t)S_{m}(t)$$

$$I'_{m}(t) = \frac{ab_{m}l_{h}(t)S_{m}(t)}{H_{0}} - \mu_{m}l_{m}(t) - w_{m}(t)l_{m}(t)$$
(2)

Introduction	Description of the Model	Optimal Control Problem •••••••	Mosquito Life Cycle	Spatial Distribution	Conclusion
Optima	I Control Proble	m			UNIVERSITÉ Preurdie Judes Verne

$$\mathcal{J}(w_1, w_3, w_m) = \int_0^T I_h(t) + \frac{1}{2} \left(A_1 w_1^2(t) + A_3 w_3^2(t) + A_m w_m^2(t) \right) dt$$

$$S'_{h}(t) = -\frac{ab_{h}l_{m}(t)S_{h}(t)}{H_{0}} - w_{1}(t)S_{h}(t)$$

$$I'_{h}(t) = \frac{al_{m}(t)\left(b_{h}S_{h}(t) + \tilde{b}_{h}\tilde{S}_{h}(t)\right)}{H_{0}} - \gamma_{h}l_{h}(t) - \delta_{h}l_{h}(t)$$

$$\tilde{S}'_{h}(t) = \gamma_{h}l_{h}(t) - \frac{a\tilde{b}_{h}\tilde{S}_{h}(t)l_{m}(t)}{H_{0}} - w_{3}(t)\tilde{S}_{h}(t)$$

$$R'_{h}(t) = \delta_{h}l_{h}(t)$$

$$S'_{m}(t) = -\frac{ab_{m}l_{h}(t)S_{m}(t)}{H_{0}} + g(M(t)) - \mu_{m}S_{m}(t) - w_{m}(t)S_{m}(t)$$

$$I'_{m}(t) = \frac{ab_{m}l_{h}(t)S_{m}(t)}{H_{0}} - \mu_{m}l_{m}(t) - w_{m}(t)l_{m}(t)$$
(2)

Introduction	Description of the Model	Optimal Control Problem ••••••	Mosquito Life Cycle	Spatial Distribution	Conclusion
Optima	Control Proble	m			UNIVERSITÉ Pleardie Judes Verne

$$\mathcal{J}(w_1, w_3, w_m) = \int_0^T I_h(t) + \frac{1}{2} \left(A_1 w_1^2(t) + A_3 w_3^2(t) + A_m w_m^2(t) \right) dt$$

$$S'_{h}(t) = -\frac{ab_{h}l_{m}(t)S_{h}(t)}{H_{0}} - w_{1}(t)S_{h}(t)$$

$$I'_{h}(t) = \frac{al_{m}(t)\left(b_{h}S_{h}(t) + \tilde{b}_{h}\tilde{S}_{h}(t)\right)}{H_{0}} - \gamma_{h}l_{h}(t) - \delta_{h}l_{h}(t)$$

$$\tilde{S}'_{h}(t) = \gamma_{h}l_{h}(t) - \frac{a\tilde{b}_{h}\tilde{S}_{h}(t)l_{m}(t)}{H_{0}} - w_{3}(t)\tilde{S}_{h}(t)$$

$$R'_{h}(t) = \delta_{h}l_{h}(t)$$

$$S'_{m}(t) = -\frac{ab_{m}l_{h}(t)S_{m}(t)}{H_{0}} + g(M(t)) - \mu_{m}S_{m}(t) - w_{m}(t)S_{m}(t)$$

$$I'_{m}(t) = \frac{ab_{m}l_{h}(t)S_{m}(t)}{H_{0}} - \mu_{m}l_{m}(t) - w_{m}(t)l_{m}(t)$$
(2)

Introduction	Description of the Model	Optimal Control Problem •••••••	Mosquito Life Cycle	Spatial Distribution	Conclusion 000
Optima	I Control Proble	m			UNIVERSITÉ Preurdie Judes Verne

$$\mathcal{J}(w_1, w_3, w_m) = \int_0^T I_h(t) + \frac{1}{2} \left(A_1 w_1^2(t) + A_3 w_3^2(t) + A_m w_m^2(t) \right) dt$$

$$S'_{h}(t) = -\frac{ab_{h}l_{m}(t)S_{h}(t)}{H_{0}} - w_{1}(t)S_{h}(t)$$

$$I'_{h}(t) = \frac{al_{m}(t)\left(b_{h}S_{h}(t) + \tilde{b}_{h}\tilde{S}_{h}(t)\right)}{H_{0}} - \gamma_{h}l_{h}(t) - \delta_{h}l_{h}(t)$$

$$\tilde{S}'_{h}(t) = \gamma_{h}l_{h}(t) - \frac{a\tilde{b}_{h}\tilde{S}_{h}(t)l_{m}(t)}{H_{0}} - w_{3}(t)\tilde{S}_{h}(t)$$

$$R'_{h}(t) = \delta_{h}l_{h}(t)$$

$$S'_{m}(t) = -\frac{ab_{m}l_{h}(t)S_{m}(t)}{H_{0}} + g(M(t)) - \mu_{m}S_{m}(t) - w_{m}(t)S_{m}(t)$$

$$I'_{m}(t) = \frac{ab_{m}l_{h}(t)S_{m}(t)}{H_{0}} - \mu_{m}l_{m}(t) - w_{m}(t)l_{m}(t)$$
(2)

00	00000	0000000	0000000	00000000000	000
Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion

Lemma

There exists an optimal control $w^* = (w_1^*(t), w_3^*(t), w_m^*(t))$ such that

$$\mathcal{J}(W_1^*, W_3^*, W_m^*) = \min_{w \in W} \mathcal{J}(W_1, W_3, W_m)$$

under the constraint $(S_h, I_h, \tilde{S}_h, R_h, S_m, I_m)$ is a solution of the system.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
		0000000			

Lemma

There exists an optimal control $w^* = (w_1^*(t), w_3^*(t), w_m^*(t))$ such that

$$\mathcal{J}(W_1^*, W_3^*, W_m^*) = \min_{w \in W} \mathcal{J}(W_1, W_3, W_m)$$

under the constraint $(S_h, I_h, \widetilde{S}_h, R_h, S_m, I_m)$ is a solution of the system.

We used the Pontryagin's maximum principle to find the optimal control w^* that minimizes, at each instant *t*, the Hamiltonian given by

$$\begin{aligned} \mathcal{H} &= \frac{1}{2} \left(l_h + A_1 w_1^2 + A_3 w_3^2 + A_m w_m^2 \right) \\ &+ \lambda_1 \left(-\frac{ab_h l_m S_h}{H_0} - w_1 S_h \right) + \lambda_3 \left(\gamma_h l_h - \frac{a \tilde{b}_h \tilde{S}_h l_m}{H_0} - w_3 \tilde{S}_h \right) \\ &+ \lambda_2 \left(\frac{a l_m \left(b_h S_h + \tilde{b}_h \tilde{S}_h \right)}{H_0} - \gamma_h l_h - \delta_h l_h \right) + \lambda_4 (\delta_h l_h) \\ &+ \lambda_5 \left(-\frac{a b_m l_h S_m}{H_0} + g(M) - \mu_m S_m - w_m S_m \right) \\ &+ \lambda_6 \left(\frac{a b_m l_h S_m}{H_0} - \mu_m l_m - w_m l_m \right). \end{aligned}$$
(3)

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
		0000000			

Lemma

There exist the adjoint variables λ_i , $i = 1, 2, \dots, 6$ of the system (2) that satisfy the following backward in time system of ODE:

$$\begin{aligned} -\frac{d\lambda_1}{dt} &= \lambda_1 \left(\frac{-ab_h l_m}{H_0} - w_1 \right) + \lambda_2 \frac{ab_h l_m}{H_0} \\ -\frac{d\lambda_2}{dt} &= 1 + \lambda_2 (-\gamma_h - \delta_h) + \lambda_3 \gamma_h + \lambda_4 \delta_h - \lambda_5 \frac{ab_m S_m}{H_0} + \lambda_6 \frac{ab_m S_m}{H_0} \\ -\frac{d\lambda_3}{dt} &= \lambda_2 \frac{a\tilde{D}_h l_m}{H_0} + \lambda_3 \left(\frac{-a\tilde{D}_h l_m}{H_0} - w_3 \right) \\ -\frac{d\lambda_4}{dt} &= 0 \\ -\frac{d\lambda_5}{dt} &= \lambda_5 \left(\frac{-ab_m l_h}{H_0} + \frac{\partial g}{\partial S_m} \right) - \lambda_5 (\mu_m + w_m) + \lambda_6 \frac{ab_m l_h}{H_0} \\ -\frac{d\lambda_6}{dt} &= -\lambda_1 \frac{ab_h S_h}{H_0} + \lambda_2 \frac{ab_h S_h + a\tilde{D}_h \tilde{S}_h}{H_0} - \lambda_3 \frac{a\tilde{D}_h \tilde{S}_h}{H_0} + \lambda_5 \frac{\partial g}{\partial l_m} - \lambda_6 (\mu_m + w_m) \end{aligned}$$
with the transversality condition $\lambda(T) = 0.$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
00	00000	0000000	0000000	00000000000	000

Theorem

The optimal control variables are given by

$$w_1^*(t) = \max\left(0, \min\left(\frac{\lambda_1 S_h}{A_1}, w_H\right)\right)$$
$$w_3^*(t) = \max\left(0, \min\left(\frac{\lambda_3 \widetilde{S}_h}{A_3}, w_H\right)\right)$$
$$w_m^*(t) = \max\left(0, \min\left(\frac{\lambda_5 S_m + \lambda_6 I_m}{A_m}, w_M\right)\right)$$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
					UNIVERSITÉ

Numerical Simulation of Optimal Control

The parameters are taken from Indonesia. (Braselton, Iurii. [2015].)

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
00	00000	00000000	0000000	00000000000	000

Numerical Simulation of Optimal Control

The parameters are taken from Indonesia. (Braselton, Iurii. [2015].)

We compare vaccination, vector control, and the combination.

Algorithm 2 Computation of optimal control of dengue-dengvaxia model

Given $U^0 = (10^4, 0, 0, 0, 10^5, 10^3)$ as initial datum , a final time T > 0 and a tolerance $\varepsilon > 0$. Let w_1^0, w_2^0, w_m^0 randomly chosen following $\mathcal{N}(0, 1)$. while $||\nabla \mathcal{H}(w^n, U^n, \lambda^n)|| > \varepsilon$, do solve the forward system u^n , solve the backward system λ^n , update w^n solve the gradient $\nabla \mathcal{H}(w^n, U^n, \lambda^n)$ end while

 $w^* = w^n$.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Results					UNIVERSITE Pleasedie Judes Vering

Responses comparison for infected humans

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
		00000000			

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
		0000000			
					UNIVERSITÉ

Optimal control

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
00	00000	0000000	•000000	00000000000	000

Accounting the Life Cycle of Mosquito

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
			000000		

Accounting the Life Cycle of Mosquito

Figura 1: Life cycle of Aedes mosquitoes.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion

Accounting the Life Cycle of Mosquito

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Govern	ing Equation				Presidie Juley Verne

The equation that governs the dynamics of the metamorphosis of mosquito population is

$$E'(t) = \alpha_m(S_m(t) + I_m(t)) - \gamma_{E,L}E(t) - \mu_E E(t)$$

$$L'(t) = \gamma_{E,L}E(t) - \gamma_{L,P}L(t) - \mu_L L(t)$$

$$P'(t) = \gamma_{L,P}L(t) - \gamma_{P,S_m}P(t) - \mu_P P(t)$$

for young mosquito

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Govern	ing Equation				UNIVERSITÉ Francis Jula Verne

The equation that governs the dynamics of the metamorphosis of mosquito population is

$$E'(t) = \alpha_m(S_m(t) + I_m(t)) - \gamma_{E,L}E(t) - \mu_E E(t)$$

$$L'(t) = \gamma_{E,L}E(t) - \gamma_{L,P}L(t) - \mu_L L(t)$$

$$P'(t) = \gamma_{L,P}L(t) - \gamma_{P,S_m}P(t) - \mu_P P(t)$$

for young mosquito and of the adult mosquito is

$$S'_m(t) = \gamma_{P,S_m} P(t) - \mu_A S_m(t) - ab_m I_h(t) S_m(t)$$

$$I'_m(t) = ab_m I_h(t) S_m(t) - \mu_A I_m(t)$$

with total population of $M_A = S_m + I_m$, $M_Y = E + L + P$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Control	Strategy				UNIVERSITÉ Preardie Jules Verne

Copepode

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Control	Strategy				Jules Verne

Copepode

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Control	Strategy				"Picardie

Copepode

Copepods are natural enemies of the first and second instar of mosquito larvae. Large sized cyclopoid copepods act as predators of mosquito larvae which strongly influence the mosquito larval population.

Pesticide
Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Control	Strategy				"Pleandie Jules Verse

Copepods are natural enemies of the first and second instar of mosquito larvae. Large sized cyclopoid copepods act as predators of mosquito larvae which strongly influence the mosquito larval population.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Control	Strategy				UNIVERSITÉ Pleardie Jules Verne

Copepods are natural enemies of the first and second instar of mosquito larvae. Large sized cyclopoid copepods act as predators of mosquito larvae which strongly influence the mosquito larval population.

Space Spraying or Fogging

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion 000
Control	Strategy				UNIVERSITE * Preside July Verne

$$L'(t) = \gamma_{E,L} E(t) - \gamma_{L,P} L(t) - \mu_L L(t)$$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion 000
Control	Strategy				UNIVERSITE * Preside July Verne

$$L'(t) = \gamma_{E,L}E(t) - \gamma_{L,P}L(t) - \mu_LL(t) - w_YL(t)$$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle 0000●00	Spatial Distribution	Conclusion
Control	Strategy				Jules Verne

$$L'(t) = \gamma_{E,L}E(t) - \gamma_{L,P}L(t) - \mu_LL(t) - w_YL(t)$$

$$S'_m(t) = \gamma_{P,S_m} P(t) - \mu_A S_m(t) - ab_m I_h(t) S_m(t)$$

$$I'_m(t) = ab_m I_h(t) S_m(t) - \mu_A I_m(t)$$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Control	Strategy				Jules Verne

$$L'(t) = \gamma_{E,L}E(t) - \gamma_{L,P}L(t) - \mu_LL(t) - w_YL(t)$$

$$S'_m(t) = \gamma_{P,S_m} P(t) - \mu_A S_m(t) - ab_m I_h(t) S_m(t) - w_A S_m(t)$$

$$I'_m(t) = ab_m I_h(t) S_m(t) - \mu_A I_m(t)$$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
Control	Strategy				Jules Verse

$$L'(t) = \gamma_{E,L}E(t) - \gamma_{L,P}L(t) - \mu_LL(t) - w_YL(t)$$

$$S'_{m}(t) = \gamma_{P,S_{m}}P(t) - \mu_{A}S_{m}(t) - ab_{m}I_{h}(t)S_{m}(t) - w_{A}S_{m}(t)$$

$$I'_{m}(t) = ab_{m}I_{h}(t)S_{m}(t) - \mu_{A}I_{m}(t) - w_{A}I_{m}(t)$$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle 00000●0	Spatial Distribution	Conclusion

Optimal Solutions of the Infected Human

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
					UNIVERSITÉ ^(*) Picardie

Optimal Control

* Picardie Juden Verme

00	0000000	0000000	000

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
				•0000000000	

Consider a domain $\Omega \subset \mathbb{R}^2$.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
				•0000000000	

UNIVERSITÉ ** Picardie Jules Verne

Consider a domain $\Omega \subset \mathbb{R}^2$.

Diffusion coefficient

$$D(x, y) = D_{min} + \alpha \mathcal{F}_{l}(x, y) + \beta \mathcal{F}_{f}(x, y)$$
(4)

00	00000	00000000	0000000	000000000000	000
Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion

Consider a domain $\Omega \subset \mathbb{R}^2$.

Diffusion coefficient

$$D(x, y) = D_{min} + lpha \mathcal{F}_{l}(x, y) + eta \mathcal{F}_{f}(x, y)$$

- D_{min} as the minimal diffusion value in the absence of resources perception
- *F_l(x, y)* and *F_f(x, y)* as the dispersion kernels that covered the entire landscape of the involved resources
- α and β are coefficients used to weight the differential impact of resources on the diffusion intensity

(4)

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion

Consider a domain $\Omega \subset \mathbb{R}^2$.

Diffusion coefficient

$$\mathcal{D}(\mathbf{x}, \mathbf{y}) = \mathcal{D}_{min} + lpha \mathcal{F}_{l}(\mathbf{x}, \mathbf{y}) + eta \mathcal{F}_{f}(\mathbf{x}, \mathbf{y})$$

(5)

$$\mathcal{F}_{f}(x, y) = \frac{\sum_{\Omega} \mathcal{K}_{f}(d) \times \mathbb{M}_{f}(x, y)}{\sum_{\Omega} \mathcal{K}_{f}(d)}$$
$$\mathcal{F}_{l}(x, y) = \frac{\sum_{\Omega} \mathcal{K}_{l}(d) \times \mathbb{M}_{l}(x, y)}{\sum_{\Omega} \mathcal{K}_{l}(d)}$$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion

Consider a domain $\Omega \subset \mathbb{R}^2$.

Diffusion coefficient

$$\mathcal{D}(\mathbf{x}, \mathbf{y}) = \mathcal{D}_{min} + \alpha \mathcal{F}_{l}(\mathbf{x}, \mathbf{y}) + \beta \mathcal{F}_{f}(\mathbf{x}, \mathbf{y})$$

(5)

$$\mathcal{F}_{f}(x, y) = \frac{\sum_{\Omega} K_{f}(d) \times \mathbb{F}_{f}(x, y)}{\sum_{\Omega} K_{f}(d)}$$
$$\mathcal{F}_{I}(x, y) = \frac{\sum_{\Omega} K_{I}(d) \times \mathbb{F}_{I}(x, y)}{\sum_{\Omega} K_{I}(d)}$$

with

$$K_f(d) = e^{-c_f d}$$

 $K_l(d) = e^{-c_l d}$

Defining the population density of adults mosquito for every $(x, y) \in \Omega$ and we have

$$\frac{\partial S_m(t,x,y)}{\partial t} = \gamma_{P,S_m} P(t,x,y) - \mu_A S_m(t,x,y) - ab_m I_h(t,x,y) S_m(t,x,y) + D(x,y) \Delta S_m(t,x,y)$$
(6)

$$\frac{\partial I_m(t,x,y)}{\partial t} = ab_m I_h(t,x,y) S_m(t,x,y) - \mu_A I_m(t,x,y) + D(x,y) \Delta I_m(t,x,y)$$
(7)

Defining the population density of adults mosquito for every $(x, y) \in \Omega$ and we have

$$\frac{\partial S_m(t,x,y)}{\partial t} = \gamma_{P,S_m} P(t,x,y) - \mu_A S_m(t,x,y) - ab_m I_h(t,x,y) S_m(t,x,y) + D(x,y) \Delta S_m(t,x,y)$$
(6)

$$\frac{\partial I_m(t,x,y)}{\partial t} = ab_m I_h(t,x,y) S_m(t,x,y) - \mu_A I_m(t,x,y) + D(x,y) \Delta I_m(t,x,y)$$
(7)

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
				0000000000	

Theorem: Global Well-posedness

Let $0 \leq S_{h,0}$, $I_{h,0}$, $R_{h,0} \leq H_0$ and $0 \leq E_0$, L_0 , $P_0 \leq M_{Y,0}$, $0 \leq S_{m,0}$, $I_{m,0} \leq M_{A,0}$ where H_0 , $M_{Y,0}$ and $M_{A,0}$ are the initial population density for human, young mosquito and adult mosquito population, respectively. Then there exists a unique global in time weak solution $U \in L^{\infty}(\mathbb{R}_+, L^{\infty}(\Omega))^8$, of the initial boundary value problem. Moreover, the solution is nonnegative, $S_h + I_h \leq H_0$ and $E + L + P \leq M_{Y,0} S_m + I_m \leq M_{A,0}$.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
				0000000000	

Consider the problem

minimize
$$\mathcal{J}(U, w)$$
 where $\mathcal{J}(U, w) = \int_{\Omega} \int_{0}^{T} f(U, w, (x, t)) dt dX$

Consider the problem

minimize
$$\mathcal{J}(U, w)$$
 where $\mathcal{J}(U, w) = \int_{\Omega} \int_{0}^{T} f(U, w, (x, t)) dt dX$

such that

$$f(U, w, (x, t)) = I_h(x, t) + \frac{1}{2}A_Y w_Y^2(x, t) + \frac{1}{2}A_A w_A^2(x, t) + \frac{1}{2}A_H w_H^2(x, t),$$

Consider the problem

minimize
$$\mathcal{J}(U, w)$$
 where $\mathcal{J}(U, w) = \int_{\Omega} \int_{0}^{T} f(U, w, (x, t)) dt dX$

such that

$$f(U, w, (x, t)) = I_h(x, t) + \frac{1}{2}A_Y w_Y^2(x, t) + \frac{1}{2}A_A w_A^2(x, t) + \frac{1}{2}A_H w_H^2(x, t),$$

subject to

$$h(U, U, w, (x, t)) = 0$$

$$g(U(0), w) = (E_0, L_0, P_0, S_{m,0}, I_{m,0}, S_{h,0}, I_{h,0}, R_{h,0})$$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
00	00000	0000000	0000000	0000000000	000

There exists the adjoint variables λ_i , $i = 1, 2, \dots, 6$ that satisfy the following backward in time system of partial differential equations

$$\begin{aligned} -\frac{d\lambda_1(x,t)}{dt} &= \lambda_1(x,t)\mu_E + (\lambda_1(x,t) - \lambda_2(x,t))\gamma_{E,L} \\ -\frac{d\lambda_2(x,t)}{dt} &= \lambda_2(x,t)(\mu_L + w_Y) + (\lambda_2(x,t) - \lambda_3(x,t))\gamma_{L,P} \\ -\frac{d\lambda_3(x,t)}{dt} &= \lambda_3(x,t)\mu_P + (\lambda_3(x,t) - \lambda_4(x,t))\gamma_{P,Sm} \\ -\frac{\partial\lambda_4(x,t)}{\partial t} - D\Delta\lambda_4 &= -\lambda_1(x,t)\alpha_m + \lambda_4(x,t)(\mu_A + w_A) + (\lambda_4(x,t) - \lambda_5(x,t))ab_m l_h(x,t) \\ -\frac{\partial\lambda_5(x,t)}{\partial t} - D\Delta\lambda_5 &= -\lambda_1(x,t)\alpha_m + \lambda_5(x,t)(\mu_A + w_A) + (\lambda_6(x,t) - \lambda_7(x,t))ab_h S_h(x,t) \\ -\frac{d\lambda_6(x,t)}{dt} &= \lambda_6(x,t)w_H + (\lambda_6(x,t) - \lambda_7(x,t))ab_h l_m(x,t) \\ -\frac{d\lambda_7(x,t)}{dt} &= 1 + (\lambda_7(x,t) - \lambda_8(x,t))\sigma_h + (\lambda_4(x,t) - \lambda_5(x,t))ab_m S_m(x,t) \\ -\frac{d\lambda_8(x,t)}{dt} &= (\lambda_8(x,t) - \lambda_6(x,t))\gamma_h \end{aligned}$$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
				0000000000	

There exists the adjoint variables λ_i , $i = 1, 2, \dots, 6$ that satisfy the following backward in time system of partial differential equations

$$\begin{aligned} -\frac{d\lambda_1(x,t)}{dt} &= \lambda_1(x,t)\mu_E + (\lambda_1(x,t) - \lambda_2(x,t))\gamma_{E,L} \\ -\frac{d\lambda_2(x,t)}{dt} &= \lambda_2(x,t)(\mu_L + w_Y) + (\lambda_2(x,t) - \lambda_3(x,t))\gamma_{L,P} \\ -\frac{d\lambda_3(x,t)}{dt} &= \lambda_3(x,t)\mu_P + (\lambda_3(x,t) - \lambda_4(x,t))\gamma_{P,Sm} \\ -\frac{\partial\lambda_4(x,t)}{\partial t} - D\Delta\lambda_4 &= -\lambda_1(x,t)\alpha_m + \lambda_4(x,t)(\mu_A + w_A) + (\lambda_4(x,t) - \lambda_5(x,t))ab_m I_h(x,t) \\ -\frac{\partial\lambda_5(x,t)}{\partial t} - D\Delta\lambda_5 &= -\lambda_1(x,t)\alpha_m + \lambda_5(x,t)(\mu_A + w_A) + (\lambda_6(x,t) - \lambda_7(x,t))ab_h S_h(x,t) \\ -\frac{d\lambda_6(x,t)}{dt} &= \lambda_6(x,t)w_H + (\lambda_6(x,t) - \lambda_7(x,t))ab_h I_m(x,t) \\ -\frac{d\lambda_7(x,t)}{dt} &= 1 + (\lambda_7(x,t) - \lambda_8(x,t))\sigma_h + (\lambda_4(x,t) - \lambda_5(x,t))ab_m S_m(x,t) \\ -\frac{d\lambda_8(x,t)}{dt} &= (\lambda_8(x,t) - \lambda_6(x,t))\gamma_h \end{aligned}$$

with the transversality condition $\lambda^{T}(x, T) = 0$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
				0000000000	

There exists the adjoint variables λ_i , $i = 1, 2, \dots, 6$ that satisfy the following backward in time system of partial differential equations

$$\begin{aligned} -\frac{d\lambda_1(x,t)}{dt} &= \lambda_1(x,t)\mu_E + (\lambda_1(x,t) - \lambda_2(x,t))\gamma_{E,L} \\ -\frac{d\lambda_2(x,t)}{dt} &= \lambda_2(x,t)(\mu_L + w_Y) + (\lambda_2(x,t) - \lambda_3(x,t))\gamma_{L,P} \\ -\frac{d\lambda_3(x,t)}{dt} &= \lambda_3(x,t)\mu_P + (\lambda_3(x,t) - \lambda_4(x,t))\gamma_{P,Sm} \\ -\frac{\partial\lambda_4(x,t)}{\partial t} - D\Delta\lambda_4 &= -\lambda_1(x,t)\alpha_m + \lambda_4(x,t)(\mu_A + w_A) + (\lambda_4(x,t) - \lambda_5(x,t))ab_m l_h(x,t) \\ -\frac{\partial\lambda_5(x,t)}{\partial t} - D\Delta\lambda_5 &= -\lambda_1(x,t)\alpha_m + \lambda_5(x,t)(\mu_A + w_A) + (\lambda_6(x,t) - \lambda_7(x,t))ab_h S_h(x,t) \\ -\frac{d\lambda_6(x,t)}{dt} &= \lambda_6(x,t)w_H + (\lambda_6(x,t) - \lambda_7(x,t))ab_h l_m(x,t) \\ -\frac{d\lambda_7(x,t)}{dt} &= 1 + (\lambda_7(x,t) - \lambda_8(x,t))\sigma_h + (\lambda_4(x,t) - \lambda_5(x,t))ab_m S_m(x,t) \\ -\frac{d\lambda_8(x,t)}{dt} &= (\lambda_8(x,t) - \lambda_6(x,t))\gamma_h \end{aligned}$$

with the transversality condition $\lambda^{T}(x, T) = 0$ and boundary conditions

$$\mu^{T} = \frac{\lambda^{T}(x,0)h(U(x,0))}{g(U(x,0),w)} \text{ and } \frac{\partial\lambda(x,t)}{\partial x}\Big|_{\partial\Omega} = \frac{\partial U(x,t)}{\partial x}\Big|_{\partial\Omega} = \mathbf{0}.$$

Y.Mammeri, C.Mentuda

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
				00000000000	

Furthermore, the optimal control variable w^* is defined as

$$\begin{split} w_Y^*(t) &= \max\left(0, \min\left(\frac{\lambda_2 L}{-A_Y}, w_M\right)\right) \\ w_A^*(t) &= \max\left(0, \min\left(\frac{(\lambda_4 I_h + \lambda_5 S_h)}{-A_A}, w_M\right)\right) \\ w_H^*(t) &= \max\left(0, \min\left(\frac{\lambda_6 S_h}{-A_H}, w_H\right)\right). \end{split}$$

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
				000000000000	

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion 000
					UNIVERSITÉ

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
00	00000	0000000	0000000	000000000000	000
					* Picardie

40

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion
					UNIVERSITÉ

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion •OO
Conclus	sion				"Preardie Jules Verne

- Dengue vaccine is recommended to individuals who have been infected by one serotype of dengue.
- Following Ross'model, we build a mathematical model where secondary susceptible individuals partake in the infection.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion •oo
Conclus	sion				UNIVERSITÉ Preurdie Judes Verne

- Dengue vaccine is recommended to individuals who have been infected by one serotype of dengue.
- Following Ross'model, we build a mathematical model where secondary susceptible individuals partake in the infection.
- Optimal control showed vaccinating only the secondary susceptibles offer few benefits compared without control, and constant effort is necessary.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion ●OO
Conclus	sion				UNIVERSITÉ « Picardie Jules Verne

- Dengue vaccine is recommended to individuals who have been infected by one serotype of dengue.
- Following Ross'model, we build a mathematical model where secondary susceptible individuals partake in the infection.
- Optimal control showed vaccinating only the secondary susceptibles offer few benefits compared without control, and constant effort is necessary.
- Our results shows that the combination of copepode and pesticide is a good strategy for eliminating infected humans and mosquito population. Although the elimination of infected humans is slow.

Conclu	sion				UNIVERSITÉ * Pleardie Juder Verne
00		00000000			
	Dependention of the Model	Ortigenel Operatural Durahlare	Managerita Life Origin	On attal Distribution	O

- Dengue vaccine is recommended to individuals who have been infected by one serotype of dengue.
- Following Ross'model, we build a mathematical model where secondary susceptible individuals partake in the infection.
- Optimal control showed vaccinating only the secondary susceptibles offer few benefits compared without control, and constant effort is necessary.
- Our results shows that the combination of copepode and pesticide is a good strategy for eliminating infected humans and mosquito population. Although the elimination of infected humans is slow.
- The combination of pesticide and vaccination seams less efficient than the combination of copepode and pesticide. It takes a shorter time to reduce the number of mosquito with a reduce duration of application of the control.

Conclu	sion				UNIVERSITÉ * Pleardie Juder Verne
00		00000000			
	Dependention of the Model	Ortigenel Operatural Durahlare	Managerita Life Origin	On attal Distribution	O

- Dengue vaccine is recommended to individuals who have been infected by one serotype of dengue.
- Following Ross'model, we build a mathematical model where secondary susceptible individuals partake in the infection.
- Optimal control showed vaccinating only the secondary susceptibles offer few benefits compared without control, and constant effort is necessary.
- Our results shows that the combination of copepode and pesticide is a good strategy for eliminating infected humans and mosquito population. Although the elimination of infected humans is slow.
- The combination of pesticide and vaccination seams less efficient than the combination of copepode and pesticide. It takes a shorter time to reduce the number of mosquito with a reduce duration of application of the control.

Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion ●OO
Conclus	sion				UNIVERSITÉ « Picardie Judes Verne

- Dengue vaccine is recommended to individuals who have been infected by one serotype of dengue.
- Following Ross'model, we build a mathematical model where secondary susceptible individuals partake in the infection.
- Optimal control showed vaccinating only the secondary susceptibles offer few benefits compared without control, and constant effort is necessary.
- Our results shows that the combination of copepode and pesticide is a good strategy for eliminating infected humans and mosquito population. Although the elimination of infected humans is slow.
- The combination of pesticide and vaccination seams less efficient than the combination of copepode and pesticide. It takes a shorter time to reduce the number of mosquito with a reduce duration of application of the control.

Thank you for your attention!
Introduction	Description of the Model	Optimal Control Problem	Mosquito Life Cycle	Spatial Distribution	Conclusion OOO
Sensitivity Analysis					* Pleasedie Jules Vering

We compute the maximum number of infected humans by varying D_{min} between 0.1 to 1, c_f , c_l , α and β between 10^{-4} to 10^{-3} .

