A posteriori error estimator for 1D-2D Coupled Stokes Model

Hussein ALBAZZAL^{1,2}

Supervisors: Alexei LOZINSKI¹, Roberta TITTARELLI²

¹ Laboratoire de Mathématiques-Université de Franche-Comté ,Besancon , France

²FEMTO-st (Dep.Energie) ,Besancon ,France

14 June 2022

General Goal

Goal

Our goals :

• We have non coupled 2D Stokes model.

• We have long channels and we want to find where the velocity are poiseuille in some 1D sections.

• Reduce the model to 1D-2D model.

• Determine the 1D-2D interface according to some tolerance

• Study a posteriori error.

Fuel Cell

Whole Domain Model

Stokes Equations

$$\begin{cases} -\Delta u + \nabla p = 0 & \text{in } \Omega \\ \nabla \cdot u = 0 & \text{in } \Omega \\ u = u_g & \text{on } \partial \Omega \end{cases}$$

Where, $u_g = \begin{cases} u_{in} & \text{on } \Gamma_{in}, & u_{in} \text{ is poiseuille,} \\ u_{out} & \text{on } \Gamma_{out}, & u_{out} \text{ is poiseuille,} \\ 0 & \text{on } \Gamma_{wall} \end{cases}$

•
$$u_{in} = (6u_{av} \frac{(R-y)y}{R^2}, 0)$$

• $u_{out} = (-6u_{av} \frac{(-W-y)(y+W+R)}{R^2}, 0)$

constraint condition

p + c is also a solution, we fix this constant by: $\int_{\Omega} p = 0$

Derivation of 1D Model

Rely on [Gerbeau & Perthame, 2000] and [Tayachi, 2014] to derive 1D simplified model.

[Gerbeau & Perthame, 2000] Jean-Frédéric Gerbeau—Benoît Perthame.Derivation of viscous saint-venant system for laminar shallow water; numerical validation.2000

[Tayachi,2014] M Tayachi, Antoine Rousseau, Eric Blayo, Nicole Goutal, and Véronique Martin. Design and analysis of a schwarz coupling method for a dimensionally heterogeneous problem. International Journal for Numerical Methods n Fluids, 75(6):446–465, 2014.

Simplified 1D-2D Model

2D Model

$$\begin{cases} -\Delta \tilde{u} + \nabla \tilde{p} = 0 & \text{in } \tilde{\Omega}, \\ \nabla \cdot \tilde{u} = 0 & \text{in } \tilde{\Omega}, \\ \tilde{u} = \tilde{u}_g & \text{on } \partial \tilde{\Omega}, \end{cases}$$

where, $\tilde{u}_g = \begin{cases} \tilde{u} = u_{in} & \text{on } \gamma \\ \tilde{u} = u_{out} & \text{on } \Gamma_{out} \\ \tilde{u} = 0 & \text{on } \Gamma_{wall} \end{cases}$

1D Model

We put on
$$\Omega'$$
: $u'_1 = 6u_{av} \frac{(R-y)y}{R^2}$, $u'_2 = 0$ and $p' = -\frac{12u_{av}}{R^2}x + c_{\Omega'}$

Coupled Conditions

$$\begin{array}{l} \tilde{p} + c_{\tilde{\Omega}} \text{ is also sol of 2D Model. Fix } c_{\tilde{\Omega}} \& c_{\Omega'} \text{ by :} \\ \tilde{u} = u' \text{ on } \gamma \& \int_{\gamma} \tilde{p} = \int_{\gamma} p' \& \int_{\Omega'} p' + \int_{\tilde{\Omega}} \tilde{p} = 0. \end{array}$$

Approximated 1D-2D Solution on Ω

Definition (Approximated 1D-2D Solution)

find $(ilde{u}_h, ilde{p}_h)\in ilde{V}_h^g imes ilde{M}_h$ such that

$$\begin{cases} (\nabla \tilde{u}_h, \nabla \tilde{v}_h)_{\tilde{\Omega}} - (\nabla \cdot \tilde{v}_h, \tilde{p}_h)_{\tilde{\Omega}} = 0 & \forall \tilde{v}_h \in \tilde{V}_h^0, \\ -(\nabla \cdot \tilde{u}_h, \tilde{q}_h)_{\tilde{\Omega}} = 0 & \forall \tilde{q}_h \in \tilde{M}_h, \end{cases}$$

- $\tilde{\mathcal{T}}_h$ be a regular triangular mesh on $\tilde{\Omega}$
- $\tilde{V}_h := \{ v_h \in [C^0(\bar{\tilde{\Omega}})]^2$ s.t. $v_h \in [\mathbb{P}_2(\tilde{\mathcal{T}}_h)]^2 \}$
- $\tilde{M}_h := \{ q_h \in C^0(\tilde{\tilde{\Omega}})$ s.t. $q_h \in \mathbb{P}_1(\tilde{\mathcal{T}}_h)$ and $\int_{\tilde{\Omega}} q_h = 0 \}$
- $\tilde{V}_h^g := \{ v_h \in \tilde{V}_h \text{ s.t. } v_h |_{\partial \tilde{\Omega}} = \tilde{u}_g \}$

•
$$\tilde{V}_h^0 := \{ v_h \in \tilde{V}_h \text{ s.t. } v_h |_{\partial \tilde{\Omega}} = 0 \}$$

The approximate solution on the whole Ω :

$$\begin{split} u_h^s &= \left\{ \begin{array}{l} u' = (u_1', u_2') = (u_{\text{in}}, 0) \text{ on } \Omega' \\ \tilde{u}_h \text{ on } \tilde{\Omega} \end{array} \right. \\ p_h^s &= \left\{ \begin{array}{l} p' = -\frac{12u_{av}}{R^2} x + c_{\Omega'} \text{ on } \Omega' \\ \tilde{p}_h = \tilde{p}_h + c_{\tilde{\Omega}} \text{ on } \tilde{\Omega} \end{array} \right. \end{split}$$

where $c_{\Omega'}$ and $c_{\tilde{\Omega}}$ are determined from coupled conditions $\int_{\gamma} [p_h^s] = 0$ and $\int_{\Omega} p_h^s = 0$

Properties of the approximated 1D-2D solution

We will construct some tools such as flux reconstruction to be used to derive a posteriori error estimator.

Let (u, p) be the weak solution of 2D Stokes then

•
$$u \in [H^1_q(\Omega)]^2 := \{ u \in [H^1(\Omega)]^2; u = u_g \text{ on } \partial \Omega \}$$

• $\sigma := \nabla u - pl \in [H(\operatorname{div}, \Omega)]^2 := \{(\sigma_{ij})_{1 \le i, j \le 4}; \sigma_{ij} \in L^2(\Omega); \nabla \cdot \sigma \in [L^2(\Omega)]^2\}$

•
$$\nabla \cdot \sigma = 0.$$

Definition (Approximate Flux)

Let (u_h^s, p_h^s) be the of approximated 1D-2D solution then, we call approximate flux: $\nabla u_h^s - p_h^s I$

Let (u_h^s, p_h^s) be the approximated 1D-2D solution then, $u_h^s \in H_g^1(\Omega)$ but

- $\nabla u_h^s p_h^s I \notin [H(\operatorname{div}, \Omega)]^2$ in general.
- $\nabla \cdot (\nabla u_h^s p_h^s I) \neq 0$ in general.

a Posteriori Error

Flux Reconstruction

- Modify Vohralik approach [Ern & Vohralik, 2015] to get suitable reconstructed flux to our simplified 1D-2D model.
- Let (u_h^s, p_h^s) be the approximated 1D-2D solution.
- Ideally we would look $\sigma_h \in \Sigma_h \subset [H(\operatorname{div}, \Omega)]^2$ such that:

$$\sigma_h := \underset{\substack{v_h \in \Sigma_h, \\ \text{div } v_h = 0 \text{ on } \Omega}{\operatorname{vh} \mathcal{L}^s} \rho_h^s I - v_h ||_{L^2(\Omega)}.$$

• In practice, $\Sigma_h := (RTN_1 \mathbb{1}_{\tilde{\Omega}} + H(\operatorname{div}, \Omega') \mathbb{1}_{\Omega'}) \cap H(\operatorname{div}, \Omega).$ Let $RTN_1(K)$ be the Raviart-Thomas mixed finite element space on $K \in \tilde{\mathcal{T}}_h$ defined by:

$$\begin{split} & RTN_1(K) := [\mathbb{P}_1(K)]^2 + x \mathbb{P}_1(K) \\ & RTN_1 := \{ v_h \in H(\text{div}, \tilde{\Omega}); v_h|_K \in RTN_1(K), \forall K \in \tilde{\mathcal{T}}_h \} \end{split}$$

• This σ_h is too expensive so localize this minimization.

[Ern & Vohralik, 2015]Alexandre Ern and Martin Vohralik.Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous galerkin, and mixed discretizations.SIAMJournalonNumericalAnalysis, 53(2):1058–1081, 2015 a Posteriori Error

Flux Reconstruction

• ω_a is a patch of triangles sharing a vertex $a \& \omega_{\gamma} := \bigcup_{a \in \gamma} \omega_a$

a Posteriori Error

Flux Reconstruction

•
$$\mathbb{1}_{\Omega} = \mathbb{1}_{\Omega'} + \mathbb{1}_{\tilde{\Omega}} = \mathbb{1}_{\Omega'} + \sum_{a \in \gamma} \psi_a + \sum_{a \in \tilde{\Omega} \setminus \gamma} \psi_a = \mathbb{1}_{\Omega'} + \psi_{\gamma} + \sum_{a \in \tilde{\Omega} \setminus \gamma} \psi_a$$

• Where, ψ_a hat fn & $\psi_\gamma = \sum_{a \in \gamma} \psi_a$

•
$$\sigma_h = (\sigma_h^{\gamma} + \sum_{a \in \tilde{\Omega} \setminus \gamma} \sigma_h^a) \mathbb{1}_{\tilde{\Omega}} + (\nabla u' - p'I) \mathbb{1}_{\Omega'}$$

Case1: a in an internal node of Ω

$$\sigma_{h}^{a} := \arg\min_{\substack{V_{h}^{a} \in \Sigma_{h}^{a}, \\ \text{div} \ V_{h}^{a} = (\nabla \tilde{u}_{h} - \tilde{p}_{h}l) \in \nabla \psi_{a}}} |V_{h}^{a} = (\nabla \tilde{u}_{h} - \tilde{p}_{h}l) \cdot \nabla \psi_{a}}$$

where,
$$\Sigma_h^a := \{ \sigma_h \in RTN_1(\omega_a), \sigma_h \cdot n = 0 \text{ on } \partial \omega_a \}$$

Flux Reconstruction

•
$$\sigma_h = (\sigma_h^{\gamma} + \sum_{a \in \tilde{\Omega} \setminus \gamma} \sigma_h^a) \mathbb{1}_{\tilde{\Omega}} + (\nabla u' - p' I) \mathbb{1}_{\Omega'}$$

• Case2: a on the wall of $\tilde{\Omega} \backslash \gamma$

$$\sigma_{h}^{a} := \arg\min_{\substack{V_{h}^{a} \in \Sigma_{h}^{a}, \\ \text{div} v_{h}^{a} \in (\nabla \tilde{\nu}_{h} - \tilde{\rho}_{h}l) \cdot \nabla \psi_{a}}} ||_{L^{2}(\omega_{a})}$$

where, $\Sigma_h^a := \{ \sigma_h \in RTN_1(\omega_a), \sigma_h \cdot n = 0 \text{ on } \partial \omega_a \setminus \partial \tilde{\Omega} \}$

Flux Reconstruction

•
$$\sigma_h = (\sigma_h^{\gamma} + \sum_{a \in \tilde{\Omega} \setminus \gamma} \sigma_h^a) \mathbb{1}_{\tilde{\Omega}} + (\nabla u' - p'I) \mathbb{1}_{\Omega'}$$

• Case3: a on the wall
$$\gamma$$

•
$$\sigma_h^{\gamma} := \arg\min_{\substack{V_h^{\gamma} \in \Sigma_h^{\gamma}, \\ \text{div } v_h^{\gamma} \in (\nabla \tilde{u}_h - \tilde{p}_h I) : \nabla \psi_{\gamma}}} ||_{L^2(\gamma)}$$

where,

$$\Sigma_{h}^{\gamma} := \{ \sigma_{h} \in RTN_{1}(\omega_{\gamma}), \ \sigma_{h} \cdot n = 0 \ \text{ on } \frac{\partial \omega_{\gamma} \setminus \partial \tilde{\Omega}}{\partial \rho}, \ \sigma_{h} \cdot n = (\nabla u' - p'I)n \ \text{ on } \gamma \}$$

 Ω'

Proposition

$$\sigma_h = \tilde{\sigma}_h \mathbb{I}_{\tilde{\Omega}} + \sigma' \mathbb{I}_{\Omega'}$$
 where, $\tilde{\sigma}_h = \sigma_h^{\gamma} + \sum_{a \in \tilde{\Omega} \setminus \gamma} \sigma_h^a$, then $\nabla \cdot \tilde{\sigma}_h = 0$ on $\tilde{\Omega}$ and consequently $\nabla \cdot \sigma_h = 0$ on Ω .

Theorem (A general a posterior error estimate)

- Let (u, p) be the weak 2D solution of Stokes on Ω.
- Let $u_h^s \in [H_g^1(\Omega)]^2$ and $p_h^s \in L_0^2(\Omega)$ defined as approximated 1D-2D solution.
- Let $\tilde{\mathcal{T}}_h$ be the mesh of $\tilde{\Omega}$, then $\forall K \in \tilde{\mathcal{T}}_h$ define:
 - Flux estimator: $\eta_{F,K} := ||\nabla \tilde{u}_h \tilde{p}_h I \tilde{\sigma}_h||_K$
 - Divergence estimator: $\eta_{D,K} := \frac{||\nabla \cdot \tilde{u}_h||_K}{\beta}$.

Then,

$$\begin{split} \boldsymbol{e}_{U} &:= ||\nabla(\boldsymbol{u} - \boldsymbol{u}_{h})||_{\Omega} \leq \left(\sum_{K \in \tilde{\mathcal{T}}_{h}} \eta_{F,K}^{2} + \sum_{K \in \tilde{\mathcal{T}}_{h}} \eta_{D,K}^{2}\right)^{\frac{1}{2}} := \eta_{U} \\ \boldsymbol{e}_{P} &:= \beta ||\boldsymbol{p} - \boldsymbol{p}_{h}||_{\Omega} \leq \left(\sum_{K \in \tilde{\mathcal{T}}_{h}} \eta_{F,K}^{2}\right)^{\frac{1}{2}} + \left(\sum_{K \in \tilde{\mathcal{T}}_{h}} \eta_{D,K}^{2}\right)^{\frac{1}{2}} := \eta_{F} \\ \end{split}$$

where, $\inf_{q \in L^2_0(\Omega)} \sup_{v \in [H^1_0(\Omega)]^2} \frac{(q, \nabla \cdot v)_\Omega}{||q||_\Omega ||\nabla v||_\Omega} = \beta > 0$

Results

• Plot errors & estimators for different positions of the interface γ and for mesh sizes h = 0.07and h = 0.02

Hussein ALBAZZAL (Université de Franche-Comté)

Canum 2022

Results

- Using Theorem we can't detect the suitable position for the interface.
- We introduce a "Detection of interface position".

 $ERCU := ||\nabla(\tilde{u}_h - u')||_{\tilde{\Omega}_c}$

$$ERCP := \beta ||\tilde{p}_h - p'||_{\tilde{\Omega}_c}$$

_				_	
່ວບ	00	OF	Ori	- m	r n r
аı					IUI

Results

- Plot Estimated Region Cut *ERCU* and *ERCP* on a region Ω_c for mesh sizes h = 0.07 and for different positions of the interface.
- Compare *ERCU* and *ERCP* on a region $\tilde{\Omega}_c$ with errors $||\nabla(u u')||_{\Omega'}$ and $\beta ||p p'||_{\Omega'}$ on Ω' .

• the benefit of "ERCU" or "ERCP" is to determine the position of the interface without any knowledge about the exact solution *u* and *p*

We conclude that:

• The errors between non-coupled model and 2D-1D coupled model depends on the position of interfaces and mesh size.

• As we are near the bend channels the 2D effects are dominants and we can not reduce model in this region .

• We studied the posterior error estimator to get idea about the errors without any knowledge about the exact solution.

• We validate numerically the upper bound of a posteriori error estimator (for a chosen β to be calclated after) .

Perispective:

- We can make an approximation of inf-sup condition to determine β .
- We will study the efficiency of the estimators.