Contrôlabilité pour le problème de Stefan

Blaise COLLE ${ }^{1,2}$ Jérôme LOHÉAC ${ }^{2}$ Takéo TAKAHASHI ${ }^{1}$

${ }^{1}$ Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy ${ }^{2}$ Université de Lorraine, CNRS, CRAN, F-54000 Nancy

Introduction
In this poster, we are interested in the controllability of the Stefan problem, which is a Tempegatre
mathematical model for solid-liquid phase transition, well-posedness of the problem has
already been studied intensively, see Fasano and Primicerio 1977 for example. Here, we
present a steady state to steady state controllability result based on the flatness method
which has been applied to the heat equation in Martin et al. 2014 and to the Stefan problem
in Dunbar et al. 2003.

Problem statement

If we denote by θ_{s} and θ_{l} the temperature in the two slabs (solid and liquid) and by b the position of the moving interface between the two, using dimensionless variables, the Stefan problem can be written as:

$$
\begin{array}{rlrl}
\dot{\theta}_{s}(t, x) & =\partial_{x}^{2} \theta_{s}(t, x) & & (t>0, x \in(0, b(t))), \\
\theta_{s}(t, b(t)) & =0 & & (t>0), \\
\theta_{s}(t, 0) & =u_{s}(t) & & (t>0), \\
\dot{\theta}_{l}(t, x) & =c \partial_{x}^{2} \theta_{l}(t, x) & & (t>0, x \in(b(t), 1)), \\
\theta_{l}(t, b(t)) & =0 & & (t>0), \\
\theta_{l}(t, 1) & =u_{l}(t) & & (t>0), \\
\dot{b}(t) & =\partial_{x} \theta_{s}(t, b(t))-\partial_{x} \theta_{l}(t, b(t)) & (t>0),
\end{array}
$$

with some initial conditions,

$$
\begin{align*}
b(0) & =b^{0}, & & \tag{4a}\\
\theta_{s}(0, x) & =\theta_{s}^{0}(x) & & \left(x \in\left(0, b^{0}\right)\right) \tag{4b}\\
\theta_{l}(0, x) & =\theta_{l}^{0}(x) & & \left(x \in\left(b^{0}, 1\right)\right)
\end{align*}
$$

with the state constraints,

$$
\begin{align*}
b(t) & \in[0,1] \tag{5a}\\
\theta_{s}(t, x) & \leqslant 0 \tag{5b}
\end{align*}
$$

$(t>0)$,
$(t>0, x \in(0, b(t)))$,
$\theta_{l}(t, x) \geqslant 0$
$(t>0, x \in(b(t), 1))$,
and with the control constraints,

$$
\begin{equation*}
u_{s}(t) \leqslant 0 \quad \text { and } \quad u_{l}(t) \geqslant 0 \quad(t>0) \tag{6}
\end{equation*}
$$

Let us mention that the steady states of this system are described by $\bar{b} \in(0,1)$ and a parameter
$\bar{v} \in \mathbb{R}_{+}$, and given $\bar{b} \in(0,1)$ and $\bar{v} \in \mathbb{R}_{+}$, the associated steady state is given by
$\bar{u}_{s}=-\bar{v} \bar{b}$,
$\bar{u}_{l}=\bar{v}(1-\bar{b})$,

$$
\bar{\theta}_{s}(x)=\bar{v}(x-\bar{b}) \quad(x \in[0, \bar{b}]) \quad \text { and } \quad \bar{\theta}_{l}(x)=\bar{v}(x-\bar{b}) \quad(x \in[\bar{b}, 1]) .(7)
$$

Let us then define the set of steady states:

$$
\begin{align*}
\mathcal{S}_{+}^{*}(\bar{b})=\{ & \left(\bar{\theta}_{s}, \bar{\theta}_{l}\right) \in\left(H^{2}(0, \bar{b}) \cap H_{R}^{1}(0, \bar{b})\right) \times\left(H^{2}(\bar{b}, 1) \cap H_{L}^{1}(\bar{b}, 1)\right) \mid \\
& \left.\exists \bar{v} \in \mathbb{R}_{+}^{*}, \forall x \in(0, \bar{b}), \theta_{s}(x)=\bar{v}(x-\bar{b}) \text { and } \forall x \in(\bar{b}, 1), \theta_{l}(x)=\bar{v}(x-\bar{b})\right\} \tag{8a}
\end{align*}
$$

Main result: Steady state to steady state controllability theorem

Let $\bar{b}_{0}, \bar{b}_{1} \in(0,1),\left(\bar{\theta}_{s}^{0}, \bar{\theta}_{l}^{0}\right)$ and $\left(\bar{\theta}_{s}^{1}, \bar{\theta}_{l}^{1}\right)$ be steady states, and let $\bar{v}_{0}, \bar{v}_{1} \in \mathbb{R}_{+}$be such that

$$
\bar{\theta}_{s}^{0}(x)=\bar{v}_{0}\left(x-\bar{b}_{0}\right) \quad\left(x \in\left[0, \bar{b}_{0}\right]\right) \quad \text { and } \quad \bar{\theta}_{l}^{0}(x)=\bar{v}_{0}\left(x-\bar{b}_{0}\right) \quad\left(x \in\left[\bar{b}_{0}, 1\right]\right)
$$

and

$$
\bar{\theta}_{s}^{1}(x)=\bar{v}_{1}\left(x-\bar{b}_{1}\right) \quad\left(x \in\left[0, \bar{b}_{1}\right]\right) \quad \text { and } \quad \bar{\theta}_{l}^{1}(x)=\bar{v}_{1}\left(x-\bar{b}_{1}\right) \quad\left(x \in\left[\bar{b}_{1}, 1\right]\right) .
$$

Then for all $T>0$, there exists $u_{s}, u_{l} \in C^{\infty}(0, T)$, Gevrey, such that the solution of (1)-(3) is steered from $\left(\theta_{s}^{0}, \theta_{l}^{0}, b^{0}\right)$ to $\left(\bar{\theta}_{s}^{1}, \bar{\theta}_{l}^{1}, b^{1}\right)$ in time T.
In addition, if $\left(\bar{\theta}_{s}^{0}, \bar{\theta}_{l}^{0}\right) \in \mathcal{S}_{+}^{*}\left(\bar{b}^{0}\right)$ and $\left(\bar{\theta}_{s}^{1}, \bar{\theta}_{l}^{1}\right) \in \mathcal{S}_{+}^{*}\left(\bar{b}^{1}\right)$ (i.e., if $\left.\bar{v}_{0}, \bar{v}_{1} \in \mathbb{R}_{+}^{*}\right)$, then there exists $T>0$ and $u_{s}, u_{l} \in C^{\infty}(0, T)$, satisfying (5)-(6) such that the solution of (1)-(3) is steered from $\left(\bar{\theta}_{s}^{0}, \bar{\theta}_{l}^{0}, \bar{b}^{0}\right)$ to $\left(\bar{\theta}_{s}^{1}, \bar{\theta}_{l}^{1}, \bar{b}^{1}\right)$ in time T.

Gevrey functions
Let $n \geq 1, U \subset \mathbb{R}^{n}$ and $f \in \mathcal{C}^{\infty}(U, \mathbb{R})$, we say that f is Gevrey, if there exist $M \geq 0$, $R_{1}, \ldots, R_{n}>0$ and $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ such that:

$$
\forall x \in U, \forall p_{1}, \ldots, p_{n} \in \mathbb{N}, \quad\left|\partial_{x_{1}}^{p_{1}} \ldots \partial_{x_{n}}^{p_{n}} f(x)\right| \leq M \prod_{i=1}^{n} \frac{\left(p_{i}\right)!^{\sigma_{i}}}{R_{i}^{p_{i}}}
$$

And if $p \in \mathbb{N}$ and $f \in \mathcal{C}^{\infty}\left(U, \mathbb{R}^{p}\right)$, we say that f is Gevrey if its coordinates are Gevrey in the above sense. If we are working on an interval I of \mathbb{R}, we denote $\mathcal{G}(M, R, \sigma)$ the set of Gevrey functions on I of order σ and constants $M, R \geq 0$

Estimate Result

Let $\chi \geq 0, I \subset \mathbb{R}$ an interval, $\sigma \in[1,2], M_{\alpha}>0, M_{\beta}, M_{f} \geq 0$ and $R>0$. Let
$f \in \mathcal{G}\left(M_{f}, R, \sigma\right), \alpha_{0} \in \mathcal{G}\left(M_{\alpha}, R, \sigma\right)$ and $\beta_{0} \in \mathcal{G}\left(M_{\beta}, R, \sigma\right)$ be given Gevrey functions defined on I. Consider the sequence defined by

$$
\left\{\begin{array}{l}
\beta_{i+1}=\chi \dot{\beta}_{i}-\chi f \alpha_{i}, \\
\alpha_{i+1}=\chi \dot{\alpha}_{i}-\chi f \beta_{i+1},
\end{array}\right.
$$

where β_{i} and α_{i} are real functions defined on I (we initialize the sequences with α_{0}, β_{0}). Then, for every $i \in \mathbb{N}, \alpha_{i}$ and β_{i} are Gevrey functions of order σ defined on I. In addition, for every $\rho \in\left(0, \rho^{*}(M, R, \chi)\right]$, we have, for every $l \in \mathbb{N}$ and every $i \in \mathbb{N}$,

$$
\begin{equation*}
\left\|\alpha_{i}^{(l)}\right\|_{L^{\infty}(I)} \leqslant \frac{M_{\alpha} \chi^{i}}{R^{l} \rho^{i}} \frac{(l+2 i)!^{\sigma}}{i!^{p}(2 i)!^{\sigma-1}} \quad \text { and } \quad\left\|\beta_{i+1}^{(l)}\right\|_{L^{\infty}(I)} \leqslant \frac{\mu \chi^{i+1}}{R^{l} \rho^{i}} \frac{(l+2 i+1)!^{\sigma}}{i!^{p}(2 i+1)!^{\sigma-1}}, \tag{9}
\end{equation*}
$$

where we have set $\mu:=\frac{M_{\beta}}{R}+M_{\alpha} M_{f}, p=2-\sigma \in[0,1]$ and

$$
\rho^{*}(M, R, \chi)=\min \left\{\left(\frac{4+\chi M_{\beta} M_{f} /\left(2 M_{\alpha}\right)}{R}+\frac{\chi M_{f}^{2}}{2}\right)^{-1}, \frac{2 R}{3}\right\}
$$

Step and bump functions
If $\sigma>1$ and $k:=(\sigma-1)^{-1}$ the function defined by:

$$
\phi_{\sigma}(t):= \begin{cases}1 & \text { if } t \leq 0 \\ 0 & \text { if } t \geq 1, \\ \frac{e^{-(1-t)^{-k}}}{e^{-(1-t)^{-k}}+e^{-t^{-k}}} & \text { if } t \in(0,1),\end{cases}
$$

is Gevrey of order σ on \mathbb{R} and verifies:
【 $\forall i \in \mathbb{N}^{*}, \phi_{\sigma}^{(i)}(0)=\phi_{\sigma}^{(i)}(1)=0$
$\mathbf{2} \forall t \in \mathbb{R}, 0 \leq \phi_{\sigma}(t) \leq 1$.
3 $\forall t \in \mathbb{R}, \phi_{\sigma}(t)+\phi_{\sigma}(1-t)=1$
If $\sigma>1$ then, it exists η a Gevrey function of order σ on \mathbb{R} such that
$\boldsymbol{1} \eta$ vanishes on $\mathbb{R} \backslash[0,1]$
(2 $\eta \geq 0$
3 $\int_{\mathbb{R}} \eta(t) d t=1$
It is constructed using the step function.

Sketch of the proof of the main result

We are looking for solutions under the form

$$
\begin{align*}
\theta_{s}(t, x) & =\sum_{i=0}^{\infty} \alpha_{i}^{s}(t) \frac{(x-b(t))^{2 i+1}}{(2 i+1)!}+\sum_{i=0}^{\infty} \beta_{i}^{s}(t) \partial_{x} \frac{(x-b(t))^{2 i}}{(2 i)!} \tag{11a}\\
\theta_{l}(t, x) & =\sum_{i=1}^{\infty} \alpha_{i}^{l}(t) \frac{(x-b(t))^{2 i+1}}{(2 i+1)!}+\sum_{i=0}^{\infty} \beta_{i}^{l}(t) \partial_{x} \frac{(x-b(t))^{2 i}}{(2 i)!} \tag{11b}
\end{align*}
$$

The problem statement gives us the following conditions

$$
\left\{\begin{array} { l }
{ \beta _ { i + 1 } ^ { s } = \dot { \beta } _ { i } ^ { s } - \dot { b } \alpha _ { i } ^ { s } , } \tag{12}\\
{ \alpha _ { i + 1 } ^ { s } = \dot { \alpha } _ { i } ^ { s } - \dot { b } \beta _ { i + 1 } ^ { s } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
c \beta_{i+1}^{l}=\dot{\beta}_{i}^{l}-\dot{b} \alpha_{i}^{l}, \\
c \alpha_{i+1}^{l}=\dot{\alpha}_{i}^{l}-\dot{b} \beta_{i+1}^{l}
\end{array}\right.\right.
$$

and

$$
\begin{equation*}
\dot{b}=\alpha_{0}^{s}-\alpha_{0}^{l} . \tag{13}
\end{equation*}
$$

The previous estimate result tells us that if α_{0}^{s} and α_{0}^{l} are chosen in some $\mathcal{G}(M, R, \sigma)$ with $\sigma \in(1,2)$ then the previous series converge and are \mathcal{C}^{∞} and are in fact Gevrey (we necessarily have $\left.\beta_{0}^{s}=\beta_{0}^{l}=0\right)$
If $b_{1} \geq b_{0}$ (else we switch the two), we set:

$$
\begin{equation*}
\alpha_{0}^{l}(t):=\alpha\left(\frac{t}{T}\right) \quad \text { and } \quad \alpha_{0}^{s}(t):=\alpha\left(\frac{t}{T}\right)+\frac{1}{T} \varphi\left(\frac{t}{T}\right) \quad(t \in[0, T]) \tag{14}
\end{equation*}
$$

with

$$
\alpha(t)=\bar{v}_{0} \phi_{\sigma}(t)+\bar{v}_{1} \phi_{\sigma}(1-t) \quad \text { and } \quad \varphi(t)=\left(\bar{b}_{1}-\bar{b}_{0}\right) \eta(t) \quad(t \in[0,1])
$$

to have

- $\alpha_{0}^{s}(0)=\alpha_{0}^{l}(0)=\bar{v}_{0} ;$
- $\alpha_{0}^{s}(T)=\alpha_{0}^{l}(T)=\bar{v}_{1}$;
- $\alpha_{0}^{s(i)}(0)=\alpha_{0}^{l(i)}(0)=\alpha_{0}^{s(i)}(T)=\alpha_{0}^{l(i)}(T)=0$ for every $i \in \mathbb{N}$;

■ $\int_{0}^{T}\left(\alpha_{0}^{s}(t)-\alpha_{0}^{l}(t)\right) d t=\bar{b}_{1}-\bar{b}_{0}$
And thus we designed a solution to our problem. We get u_{s} and u_{l} as the traces of our solutions. To show the preservation of the sign constraints for large T we derive finer estimates on our series depending on T, using the construction of α_{0}^{s} and α_{0}^{l} and our estimation result.

$$
\text { Numerical aspect }
$$

The series defining the trajectories we designed in our result converge at a rate: $o\left(\frac{e^{-\frac{p}{2} N(\ln (N)-1)}}{(N+1)^{\frac{p}{2}} \ln (N)}\right)$.

References

Martin, P., L. Rosier, and P. Rouchon (2014). "Null controllability of the heat equation using flatness". Automatica 50.12.
Dunbar, W. B., N. Petit, P. Rouchon, and P. Martin (2003). "Motion planning for a nonlinear Stefan problem". ESAIM, Control Optim. Calc. Var. 9
Fasano, A. and M. Primicerio (1977). "General free-boundary problems for the heat equation. III" J. Math. Anal. Appl. 59

Acknowledgement

The authors wish to thank ANR Trecos and the Fédération Charles Hermite for funding

