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Introduction

In this poster, we are interested in the controllability of the
mathematical model for solid-liquid phase transition, well-posedness of the problem has
already been studied intensively, see Fasano and Primicerio 1977 for example.
present a steady state to steady state controllability result based on the 0 Bt ) b) ‘
in Martin et al. 2014 and to the
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which has been applied to the
in Dunbar et al. 2003.

Problem statement

If we denote by 6, and 6; the temperature in the two slabs (solid and liquid) and by b the position

of the moving interface between the two, using dimensionless variables, the can be
written as:
0,(t, x) = 0°04(t, x) (t >0, x € (0,b(t))), (1a)
0s(t,b(t)) =0 (t > 0), (1b)
0s(t,0) = uy(t) (t > 0), (Lc)
0i(t, z) = 08295(15, ) (t >0,z € (bt),1)), (2a)
0i(t,b(t)) = (t>0), (2b)
0;(t, 1) = ( ) (t > 0), (2¢)
b(t) = D:05(t, b(t)) — O:0:(t, b(t)) (¢ > 0), (3)
with some initial conditions,
b(0) = b’, (4a)
05(0, ) = 92(«%‘) (z € (0,0")), (4b)
0,00, z) = 6 (x) (z € (b, 1)), (4¢)
with the state constraints,
b(t) € [0, 1] (t > 0), (5a)
0s(t,x) <0 (t >0,z € (0,b(t))), (5b)
0;(t,x) >0 (t >0,z € (b(t),1)), (5¢)
and with the control constraints,
us(t) <0 and w(t) =0  (t>0). (6)

Let us mention that the steady states of this system are described by b € (0,1) and a parameter
v € R, and given b € (0,1) and v € R, the associated steady state is given by

;= v(1 —b),
0y(x) = v(z — b)
Let us then define the set of steady states:
S1(b) = {(6:,0)) € (H*(0,b) N HE(0 b) (H(
Jo € R*, Vo € (0,b), Os(x) =

U/S — _/l_}b7

(z €[0,8]) and

(b,1) N Hj(b,1)) |

v(x —b) and Vz € (b,1), Oi(x) =v(x —0b)}. (8a)

Main result: Steady state to steady state controllability theorem

Let by, by € (0,1), (62,07) and (6., 0]) be steady states, and let 7y, 1 € R, be such that

é?(f) — @Q(ZE — BO) (x & [O, [_?()D and é?(l’) — ?70($‘ — EO) (I c [60, 1])
and ) ) ) ) ) )

(9;(33) - Q_}l(ﬂl’ — bl) (ZU c [O, bl]) and (911(513) - ?71(33‘ — bl> (ZC c [bl, 1])
Then for all T' > 0, there exists u,, u; € C°(0,T'), Gevrey, such that the solution of (1)—(3) is
steered from (), 6),0") to (0;,6;,0") in time T'.
In addition, if (62, 6)) € S*(1") and (6%, 6]) € S¥(b') (i.e., if vy, v; € R%), then there exists T > 0
and ug, uy € C*°(0,T), satisfying (5)-(6) such that the solution of (1)—(3) is steered from
(62,607,0°) to (01,0],b") in time T.

< Gevrey functions|

let n > 1, U C R" and f € C*®(U,R), we say that f is Gevrey, if there exist M > 0,
Ry, ..., R, >0 and o0y, ...,0, > 0 such that:

|01

‘<MH pr

And if p € N and f € C*(U,RR?P), we say that f is Gevrey if its coordlnates are Gevrey in the
above sense. If we are working on an interval I of R, we denote G(M, R, o) the set of Gevrey
functions on I of order o and constants M, R > 0

Ve e U, Ypy,....,pn, € N, 0008 f(

Estimate Result

Let x >0, I C R an interval, 0 € [1,2], M, > 0, Mz, M; > 0and R > 0. Let
fegG(MsR,0), g € G(M,, R,0) and By € G(M3, R, o) be given Gevrey functions defined on
I. Consider the sequence defined by
{@'H = XB@’ — xJai,
Qit1 = X — XJ Bit1,
where 3; and q; are real functions defined on I (we initialize the sequences with «ay, 5y).

Then, for every 1 € N, «; and (; are Gevrey functions of order o defined on I. In addition, for
every p € (0, p*(M, R, x)|, we have, for every | € N and every i € N,

Mox" (14 24)!° px (L + 20+ 1)1
= Riptalp(2i)lo S Rl ip(2i + 1)lo- 1

where we have set = % + M My¢, p=2—0 €0,1] and

A vMgMi/(2M,) xM2\ " 9
,0*<M,R,X)min{< X BRf/( M—%) ,5}

(9)
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| Step and bump functions|

If o > 1 and k := (0 — 1)~! the function defined by:
1 ft<0
0 ift > 1
Gy(t) == 3 g =5 (t € R), (10)
e .
6_(1_t>—k + e_t—k; Ift S (07 1)7

is Gevrey of order o0 on R and verifies:
Vi € N*, ¢(0) = ¢5(1) = 0
Vie R, 0< ¢,(t) <1
Vi € R, ¢, (t) + (1 — 1) =1
If 0 > 1 then, it exists n a Gevrey function of order o on R such that:
n vanishes on R \ |0, 1]
an >0

Jrn(t)dt =1

It is constructed using the step function.
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Sketch of the proof of the main result

We are looking for solutions under the form:

(z—0(t)"" < (z — b(¢)*
°(1)0, , 11
ZO‘ 2z+1)! +;@<) (20) (11a)
— b)) g (&= 0()
(1)0; 11b
ZO‘ 22+1) +;B@() (20) (11b)
The problem statement gives us the following conditions:
s _ 2L ot
{ ZS“ = bf = boj and { BZZH P Ozg (12)
Q1 = CV b 1+1 CQr 11 = C\f bﬁHl
and |
b=ai— o (13)

The previous estimate result tells us that if o and o, are chosen in some G(M, R, o) with
o € (1,2) then the previous series converge and are C*> and are in fact Gevrey (we necessarily

have 85 = 3, = 0).
If b, > by (else we switch the two), we set:

offt) =a(h) and i) =a (D) +e()  (t€0.T]) (14
with
a(t) = oy (1) + 165 (1= 1) and () = (b —bo)n(t) (£ € [0,1]
to have

m a(0) = ao(i>(0) = o\ (T) = ozf)m(T) = () for every i € N;
- foT (af(t) — ap(t) dt = bi — by,

And thus we designed a solution to our problem. We get u, and u; as the traces of our solutions.

To show the preservation of the sign constraints for large 1" we derive finer estimates on our series
depending on T', using the construction of « and o, and our estimation result.

Numerical aspect

: _ : : : : —5N(In(N)-1)
The series defining the trajectories we designed in our result converge at a rate: o (6 : )

(N+1)Z In(N)
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