

Contrôlabilité pour le problème de Stefan

Blaise COLLE ^{1,2} Jérôme LOHÉAC ² Takéo TAKAHASHI ¹

¹Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy ²Université de Lorraine, CNRS, CRAN, F-54000 Nancy

Problem statement

If we denote by θ_s and θ_l the temperature in the two slabs (solid and liquid) and by b the position of the moving interface between the two, using dimensionless variables, the Stefan problem can be written as:

$\dot{\rho}$ (,) $\rho^2 \rho$ (,)		
$\dot{ heta}_s(t,x) = \partial_x^2 heta_s(t,x)$	$(t > 0, x \in (0, b(t))),$	(1a)
$\theta_s(t, b(t)) = 0$	(t>0),	(1b)
$\theta_s(t,0) = u_s(t)$	(t>0),	(1c)
$\dot{ heta}_l(t,x) = c\partial_x^2 heta_l(t,x)$	$(t > 0, x \in (b(t), 1)),$	(2a)
$ heta_l(t, b(t)) = 0$	(t > 0),	(2b)
$ heta_l(t,1) = u_l(t)$	(t > 0),	(2c)
$\dot{b}(t) = \partial_x \theta_s(t, b(t))$	$(t)) - \partial_x \theta_l(t, b(t)) \qquad (t > 0),$	(3)
with some initial conditions,		
$b(0) = b^0,$		(4a)
$ heta_s(0,x) = heta_s^0(x)$	$(x \in (0, b^0)),$	(4b)
$ heta_l(0,x) = heta_l^0(x)$	$(x \in (b^0, 1)),$	(4c)
	$(\omega \subset (0, 1)),$	
with the state constraints,		
$b(t) \in [0, 1]$	(t>0),	(5a)
$\theta_s(t,x) \leqslant 0$	$(t > 0, x \in (0, b(t))),$	(5b)
$\theta_l(t,x) \ge 0$	$(t > 0, x \in (b(t), 1)),$	(5c)
and with the control constraints,		
$u_s(t) \leqslant 0$ ar	$d u_l(t) \ge 0 (t > 0).$	(6)
Let us mention that the steady states of this system are described by $\bar{b} \in (0, 1)$ and a parameter $\bar{v} \in \mathbb{R}_+$, and given $\bar{b} \in (0, 1)$ and $\bar{v} \in \mathbb{R}_+$, the associated steady state is given by		
$\bar{u}_s = -\bar{v}\bar{b}, \qquad \bar{u}_l = \bar{v}(1-\bar{b}),$		
	$(x \in [0, \overline{b}])$ and $\overline{\theta}_l(x) = \overline{v}(x - \overline{b})$	$(x \in [\bar{b}, 1]).$ (7)

$\begin{aligned} \textbf{Step and bump functions} \\ \text{If } \sigma > 1 \text{ and } k &:= (\sigma - 1)^{-1} \text{ the function defined by:} \\ \phi_{\sigma}(t) &:= \begin{cases} 1 & \text{if } t \leq 0, \\ 0 & \text{if } t \geq 1, \\ \frac{e^{-(1-t)^{-k}}}{e^{-(1-t)^{-k}} + e^{-t^{-k}}} & \text{if } t \in (0, 1), \end{cases} \end{aligned}$ (10) is Gevrey of order σ on \mathbb{R} and verifies: $\forall i \in \mathbb{N}^*, \phi_{\sigma}^{(i)}(0) = \phi_{\sigma}^{(i)}(1) = 0 \end{aligned}$

Let us then define the set of steady states:

 $\mathcal{S}^*_+(\bar{b}) = \left\{ \left(\bar{\theta}_s, \bar{\theta}_l \right) \in \left(H^2(0, \bar{b}) \cap H^1_R(0, \bar{b}) \right) \times \left(H^2(\bar{b}, 1) \cap H^1_L(\bar{b}, 1) \right) \mid \\ \exists \bar{v} \in \mathbb{R}^*_+, \ \forall x \in (0, \bar{b}), \ \theta_s(x) = \bar{v}(x - \bar{b}) \ \text{and} \ \forall x \in (\bar{b}, 1), \ \theta_l(x) = \bar{v}(x - \bar{b}) \right\}.$ (8a)

 $\forall t \in \mathbb{N}, \phi_{\sigma}(0) = \phi_{\sigma}(1) = 0$ $\forall t \in \mathbb{R}, 0 \le \phi_{\sigma}(t) \le 1.$ $\exists \forall t \in \mathbb{R}, \phi_{\sigma}(t) + \phi_{\sigma}(1 - t) = 1$ $\text{If } \sigma > 1 \text{ then, it exists } \eta \text{ a Gevrey function of order } \sigma \text{ on } \mathbb{R} \text{ such that:}$ $\exists \eta \text{ vanishes on } \mathbb{R} \setminus [0, 1]$ $\exists \eta \ge 0$ $\exists \int_{\mathbb{R}} \eta(t) dt = 1$

It is constructed using the step function.

Sketch of the proof of the main result

We are looking for solutions under the form:

$$\begin{aligned} \theta_s(t,x) &= \sum_{i=0}^{\infty} \alpha_i^s(t) \frac{(x-b(t))^{2i+1}}{(2i+1)!} + \sum_{i=0}^{\infty} \beta_i^s(t) \partial_x \frac{(x-b(t))^{2i}}{(2i)!}, \\ \theta_l(t,x) &= \sum_{i=1}^{\infty} \alpha_i^l(t) \frac{(x-b(t))^{2i+1}}{(2i+1)!} + \sum_{i=0}^{\infty} \beta_i^l(t) \partial_x \frac{(x-b(t))^{2i}}{(2i)!}. \end{aligned}$$

The problem statement gives us the following conditions:

$$\begin{cases} \beta_{i+1}^s = \dot{\beta}_i^s - \dot{b}\alpha_i^s, \\ \alpha_{i+1}^s = \dot{\alpha}_i^s - \dot{b}\beta_{i+1}^s \end{cases} \quad \text{and} \quad \begin{cases} c\beta_{i+1}^l = \dot{\beta}_i^l - \dot{b}\alpha_i^l, \\ c\alpha_{i+1}^l = \dot{\alpha}_i^l - \dot{b}\beta_{i-1}^l \end{cases}$$

and

 $\dot{b} = \alpha_0^s - \alpha_0^l.$

The previous estimate result tells us that if α_0^s and α_0^l are chosen in some $\mathcal{G}(M, R, \sigma)$ with $\sigma \in (1, 2)$ then the previous series converge and are \mathcal{C}^{∞} and are in fact Gevrey (we necessarily have $\beta_0^s = \beta_0^l = 0$).

If $b_1 \ge b_0$ (else we switch the two), we set:

Main result: Steady state to steady state controllability theorem

Let $\bar{b}_0, \bar{b}_1 \in (0, 1)$, $(\bar{\theta}_s^0, \bar{\theta}_l^0)$ and $(\bar{\theta}_s^1, \bar{\theta}_l^1)$ be steady states, and let $\bar{v}_0, \bar{v}_1 \in \mathbb{R}_+$ be such that $\bar{\theta}_s^0(x) = \bar{v}_0(x - \bar{b}_0)$ $(x \in [0, \bar{b}_0])$ and $\bar{\theta}_l^0(x) = \bar{v}_0(x - \bar{b}_0)$ $(x \in [\bar{b}_0, 1])$

and

 $\bar{\theta}_s^1(x) = \bar{v}_1(x - \bar{b}_1) \quad (x \in [0, \bar{b}_1]) \quad \text{and} \quad \bar{\theta}_l^1(x) = \bar{v}_1(x - \bar{b}_1) \quad (x \in [\bar{b}_1, 1]).$

Then for all T > 0, there exists $u_s, u_l \in C^{\infty}(0, T)$, Gevrey, such that the solution of (1)–(3) is steered from $(\bar{\theta}_s^0, \bar{\theta}_l^0, \bar{b}^0)$ to $(\bar{\theta}_s^1, \bar{\theta}_l^1, \bar{b}^1)$ in time T.

In addition, if $(\bar{\theta}_s^0, \bar{\theta}_l^0) \in S^*_+(\bar{b}^0)$ and $(\bar{\theta}_s^1, \bar{\theta}_l^1) \in S^*_+(\bar{b}^1)$ (i.e., if $\bar{v}_0, \bar{v}_1 \in \mathbb{R}^*_+$), then there exists T > 0and $u_s, u_l \in C^{\infty}(0, T)$, satisfying (5)-(6) such that the solution of (1)-(3) is steered from $(\bar{\theta}_s^0, \bar{\theta}_l^0, \bar{b}^0)$ to $(\bar{\theta}_s^1, \bar{\theta}_l^1, \bar{b}^1)$ in time T.

Gevrey functions

Let $n \ge 1$, $U \subset \mathbb{R}^n$ and $f \in \mathcal{C}^{\infty}(U, \mathbb{R})$, we say that f is Gevrey, if there exist $M \ge 0$, $R_1, ..., R_n > 0$ and $\sigma_1, ..., \sigma_n \ge 0$ such that:

 $\forall x \in U, \ \forall p_1, \dots, p_n \in \mathbb{N}, \qquad \left|\partial_{x_1}^{p_1} \dots \partial_{x_n}^{p_n} f(x)\right| \le M \prod_{i=1}^n \frac{(p_i)!^{\sigma_i}}{R_i^{p_i}}$

And if $p \in \mathbb{N}$ and $f \in \mathcal{C}^{\infty}(U, \mathbb{R}^p)$, we say that f is Gevrey if its coordinates are Gevrey in the above sense. If we are working on an interval I of \mathbb{R} , we denote $\mathcal{G}(M, R, \sigma)$ the set of Gevrey functions on I of order σ and constants $M, R \geq 0$

Estimate Result

Let $\chi \ge 0$, $I \subset \mathbb{R}$ an interval, $\sigma \in [1, 2]$, $M_{\alpha} > 0$, M_{β} , $M_f \ge 0$ and R > 0. Let $f \in \mathcal{G}(M_f, R, \sigma)$, $\alpha_0 \in \mathcal{G}(M_{\alpha}, R, \sigma)$ and $\beta_0 \in \mathcal{G}(M_{\beta}, R, \sigma)$ be given Gevrey functions defined on I. Consider the sequence defined by

 $\alpha_0^l(t) := \alpha\left(\frac{t}{T}\right) \quad \text{and} \quad \alpha_0^s(t) := \alpha\left(\frac{t}{T}\right) + \frac{1}{T}\varphi\left(\frac{t}{T}\right) \qquad (t \in [0, T]).$ (14)

with

 $\alpha(t) = \bar{v}_0 \phi_{\sigma}(t) + \bar{v}_1 \phi_{\sigma}(1-t) \quad \text{ and } \quad \varphi(t) = (\bar{b}_1 - \bar{b}_0) \eta(t) \quad (t \in [0, 1]),$

to have

• $\alpha_0^s(0) = \alpha_0^l(0) = \bar{v}_0;$

•
$$\alpha_0^s(T) = \alpha_0^l(T) = \bar{v}_1;$$

- $\alpha_0^{s(i)}(0) = \alpha_0^{l(i)}(0) = \alpha_0^{s(i)}(T) = \alpha_0^{l(i)}(T) = 0$ for every $i \in \mathbb{N}$;
- $= \int_0^T \left(\alpha_0^s(t) \alpha_0^l(t) \right) dt = \overline{b}_1 \overline{b}_0.$

And thus we designed a solution to our problem. We get u_s and u_l as the traces of our solutions. To show the preservation of the sign constraints for large T we derive finer estimates on our series depending on T, using the construction of α_0^s and α_0^l and our estimation result.

Numerical aspect

(11a)

(11b)

(12)

(13)

$$\begin{cases} \beta_{i+1} = \chi \dot{\beta}_i - \chi f \alpha_i, \\ \alpha_{i+1} = \chi \dot{\alpha}_i - \chi f \beta_{i+1}, \end{cases}$$

where β_i and α_i are real functions defined on I (we initialize the sequences with α_0, β_0). Then, for every $i \in \mathbb{N}$, α_i and β_i are Gevrey functions of order σ defined on I. In addition, for every $\rho \in (0, \rho^*(M, R, \chi)]$, we have, for every $l \in \mathbb{N}$ and every $i \in \mathbb{N}$,

$$\begin{split} \|\alpha_{i}^{(l)}\|_{L^{\infty}(I)} &\leqslant \frac{M_{\alpha}\chi^{i}}{R^{l}\rho^{i}} \frac{(l+2i)!^{\sigma}}{i!^{p}(2i)!^{\sigma-1}} \quad \text{and} \quad \|\beta_{i+1}^{(l)}\|_{L^{\infty}(I)} \leqslant \frac{\mu\chi^{i+1}}{R^{l}\rho^{i}} \frac{(l+2i+1)!^{\sigma}}{i!^{p}(2i+1)!^{\sigma-1}}, \\ \text{where we have set } \mu &:= \frac{M_{\beta}}{R} + M_{\alpha}M_{f}, \ p = 2 - \sigma \in [0,1] \text{ and} \\ \rho^{*}(M,R,\chi) &= \min\left\{\left(\frac{4 + \chi M_{\beta}M_{f}/(2M_{\alpha})}{R} + \frac{\chi M_{f}^{2}}{2}\right)^{-1}, \frac{2R}{3}\right\}. \end{split}$$

References

- Martin, P., L. Rosier, and P. Rouchon (2014). "Null controllability of the heat equation using flatness". Automatica 50.12.
- Dunbar, W. B., N. Petit, P. Rouchon, and P. Martin (2003). "Motion planning for a nonlinear Stefan problem". ESAIM, Control Optim. Calc. Var. 9.
- Fasano, A. and M. Primicerio (1977). "General free-boundary problems for the heat equation. III". J. Math. Anal. Appl. 59.

Acknowledgement

The authors wish to thank ANR Trecos and the Fédération Charles Hermite for funding.

CANUM 2022, Evian lès Bains , France

(9)