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In this poster, we are interested in the controllability of the Stefan problem, which is a
mathematical model for solid-liquid phase transition, well-posedness of the problem has
already been studied intensively, see Fasano and Primicerio 1977 for example. Here, we
present a steady state to steady state controllability result based on the flatness method
which has been applied to the heat equation in Martin et al. 2014 and to the Stefan problem
in Dunbar et al. 2003.
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Problem statement

If we denote by θs and θl the temperature in the two slabs (solid and liquid) and by b the position
of the moving interface between the two, using dimensionless variables, the Stefan problem can be
written as:

θ̇s(t, x) = ∂2
xθs(t, x) (t > 0, x ∈ (0, b(t))), (1a)

θs(t, b(t)) = 0 (t > 0), (1b)

θs(t, 0) = us(t) (t > 0), (1c)

θ̇l(t, x) = c ∂2
xθl(t, x) (t > 0, x ∈ (b(t), 1)), (2a)

θl(t, b(t)) = 0 (t > 0), (2b)

θl(t, 1) = ul(t) (t > 0), (2c)

ḃ(t) = ∂xθs(t, b(t))− ∂xθl(t, b(t)) (t > 0), (3)

with some initial conditions,

b(0) = b0, (4a)

θs(0, x) = θ0
s(x) (x ∈ (0, b0)), (4b)

θl(0, x) = θ0
l (x) (x ∈ (b0, 1)), (4c)

with the state constraints,

b(t) ∈ [0, 1] (t > 0), (5a)

θs(t, x) 6 0 (t > 0, x ∈ (0, b(t))), (5b)

θl(t, x) > 0 (t > 0, x ∈ (b(t), 1)), (5c)

and with the control constraints,

us(t) 6 0 and ul(t) > 0 (t > 0). (6)

Let us mention that the steady states of this system are described by b̄ ∈ (0, 1) and a parameter
v̄ ∈ R+, and given b̄ ∈ (0, 1) and v̄ ∈ R+, the associated steady state is given by

ūs = −v̄b̄, ūl = v̄(1− b̄),
θ̄s(x) = v̄(x− b̄) (x ∈ [0, b̄]) and θ̄l(x) = v̄(x− b̄) (x ∈ [b̄, 1]). (7)

Let us then define the set of steady states:

S∗+(b̄) =
{(
θ̄s, θ̄l

)
∈
(
H2(0, b̄) ∩H1

R(0, b̄)
)
×
(
H2(b̄, 1) ∩H1

L(b̄, 1)
)
|

∃v̄ ∈ R∗+, ∀x ∈ (0, b̄), θs(x) = v̄(x− b̄) and ∀x ∈ (b̄, 1), θl(x) = v̄(x− b̄)
}
. (8a)

Main result: Steady state to steady state controllability theorem

Let b̄0, b̄1 ∈ (0, 1), (θ̄0
s, θ̄

0
l ) and (θ̄1

s, θ̄
1
l ) be steady states, and let v̄0, v̄1 ∈ R+ be such that

θ̄0
s(x) = v̄0(x− b̄0) (x ∈ [0, b̄0]) and θ̄0

l (x) = v̄0(x− b̄0) (x ∈ [b̄0, 1])

and
θ̄1
s(x) = v̄1(x− b̄1) (x ∈ [0, b̄1]) and θ̄1

l (x) = v̄1(x− b̄1) (x ∈ [b̄1, 1]).

Then for all T > 0, there exists us, ul ∈ C∞(0, T ), Gevrey, such that the solution of (1)–(3) is
steered from (θ̄0

s, θ̄
0
l , b̄

0) to (θ̄1
s, θ̄

1
l , b̄

1) in time T .
In addition, if (θ̄0

s, θ̄
0
l ) ∈ S∗+(b̄0) and (θ̄1

s, θ̄
1
l ) ∈ S∗+(b̄1) (i.e., if v̄0, v̄1 ∈ R∗+), then there exists T > 0

and us, ul ∈ C∞(0, T ), satisfying (5)-(6) such that the solution of (1)–(3) is steered from
(θ̄0
s, θ̄

0
l , b̄

0) to (θ̄1
s, θ̄

1
l , b̄

1) in time T .

Gevrey functions
Let n ≥ 1, U ⊂ Rn and f ∈ C∞(U,R), we say that f is Gevrey, if there exist M ≥ 0,
R1, ..., Rn > 0 and σ1, ..., σn ≥ 0 such that:

∀x ∈ U, ∀p1, ..., pn ∈ N,
∣∣∂p1x1...∂pnxnf (x)

∣∣ ≤M
n∏
i=1

(pi)!
σi

Rpi
i

And if p ∈ N and f ∈ C∞(U,Rp), we say that f is Gevrey if its coordinates are Gevrey in the
above sense. If we are working on an interval I of R, we denote G(M,R, σ) the set of Gevrey
functions on I of order σ and constants M,R ≥ 0

Estimate Result

Let χ ≥ 0, I ⊂ R an interval, σ ∈ [1, 2], Mα > 0,Mβ,Mf ≥ 0 and R > 0. Let
f ∈ G(Mf , R, σ), α0 ∈ G(Mα, R, σ) and β0 ∈ G(Mβ, R, σ) be given Gevrey functions defined on
I . Consider the sequence defined by{

βi+1 = χβ̇i − χfαi,
αi+1 = χα̇i − χfβi+1,

where βi and αi are real functions defined on I (we initialize the sequences with α0, β0).
Then, for every i ∈ N, αi and βi are Gevrey functions of order σ defined on I . In addition, for
every ρ ∈ (0, ρ∗(M,R, χ)], we have, for every l ∈ N and every i ∈ N,

‖α(l)
i ‖L∞(I) 6

Mαχ
i

Rlρi
(l + 2i)!σ

i!p(2i)!σ−1
and ‖β(l)

i+1‖L∞(I) 6
µχi+1

Rlρi
(l + 2i + 1)!σ

i!p(2i + 1)!σ−1
, (9)

where we have set µ :=
Mβ

R + MαMf , p = 2− σ ∈ [0, 1] and

ρ∗(M,R, χ) = min


(

4 + χMβMf/(2Mα)

R
+
χM 2

f

2

)−1

,
2R

3

 .

Step and bump functions

If σ > 1 and k := (σ − 1)−1 the function defined by:

φσ(t) :=


1 if t ≤ 0,

0 if t ≥ 1,

e−(1−t)−k

e−(1−t)−k + e−t−k
if t ∈ (0, 1),

(t ∈ R), (10)

is Gevrey of order σ on R and verifies:

1 ∀i ∈ N∗, φ(i)
σ (0) = φ

(i)
σ (1) = 0

2 ∀t ∈ R, 0 ≤ φσ(t) ≤ 1.

3 ∀t ∈ R, φσ(t) + φσ(1− t) = 1

If σ > 1 then, it exists η a Gevrey function of order σ on R such that:

1 η vanishes on R \ [0, 1]

2 η ≥ 0

3

∫
R η(t)dt = 1

It is constructed using the step function.

Sketch of the proof of the main result

We are looking for solutions under the form:

θs(t, x) =
∞∑
i=0

αsi (t)
(x− b(t))2i+1

(2i + 1)!
+
∞∑
i=0

βsi (t)∂x
(x− b(t))2i

(2i)!
, (11a)

θl(t, x) =
∞∑
i=1

αli(t)
(x− b(t))2i+1

(2i + 1)!
+
∞∑
i=0

βli(t)∂x
(x− b(t))2i

(2i)!
. (11b)

The problem statement gives us the following conditions:{
βsi+1 = β̇si − ḃαsi ,
αsi+1 = α̇si − ḃβsi+1

and

{
cβli+1 = β̇li − ḃαli,
cαli+1 = α̇li − ḃβli+1

(12)

and
ḃ = αs0 − αl0. (13)

The previous estimate result tells us that if αs0 and αl0 are chosen in some G(M,R, σ) with
σ ∈ (1, 2) then the previous series converge and are C∞ and are in fact Gevrey (we necessarily
have βs0 = βl0 = 0).
If b1 ≥ b0 (else we switch the two), we set:

αl0(t) := α
(
t
T

)
and αs0(t) := α

(
t
T

)
+

1

T
ϕ
(
t
T

)
(t ∈ [0, T ]). (14)

with
α(t) = v̄0φσ (t) + v̄1φσ (1− t) and ϕ(t) = (b̄1 − b̄0)η(t) (t ∈ [0, 1]),

to have

αs0(0) = αl0(0) = v̄0;

αs0(T ) = αl0(T ) = v̄1;

αs0
(i)(0) = αl0

(i)
(0) = αs0

(i)(T ) = αl0
(i)

(T ) = 0 for every i ∈ N;∫ T
0

(
αs0(t)− αl0(t)

)
dt = b̄1 − b̄0.

And thus we designed a solution to our problem. We get us and ul as the traces of our solutions.
To show the preservation of the sign constraints for large T we derive finer estimates on our series
depending on T , using the construction of αs0 and αl0 and our estimation result.

Numerical aspect

The series defining the trajectories we designed in our result converge at a rate: o

(
e−

p
2N(ln(N)−1)

(N+1)
p
2 ln(N)

)
.
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