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Introduction

Motivations
Objectives
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From L. R. Boeck et al. (2016), Shock Waves 26: 181-192.

Simulations need capturing time and space multiple scales
from 1 m a 100um and from 1 s a 10us

@ Compressible effects: high gradients and discontinuities;
@ Thermodiffusive instabilities and turbulence;

@ Large Temperature variation, localised chemical reactions;
@ Flame acceleration and transition to detonation structures.

High-order approximations coupled with dynamic grid adaption.
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Introduction

Motivations
Objectives

Multi-level techniques.

@ Multi-level adaptive technique (MLAT) [Brandt (1977)]:
Adaptive discretization and Multi-Grid methods

@ Method of assembling overlapping grids - Chimera method
[Volkov (1968), Steger et al. (1983), Peron & Benoit (2013)]

— Manage overlapping with
ghost cells

— Well adapted for complex
geometries (local
geometrical details)

— Well adapted for sliding mesh

From Peron, PhD Thesis (2014).

C. Tenaud MRA for multi-species compressible viscous flows 3/26



Introduction

Motivations
Objectives

Adaptive grid techniques.

@ AMR [Berger, Oliger, Collela (1984-1989)]:
> Cell- / Block-, and Patch-based AMR: [Dunning et al. (2020), Gunney et al.
(2006—2017), Berger et al. (1984—1998)]

%
:

Cell-based AMR with 382 cells Block-based AMR with 596 cells
From Dunning et al. (2020)
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From Gunnet et al. (2013)

Patch-based AMR with 836 cells
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Introduction

Motivations
Objectives

Adaptive grid techniques.

> Block-, and Patch-based AMR: [Berger et al. (1984—-1998), Gunney et al.
(2006-2017)]

— Advantage of regular grid;

— But refines large sub-sections; -

— Manage boundary conditions / ghost
cells; HaE .

— Manage Proxy / Mapping connectors; | 1]

— Allows divisions > 2; | ‘ ‘

@ Several softwares: SAMRAI, From [Gunney et al. (2013)]
AMRClaw, AMROC, AMReX,
PARAMESH, BoxLib, SAMURAI, ...
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Introduction

Motivations
Objectives

Adaptive grid techniques.

> Cell-based AMR: [De Zeeuw & Powell (1993), Khokhlov (1998), Dunning
et al. (2020)]

— Generally based on binary trees (octree);

— Limit cell number near gradient;

— Manage boundary conditions / ghost cells;

o Several softwares: P4est, PABLO, CLAMR, SAGE/RAGE, SAMURAI, ...
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From [Drui et al. (2017)]
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From [Drui et al. (2017)]

@ based on ad hoc heuristic criteria ;

e difficult to control refinement error | QM) — Q(UF9))|

= Adjoint-based error estimate for AMR [Narechania et al. (2017)]: mainly
for steady or slowly evolving flows. Cart3D.
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@ MRA : Multi-Resolution Analysis

Multiresolution techniques.

Introduction
Motivations
Objectives

> Harten (1994-1995): multirésolution & syst. hyperbolique;

> Cohen et al. (2003): formalisme base d’'ondelettes, multirésoltion
complétement adaptative;

> Brix et al. (2011): Data structures, implementation and parallelization;

> Duarte et al. (2013): MRA coupled with time adaptive method;

> Deiterding et al. (2020): MRA into AMROC, comparisons.

Shock wave (Ms = 1.22) interacting with R», bubble [Haas & Sturtevant (1987)]
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MRA approach F-V Multiresolution

Thresholding, compression and graded tree

Nested grids

Dyadic grids: Grid level : / € [0, L]
Cell referenced by position and
grid-level:(j, /)

U, n—=@j,1+1), 2j+1,1+1) R . . .
o=V with |[V/Vi| =0,
j€ /, P * * Véi,‘zju Vlzi—‘u,z 1 °
forj# ki J k<l o Il e = .
Refinement process: . .
! 1+1
Vi = U Vp+ J
peC} L] . . .

ij set of chidren indexes of Vj’ .
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F-V Multiresolution

MRA approach
Thresholding, compression and graded tree

Tree data Structure

[ ] L] L] L]
2 2
Vi | Vanag
[ ] [ ] [ ] [ ]
2 2
V21;2j V2i+1,zj 1=2
L] L] L] L]
2 2
Vi Vit
[ ] L] L] L]
2 2
Voo Vi

Terminology: father (j/2,1—1); children (2j,1+1), (2 +1,/41); cousin
G+1,0,G-1,0

leaves are upper elements (with no child)
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F-V Multiresolution
Thresholding, compression and graded tree

MRA approach

Projection operator:

! : ; 141 141
P11 : compute v; knowing children-cells vy ', vyl ...

Nested grid: operator is exact and unique [A. Cohen et al. (2000)]:
Assuming cell average as: (v})” = “}7 fv/! w(x, n §t) dx

Projection operator:

/

1
Pi: V= v Z \V;g+1| V;IJH;
/7 pec]

C/ index set of the 2"am children-cells at grid-level / + 1, for current cell V.
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F-V Multiresolution
Thresholding, compression and graded tree

MRA approach

Prediction operator:

P/_/.1 : maps V' to an approximate value ¥'*" of v/*".
P,_.+1 is not unique and prediction needs to be:

@ /ocal; interpolation stencil must contain the parent-cell and its nearest
neighbors in each direction [A. Cohen et al. (2000), M. Postel (2001)].

@ consistent with the projection operator, i.e. Pj 10 Pj_ 11 = Id.
Conservativity:
I\l I4+1) o l+1
Viivi=>" 1%
pecjl

@ linear (not mandatory...) — simplicity of the numerical analysis.
Information on non-linear operator found in [F. Anrandiga et al. (1999)]
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F-V Multiresolution
Thresholding, compression and graded tree

MRA approach

Prediction operator: interpolation

Prediction interpolation: centered linear polynomial

s
S / I
Bl=vit) & (Vj+q - Vj—q)7
g=1

P s

R / /

V2j+1 =V - E §q (Vj+q - Vj—q):
q=1

Coefficients of centered linear

Vi VRl

polynomial:
ot-ot-o1—o1-o
order (0) | s | & & ,x’\ N
1 0] o | o -
3 1 =) 0 V2 Vi VY Vit Vi
B
5 2 7?282 % fors =1
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F-V Multiresolution

MRA approach
Thresholding, compression and graded tree

Prediction operator: multi-D interpolations

Extension to multidimensional Cartesian grids:
Tensorial product of 1-D operator [B.L. Bihari & A. Harten (1997), O. Roussel et al.
(2003)].

2D-interpolation

Vofipakiq = Vik + (=17 Q°(i Vi) + (=1)7 Q(kiv, ) — (1) GE(j, k; V),

with p, q € [0, 1] and:
@ (j:v') = Y& (Vea— Vo).
q=1

S S
s ([ : ! / | / /
(@ (]»k;V) = E §a E &b (Vj+a,k+b — Vi—aktb — Vi—akib + ija,kfb) .

a=1 b=1
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F-V Multiresolution
Thresholding, compression and graded tree

MRA approach

Prediction operator: details

prediction error: details (d,-’ )

Il &l
di=v; -V,

Consistency assumption [A. Harten (1995)]: > _ [Vp| dj = 0.
pec}
Knowing 2"ém cell-averages v'*' < knowing v} and (2"ém — 1) d’:

1l gl

Vo = Vax 2k
!
Sl =
H = .
| Varisl
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MRA approach F-V Multiresolution

Prediction operator: details

Polynomial accuracy

Thresholding, compression and graded tree

o] < 27 Ve

Main property for MR process:

@ Solution with locally bounded o-th order derivatives [A. Cohen et al.

(1992)];
|d'| = 0.

@ Decay with 2~/ for solutions smooth enough;

@ Significantly high detail values within singularities.
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MRA approach F-V Multiresolution

Thresholding, compression and graded tree

Multiresolution transform:

D = {d,-’, 0<j< N,}, with Nj = (2Mem — 1) 2Nam(I=1)

v (v', D'+1).

One to one transformation: from /eaves down to the root
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F-V Multiresolution
Thresholding, compression and graded tree

MRA approach

Thresholding and Tree pruning/enlargement, graded Tree:

@ Thresholding: ‘d’ < ¢; = cell discarded:;

Ly
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F-V Multiresolution
Thresholding, compression and graded tree

MRA approach

Thresholding and Tree pruning/enlargement, graded Tree:

@ Thresholding: ‘d’ < ¢; = cell discarded:;

Ly

@ Enlarge the tree for foreseeing discontinuity: ‘d’

|

> g and
Ly

>2P ¢
Ly
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F-V Multiresolution
Thresholding, compression and graded tree

MRA approach

Thresholding and Tree pruning/enlargement, graded Tree:

< g; = cell discarded;
Ly

e Thresholding: 'd’

@ Enlarge the tree for foreseeing discontinuity: 'd’

> g;and
Ly

>2P ¢

.

@ Building graded tree:
if (j,1) € A;, then (j/2+q,I—1) €A, ; g€ [—s,+5]
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F-V Multiresolution
Thresholding, compression and graded tree

MRA approach

Thresholding and Tree pruning/enlargement, graded Tree:

< g; = cell discarded;

e Thresholding: 'd’
Ly

@ Enlarge the tree for foreseeing discontinuity: 'd’

o

> g;and
Ly

>2P ¢
Ly

@ Building graded tree:
if (j,/) € A, then (j/2+ g,/ —1) €A, ; g€ [-s,+59]
@ Add virtual /eaves for flux conservation
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F-V Multiresolution
Thresholding, compression and graded tree

MRA approach

Thresholding: control

Approximation MR operator: Ax.,

HVL . A/\EIVLH - C Z ‘dll 2—Ndiml

ld/|<e;

Control of the thresholding effect

Nim-(I—L
€I:2d1m( )E

Knowing & : [[v" — Ay v'|| < Ce
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Results

problem

2D Voriex advection: solution

Strong vortex propagated at 45° by a supersonic flow:

_ 2
(6u76v):2£e°'5(1*’2)(_yvx) g 5T:_(78712)€eo.5(17,2) . 55—0.
I s

e=5 (pu,v,P)=(1,1,1,1) and (xxy)=[-5,5]x[-5,5]

AR T=0. L ‘“Lo_bggﬁ
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Results

2D Euler problem

Navier

Multi

Stokes

ie:

2D problem

s Navier-Stokes problem

Perturbation Error T = 10
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@ CPU(e = 0) = 2.x CPU(FV)

@ Memory Compression: Ve
e £>1073:60 % (FV)
e £>1072:35% (FV)

Euler 2D Vortex advection: Effciency

@ ¢ > 1072 = CPU Gains if 50 %

FV-Mem saved

C. Tenaud

Results

2D Euler problem
vier-Stokes 2D problem

Multi-species

avier-Stokes problem

2E-05

% F

1.8E-05
k7 F £€=0
©1.6E-05F *
£ F £=10° o
+—1.4E-05 :—
12605 &=10°
E r * FV
8_ 1E-05 F Py
-~ -06 F £=103
o 8E-06 F
E o6e-06F o
- F £=102
2 4E-06F
o E
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2D Euler problem
Navier-Stokes 2D problem

Results Multi-species Navier-Stokes problem

T=1.

symétrie

P=100. P=1.
p=1.2
u=0. u=0.

paroi
©
I
[y
)
e

AW

N

of s 03 1
x

¢ = 1072 = Memory compression = 70 %; CPU ratio: t"7/t"V =20 %
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Results

2D Euler problem

Navier-Stokes 2D problem
Multi-species Navier-Stokes problem

— e OSMP7 - AMR esp=1.e-02
— OSMP7
—— — OSMP7 - AMR eps=1.e-03

04 7 T 08

C. Tenaud
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?j EM2( rZ\EwE;‘thLZZ‘iE problem
F Results Multi-species Navier-Stokes problem
Tube: MR 8 levels (16 x 4 trees = 4096 x 1024), ¢ = 1073, s = 1

t =0s;99.5 % compression t =40 x 107° s; 80 % compression

5's; 78 % compression
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Results
U avier-Stokes problem

Tube: MR 8 levels (16 x 4 trees = 4096 x 1024), ¢ = 1073, s =1

OpenMP: 32 cores - parallelization delicate for grid adaption.
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Conclusion and Prospect

@ Multiresolution technique:
o Assess capability of the adaptive multiresolution technique for compressible

o Emphasize on parallel algorithm:

viscous flows;

Accuracy controled by the perturbation error: threshold parameter

(<1079

Must be coupled with high-order numerical scheme;
Attractive approach because of a priori error control;
Powerful but hard to handle: Speed up if Mem. < 50 %;

@ Work in progress:
o Couled with Immersed Boundary conditions;

@ Reflect on an efficient data organization;
@ Hard task for effective load balancing;

@ See SAMURAI software.

C. Tenaud
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