

Adaptive multiresolution for the simulation of multi-species, compressible, viscous flows.

Christian TENAUD 1

¹Laboratoire EM2C - CNRS UPR 288, Gif-Sur-Yvette, France.

Evian-Le-Bains; 14th June 2022

Introduction

Multiple time and space scales: flame acceleration in H₂ / Air mixing.

Simulations need capturing time and space multiple scales from 1 m à 100μ m and from 1 s à 10μ s

- Compressible effects: high gradients and discontinuities;
- Thermodiffusive instabilities and turbulence;
- Large Temperature variation, localised chemical reactions;
- Flame acceleration and transition to detonation structures.

High-order approximations coupled with dynamic grid adaption.

Multi-level techniques.

- Multi-level adaptive technique (MLAT) [Brandt (1977)]: Adaptive discretization and Multi-Grid methods
- Method of assembling overlapping grids Chimera method [Volkov (1968), Steger et al. (1983), Peron & Benoît (2013)]

- Manage overlapping with ghost cells
- Well adapted for complex geometries (local geometrical details)
- Well adapted for sliding mesh

From Peron, PhD Thesis (2014).

- AMR [Berger, Oliger, Collela (1984–1989)]:
 - Cell- / Block-, and Patch-based AMR: [Dunning *et al.* (2020), Gunney *et al.* (2006–2017), Berger *et al.* (1984–1998)]

- Block-, and Patch-based AMR: [Berger *et al.* (1984–1998), Gunney *et al.* (2006–2017)]
- Advantage of regular grid;
- But refines large sub-sections;
- Manage boundary conditions / ghost cells;
- Manage Proxy / Mapping connectors;
- Allows divisions ≥ 2;
- Several softwares: SAMRAI, AMRClaw, AMROC, AMReX, PARAMESH, BoxLib, SAMURAI, ...

From [Gunney et al. (2013)]

- Cell-based AMR: [De Zeeuw & Powell (1993), Khokhlov (1998), Dunning et al. (2020)]
 - Generally based on binary trees (octree);
 - Limit cell number near gradient;
 - Manage boundary conditions / ghost cells;
 - Several softwares: P4est, PABLO, CLAMR, SAGE/RAGE, SAMURAI, ...

4 D K 4 B K 4 B K 4

- Cell-based AMR: [De Zeeuw & Powell (1993), Khokhlov (1998), Dunning et al. (2020)]
 - Generally based on binary trees (octree);
 - Limit cell number near gradient;
 - Manage boundary conditions / ghost cells;
 - Several softwares: P4est, PABLO, CLAMR, SAGE/RAGE, SAMURAI, ...

Root

From [Drui et al. (2017)]

- based on ad hoc heuristic criteria ;
- difficult to control refinement error $\|Q^{(AMR)} Q^{(UFG)}\|$
- ⇒ Adjoint-based error estimate for AMR [Narechania et al. (2017)]: mainly for steady or slowly evolving flows. Cart3D.

Multiresolution techniques.

MRA : Multi-Resolution Analysis

- ▷ Harten (1994-1995): multirésolution & syst. hyperbolique;
- Cohen *et al.* (2003): formalisme base d'ondelettes, multirésoltion complètement adaptative;
- ▷ Brix et al. (2011): Data structures, implementation and parallelization;
- ▷ Duarte et al. (2013): MRA coupled with time adaptive method;
- ▷ Deiterding et al. (2020): MRA into AMROC, comparisons.

• • • • • • • • • • • • •

Nested grids

Dyadic grids: Grid level : $l \in [0, L]$ Cell referenced by position and grid-level:(j, l)

$$(j, l) \rightarrow (2j, l+1), \ (2j+1, l+1)$$

 $\Omega = \bigcup_{j \in I_l} V_j^l \text{ with } \left| V_j^l \bigcap V_k^l \right| = 0,$

for $j \neq k$; $j, k \in I_l$.

Refinement process:

$$V'_j = \bigcup_{p \in \mathcal{C}'_j} V_p^{l+1},$$

 C_i^l set of *chidren* indexes of V_i^l .

 Introduction

 £M2C
 MRA approach

 Results
 F-V Multiresolution

 Conclusion and Prospect
 Thresholding, compression and graded tree

Tree data Structure

Terminology: father (j/2, l-1); children (2j, l+1), (2j+1, l+1); cousin (j+1, l), (j-1, l) leaves are upper elements (with no child)

イロト 不得 トイヨト イヨト 二日

Projection operator:

 $\mathbf{P}_{l+1 \to l}$: compute \mathbf{v}_{j}^{l} knowing *children*-cells \mathbf{v}_{2j}^{l+1} , \mathbf{v}_{2j+1}^{l+1} , ... **Nested grid: operator is** *exact* and *unique* [A. Cohen *et al.* (2000)]: Assuming cell average as: $(\mathbf{v}_{j}^{l})^{n} = \frac{1}{|\mathbf{v}_{j}^{l}|} \int_{\mathbf{v}_{j}^{l}} \mathbf{w}(\mathbf{x}, n \, \delta t) \, d\mathbf{x}$

Projection operator:

$$\mathbf{P}_{l+1\to l}: \ \mathbf{v}_{j}^{l} = \frac{1}{|V_{j}^{l}|} \sum_{\rho \in \mathcal{C}_{j}^{l}} |V_{\rho}^{l+1}| \ v_{\rho}^{l+1};$$

 C'_{i} index set of the 2^{*N*_{dim} children-cells at grid-level *l* + 1, for current cell V'_{i} .}

Prediction operator:

 $\mathbf{P}_{l \rightarrow l+1}$: maps \mathbf{v}^{l} to an approximate value $\hat{\mathbf{v}}^{l+1}$ of \mathbf{v}^{l+1} .

 $\mathbf{P}_{I \rightarrow I+1}$ is not unique and **prediction** needs to be:

- *local*; interpolation stencil must contain the *parent*-cell and its nearest neighbors in each direction [A. Cohen *et al.* (2000), M. Postel (2001)].
- consistent with the projection operator, i.e. P_{l+1→l} ∘ P_{l→l+1} = ld. Conservativity:

$$|V_j^{l}| v_j^{l} = \sum_{p \in \mathcal{C}_j^{l}} |V_p^{l+1}| \hat{v}_p^{l+1}$$

linear (not mandatory...) → simplicity of the numerical analysis.
 Information on non-linear operator found in [F. Anràndiga *et al.* (1999)]

Introduction MRA approach Results Ision and Prospect

F-V Multiresolution Thresholding, compression and graded tree

Prediction operator: interpolation

Prediction interpolation: centered linear polynomial

$$\mathbf{P}_{l \to l+1} : \begin{cases} \hat{\mathbf{v}}_{2j}^{l+1} = \mathbf{v}_{j}^{l} + \sum_{q=1}^{s} \xi_{q} \left(\mathbf{v}_{j+q}^{l} - \mathbf{v}_{j-q}^{l} \right), \\ \hat{\mathbf{v}}_{2j+1}^{l+1} = \mathbf{v}_{j}^{l} - \sum_{q=1}^{s} \xi_{q} \left(\mathbf{v}_{j+q}^{l} - \mathbf{v}_{j-q}^{l} \right), \end{cases}$$

Coefficients of centered linear polynomial:

order (o)	s	ξ1	ξ2
1	0	0	0
3	1	$\frac{-1}{8}$	0
5	2	<u>-22</u> 128	$\frac{3}{128}$

for s = 1

Prediction operator: multi-D interpolations

Extension to multidimensional Cartesian grids:

Tensorial product of 1-D operator [B.L. Bihari & A. Harten (1997), O. Roussel *et al.* (2003)].

2D-interpolation

$$\hat{v}_{2j+\rho,2k+q}^{l+1} = v_{j,k}^{l} + (-1)^{\rho} Q^{s}(j;\mathbf{v}_{.,k}^{l}) + (-1)^{q} Q^{s}(k;\mathbf{v}_{j,.}^{l}) - (-1)^{(\rho+q)} Q_{2}^{s}(j,k;\mathbf{v}^{l}),$$

with $p, q \in [0, 1]$ and:

$$Q^{s}\left(j;v^{\prime}\right)=\sum_{q=1}^{s}\xi_{q}\left(v_{j+q}^{\prime}-v_{j-q}^{\prime}\right),$$

$$Q_{2}^{s}\left(j,k;\mathbf{v}'\right) = \sum_{a=1}^{s} \xi_{a} \sum_{b=1}^{s} \xi_{b}\left(v_{j+a,k+b}' - v_{j-a,k+b}' - v_{j-a,k+b}' + v_{j-a,k-b}'\right).$$

Prediction operator: details

prediction error: details (d_j^l)

details

$$\mathbf{d}_j^l = \mathbf{v}_j^l - \hat{\mathbf{v}}_j^l.$$

Consistency assumption [A. Harten (1995)]: $\sum_{\rho \in C'_j} |V'_{\rho}| d'_{\rho} = 0.$ Knowing $2^{N_{dim}}$ cell-averages $\mathbf{v}_{\perp}^{l+1} \Leftrightarrow$ knowing \mathbf{v}_j^{l} and $(2^{N_{dim}} - 1) \mathbf{d}_{\perp}^{l}$:

$$v_{2k}^{l+1} = \hat{v}_{2k}^{l+1} + d_{2k}^{l+1};$$

$$v_{2k+1}^{l+1} = \frac{|V_j^l|}{|V_{2k+1}^{l+1}|} v_j^l - v_{2k}^{l+1}.$$

Prediction operator: details

Polynomial accuracy

$$\left| \mathbf{d}' \right| \leq C \, 2^{-l} \left| \mathbf{v}' \right|_{L^{\infty}(V'_j)}.$$

Main property for MR process:

Solution with locally bounded *o*-th order derivatives [A. Cohen *et al.* (1992)];

$$|{\bf d}'|=0.$$

- Decay with 2^{-l} for solutions smooth enough;
- Significantly high *detail* values within singularities.

Multiresolution transform:

$$\begin{split} \mathbf{D}' &= \left\{ d_j^l, \ 0 \leq j \leq N_l \right\}, \ \text{ with } N_l = (2^{N_{dim}} - 1) \ 2^{N_{dim}(l-1)} \\ & \mathbf{v}^{(l+1)} \longmapsto \left(\mathbf{v}', \ \mathbf{D}^{l+1} \right). \end{split}$$

One to one transformation: from leaves down to the root

$$\mathcal{M}: \mathbf{v}^{\mathcal{L}} \longmapsto \left(\mathbf{v}^{0}, \mathbf{D}^{1}, \dots, \mathbf{D}^{\mathcal{L}}\right) = \mathbf{M}^{\mathcal{L}}.$$

$$\overline{v}_{L} \longleftrightarrow \overline{v}_{L-1} \longleftrightarrow \overline{v}_{L-2} \longleftrightarrow \cdots \longleftrightarrow \overline{v}_{1} \longleftrightarrow \overline{v}_{0}$$
$$d_{L-1} \longleftrightarrow d_{L-2} \longleftrightarrow \cdots \longleftrightarrow d_{1} \longleftrightarrow d_{0}$$

Introduction MRA approach Results

F-V Multiresolution Thresholding, compression and graded tree

Thresholding and Tree pruning/enlargement, graded Tree:

• Thresholding:
$$\left|\mathbf{d}'\right|_{L_1} < \varepsilon_l \Rightarrow$$
 cell discarded:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

크

Introduction MRA approach Results Conclusion and Prospect

Thresholding, compression and graded tree

Thresholding and Tree pruning/enlargement, graded Tree:

• Thresholding: $\left|\mathbf{d}^{\prime}\right|_{L_{\star}} < \varepsilon_{l} \Rightarrow$ cell discarded;

• Enlarge the tree for foreseeing discontinuity: $|\mathbf{d}^{l}|_{L_{1}} \ge \varepsilon_{l}$ and $|\mathbf{d}^{l}|_{L_{2}} \ge 2^{p} \varepsilon_{l}$

Introduction MRA approach Results Conclusion and Prospect

F-V Multiresolution Thresholding, compression and graded tree

Thresholding and Tree pruning/enlargement, graded Tree:

• Thresholding:
$$\left| \mathbf{d}' \right|_{L_1} < \varepsilon_I \Rightarrow \text{cell discarded};$$

• Enlarge the tree for foreseeing discontinuity: $\left|\mathbf{d}'\right|_{L_1} \ge \varepsilon_l$ and $\left|\mathbf{d}'\right|_{L_1} \ge 2^p \varepsilon_l$

Building graded tree:
 if (j, l) ∈ Λ̃_{εl} then (j/2 + q, l − 1) ∈ Λ̃_{εl}; q ∈ [-s, +s]

Introduction MRA approach Results Conclusion and Prospect

F-V Multiresolution Thresholding, compression and graded tree

Thresholding and Tree pruning/enlargement, graded Tree:

• Thresholding:
$$\left| \mathbf{d}' \right|_{L_1} < \varepsilon_I \Rightarrow$$
 cell discarded;

• Enlarge the tree for foreseeing discontinuity: $|\mathbf{d}'|_{L_1} \ge \varepsilon_l$ and $|\mathbf{d}'|_{L_2} \ge 2^p \varepsilon_l$

Building graded tree:

$$\text{ if } (j,l)\in\widetilde{\Lambda}_{\varepsilon_l} \text{ then } (j/2+q,l-1)\in\widetilde{\Lambda}_{\varepsilon_l} \text{ ; } q\in [-s,+s] \\$$

• Add virtual leaves for flux conservation

Introduction MRA approach Results usion and Prospect

F-V Multiresolution Thresholding, compression and graded tree

Thresholding: control

Approximation MR operator: $A_{\Lambda_{\varepsilon_i}}$

$$\|\mathbf{v}^L - \mathcal{A}_{\Lambda_{arepsilon_I}}\mathbf{v}^L\| = C\sum_{|\mathbf{d}'| < arepsilon_I} |\mathbf{d}'| \; 2^{-N_{dim} l}$$

Control of the thresholding effect Harten (1994):

$$\varepsilon_{I} = 2^{N_{dim} \cdot (I-L)} \varepsilon$$

Knowing
$$\varepsilon : \| \mathbf{v}^L - \mathcal{A}_{\Lambda_{\varepsilon_l}} \mathbf{v}^L \| \leq C \varepsilon$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2D Vortex advection: solution

Strong vortex propagated at 45° by a supersonic flow:

$$(\delta u, \delta v) = \frac{\varepsilon}{2\pi} e^{0.5(1-r^2)} (-y, x) ; \quad \delta T = -\frac{(\gamma - 1)\varepsilon^2}{8\pi^2} e^{0.5(1-r^2)} ; \quad \delta S = 0.$$

 $\varepsilon = 5; \quad (\rho, u, v, P) = (1, 1, 1, 1) \quad \text{and} \quad (x \times y) = [-5, 5] \times [-5, 5]$

<i>EM2C</i>	Introduction MRA approach Results Conclusion and Prospect	2D Euler problem Navier-Stokes 2D problem Multi-species Navier-Stokes problem

Euler 2D Vortex advection: Error analysis

Error / Exact solution

э

크

Euler 2D Vortex advection: Effciency

- $CPU(\varepsilon = 0) = 2 \times CPU(FV)$
- Memory Compression: $\forall \varepsilon$
 - $\varepsilon > 10^{-3}$: 60 % (FV)
 - $\varepsilon > 10^{-2}$: 35 % (FV)
- $\varepsilon > 10^{-3} \Rightarrow CPU$ Gains if 50 % FV-Mem saved

2D Viscous shock tube: MR 9 grid levels, $\varepsilon = 10^{-2}$, s = 1

T = 1.

2D Viscous shock tube: video MR 9 grid levels, $\varepsilon = 10^{-2}$, s = 1

MR - 9 grid levels: (1024×512) - Reference: FV-OSMP7 (1000×5000)

Tube: MR 8 levels (16 × 4 trees \equiv 4096 × 1024), $\varepsilon = 10^{-3}$, s = 1

t = 0 s; 99.5 % compression

 $t = 45 \times 10^{-5}$ s; 78 % compression

$t = 40 \times 10^{-5}$ s; 80 % compression

 $t = 50. \times 10^{-5}$ s; 77 % compression

C. Tenaud MRA for

Introduction MRA approach Results

2D Euler problem Navier-Stokes 2D problem Multi-species Navier-Stokes problem

Tube: MR 8 levels (16 × 4 trees \equiv 4096 × 1024), $\varepsilon = 10^{-3}$, s = 1

OpenMP: 32 cores - parallelization delicate for grid adaption.

Multiresolution technique:

- Assess capability of the adaptive multiresolution technique for compressible viscous flows;
- Accuracy controled by the perturbation error: threshold parameter ($\varepsilon \lesssim 10^{-3})$
- Must be coupled with high-order numerical scheme;
- Attractive approach because of a priori error control;
- Powerful but hard to handle: Speed up if Mem. < 50 %;

Work in progress:

- Couled with Immersed Boundary conditions;
- Emphasize on parallel algorithm:
 - Reflect on an efficient data organization;
 - Hard task for effective load balancing;
 - See SAMURAI software.

A (10) A (10)