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Context

» Compressible multiphase flows with heterogeneities (bubbles,
droplets)

» Safety issues in nuclear power plants

A

» Average model, macroscopic description

» Exchanges through the interface, interfacial area density
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Derivation of averaged models (1/3)

> Averaging approach
[Drew & Passman '98, Ishii & Hibiki '06...]

> Microscopic description
Instantaneous local conservation laws for each separated phase
Jump conditions through the interface

> Averaging process
Introduce time and/or volume scales, or random disturbances
Average the microscopic model wrt the small scales

v/ Bear-Nunziato type model

X Closure laws

X Definition of the averaging operators

» Homogenization approach
[Serre '91 & '01, E '92, Hillairet '07, Bresch & Huang '11, Bresch, Hillairet '15 &
'19, Hillairet '18, Bresch, Burtea & Lagoutiére '20, Hillairet, M., Seguin '22,...]
» N bubbles of size 1/N, N — oo
» Mathematical theory, rigorous derivation
X One-velocity, no phase transition
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Derivation of averaged models (2/3)

» Least Action Principle
[Bedford '85, Gavrilyuk, Gouin '99, Gavrilyuk, Saurel '02, Berdichevsky '09, Drui
'17, Essadki '18, Cordesse '20, Di Battista ‘21, Kokh '21, Loison '23...]

> Set up the assumptions that govern the physical phenomenon

~ Kinetic and potential energies

» Lagrangian L whose integral over space-time gives the Hamiltonian
Action of the system

» Evolution of the system along possible trajectories
> LAP postulate: the physical trajectory optimizes the Action

~ Conservative equations (momentum, energy)
X Lack of dissipative behavior, need to ensure the second principle of
thermodynamics

4/23



Derivation of averaged models (3/3)

Two main ingredients

» Kinetic energy
[Drui '17, Essadki '18, Cordesse '20, Di Battista '21, Kokh 21, Loison '23...]
» Modeling the interface behavior
> Two-scale modeling: keep geometrical informations related to small
scale interface features
v/ Interfacial area, GauB mean curvature, pulsating energy

» Potential energy
[Smai '20, Laudau, Lifshitz '78...]
» Thermodynamical behavior of the mixture
> Each phase is depicted by its own Equation of State (EoS)
v/ Accounting for interfacial energy ~ interfacial state law
v/ Fluid-interface energy
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Outline

1. Potential energy
2. Lagrangian and Least Action Principle

3. Final set of equations and properties
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How to compute the potential energy?

» Go back to classical thermodynamics [Gibbs '48, Landau, Lifshitz '78,

Callen '85]
» Distinguish the fluid phases k = 1,2 and the interface i
» Local thermodynamical equilibrium is reached at each point of the
system
> Each part is described by its own EoS
> From extensive to intensive description (accounting for fractions)
v/ Thermodynamical equilibrium and fluid-interface energy
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Fluid phases

Extensive description
» Volume V;, > 0, entropy S > 0, mass M, >0
» Internal energy (My, Vi, Sk) = Er(My, Vi, Si) € C%((R1)?)
» Convex and positively homogeneous: VA € R’}

Ex(AMp, A\Vi, ASk) = AEx (Mg, Vi, Si)

> Gibbs form
dEy = Tk dSy — prdVi + /Lkd]Wk

Pressure p;., temperature T}, > 0, chemical potential 1,

Intensive form : intensive variables relatively to the mass of the phase k
» Specific volume 7, = V}. /M. and entropy s, = Sk /My,
» Specific internal energy ey (7x, sx) = 1/ My, E.(My, Vi, Sk)

dek = desk — pdek
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The interface (1/2)

Assumptions

» Sharp, no volume, no mass

Extensive description
» Entropy S; > 0, area A; > 0

» Internal energy E;
dE; = T;dS; + vid4;

> Surface tension 7;(S;, A;), interfacial temperature T;(S;, A;)
» Gibbs-Duhem relation

0= 5,dT; + Aid’yi
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The interface (2/2)

Intensive description
» Intensive variables relatively to the volume V' of the mixture
» Interfacial area density a; = A;/V
» Intensive variables relatively to the interfacial area A4;

> Interfacial intensive entropy s; = S;/A;
> Interfacial intensive energy ¢, = E;/A;

Consequences
d(a;e;) = Tyd(a;s;) + vida;

ei=Tisi +v  and  ~)(T;) = —si(T3)
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The fluid-interface system
For a given state (M, V, E, A;) of the system

Extensive constraints
» Fluid phases are immiscible, no vacuum, interface has no volume

V=V+W
» Mass conservation, interface has no mass
M = M + M,
» Entropy conservation (homogeneity)
S=5+5+5;
System extensive internal energy
BE(M,V,S,A;) = By (My, Vi, 81) + Ea(Ma, Va, Sa) + Ei(S;, A;)
Intensive constraints
l=a;+a Il=y1+y l=21+22+ 2

» Fractions of entropy z, = S;/S € [0,1] (k= 1,2,14),

volume ay, = V3, /V € [0,1] and mass y, = M, /M € [0,1] (k= 1,2)
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Mixture potentials

Variation of the system extensive energy

dE = (111 + 22T5 + 2, T;)dS — (c1p1 + aaps — a;7y;)dV
+ (Y11 + yop2)dM + v;Vda;
+ S(T1dzy + Tedze + Tidz;)
— V(pidag + padas)
+ M (pdys + padys).

Consequences
» Definitions of the mixture potentials

T :=21T) + 2215 + 2,T;
p = q1p1 + Qops — a;7;
W= Y1+ Y2
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Thermodynamical equilibrium

At thermodynamical equilibrium, for a given state (M, V, E, A;), the
mixture energy F reaches a minimum

1 = K2
T =T, =T;
vida; — (p1 — p2)day =0

Some comments
» Planar interface: 7, =0
» Mechanical equilibrium corresponds to the saturation of the phasic
pressures pi1 = p2

» One gas bubble of radius R
> Volume Vi = 4w R®/3, interfacial area density a; = A;/V = 7R*/V
> Linked to the volume fraction

a1 =WV1/V =4xR*R/3V = a;R/3

> From the mechanical equilibrium

i p1 — Ds 2
(%1 - 1% =& Young-Laplace law
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Potential energy candidate

Intensive form of the system internal energy
X Choose the appropriate variables

B = (7_7 §, 81, 52, &, (I,.y)

where
» s is the system specific entropy

S§ = Y151 + Y282 + a;TS;

» o=« and y := 1y

Potential energy accounting for interfacial information

« l-—«
6(7-’ S, Slstaaiv(X?y) =yey | — 7,51 + (1 - y)62 —T,52
Y L—y
> . 1 _ >
ey (L= 010

a; T
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Outline

1. Potential energy
2. Lagrangian and Least Action Principle

3. Final set of equations and properties
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Least Action Principle (1/2)

Some assumptions
» Single velocity kinematic: u; = uy; =: u
» Mass conservations
» Density of the system p = 1/7: 9;p + div(pu) =0

» Mass fraction y: D:y =0 with D;- = 0; - +u - V-

» Specific entropy conservation along trajectories:

Dis=0 Dysp=0 k=12

Lagrangian

L(B) = kinetic energy — pe(B)

» [Drui '17, Cordesse '18...] with

1 1
kinetic energy = ip|u|2 + 51/(@7;) |Dya?

» Choice of variables to depict the system:

(Iat) =B = (p7 S, 81,52, @, A, Y, U, Dta)
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Stationary Action Principle (2/2)

» Action of a transformation acting on a volume C € R? for
t1 <t<to
(2
A(B) :/ / L(B)dzdt
t Je)

> Family of transformations: A € [0,1] — B(); -, -) such that the
constraints hold and

Bz, t) o1 = B(@,t) B2, t)|mneacs) < (i) = B(2,t)

» Physically relevant transformation verifies
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Some computations

It remains to compute the infinitesimal variations of the action namely

d.A / / Z 76dedf =0

bEB

» Using the conservation constraints

op = —div(pdx) 0b=—-Vb-ix

» Using the velocity variation

du= D;(0x) — Vu-ox

» At the end

dg // {[...] 0z +1[.]0a+].]d0a;}dzdt =0
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Set of equations (1/2)

» Cancel the [...] terms

» Term in dx
O K + div(Ku) — VL* =

L )L
withK:g—u and L*:pg—p—L
» Term in S«
M + div(Mu) — oL _ 0
! da
. . 0L
with M = D0
» Term in da;
oL 0
aal— o

> In agreement with [Di Battista '21]
» Additional constraint in a;

» Full system accounting for the conservation constraints
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Set of equations (2/2)

» By definition of L(B)
» Equation on K = 0L /0u gives the momentum equation

9 (pu) + div(pu " u)

1
+9 ((apr + (1= @)pa = ain) + ol |Dial? ) =0

» Similar to [Drui '17]

oL
» Constraint =0 gives
8a,-
2y

O +u-Va = v (ar)

» Constraint on v(a;) to be well-defined
v [Cordesse et al '19] : v(a;) = 2/a?
» Equation on M = OL/0D;« gives

O (v(a;) Dyar) + div (uv(a;) Dia) = 7(p2 — p1)

» Depending on v(a;), gives an equation on a;...
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Concluding/opening remarks

» Propose to integrate the interfacial properties into the potential
energy

» Coherent structure with the existent models

A lot to do...
X Compare to existing v(a;) or v(a;, @)
» Dissipative structure, hyperbolicity...
» Compare to bubbly flow models [Plesset, Prosperetti '77]

Thank you for your attention!

23/23



