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SINGULAR PERTURBATION: WHAT IS IT?
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SINGULARLY PERTURBED OPTIMAL CONTROL PROBLEMS
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= Problem of interest:

min/ FO(x(t), y(t), u(t)) dt

x(t) = f(x(t),y(t),u(t)), x(t) €R", x(0), x(1) given
ey(t) = g(x(2), y(t), u(t)), y(t) €eR”, y(0), y(1) given

(P:)

where x, y are resp. slow and fast variables since € > 0 is supposed to be small and
where u(t) € R*.

= Setting ¢ = 0, we define the zero order reduced problem:
min [ FO(x(t), ¥(t), a(t)) dt
(Po) { X(t) = f(x(¢), (1), (t)), %(0) =x(0), X(1)=x(1),
0 = g(x(t),¥(t),u(t)).
= Roughly speaking and under suitable assumptions the main result is:

xe(t) = X(t) on [0,1] and y.(t) — ¥(t) on every [a, b] C (0,1), when £ — 0.



CONTENTS OF THE TALK 4

= We'll first introduce the turnpike framework and show the link with singularly
perturbed optimal control problems;

= Then we’'ll combine the ideas developed in both approaches (turnpike property: see
Trélat and Zuazua [4] and singular perturbation theory: see Khalil [2]) and propose
a path following approach to provide a more efficient numerical resolution
method;

= Finally we'll present the implementation in Julia and some numerical results.



TURNPIKE FRAMEWORK

= Let's consider the optimal control problem

tf
min/ fo(y(t), u(t)) dt, t; > 0 large enough
0

y(t) = fy(t),u(t), y(t)eR™, u(t) € R,
y(0) =yo, y(tr) = yr.

(OCPff)

= The associated reduced problem (or static optimal control problem) is

(SOCPy,) min  f(y,u) st f(y,u)=0.

(v,u)ER™ xRK

Turnpike property (Trélat and Zuazua [4]): under suitable assumptions, the optimal
solution (yz (+), ug (+)) of (OCP)¢, remains most of the time close to the static solution
(¥, 1), i.e there exists positive constants Ci, G, such that

s (8) = FI| + lluee (8) =T < G (672 + e 279) )

for every t € [0, tf].



EXAMPLE 1

min % / f [(y1(t) — 1)2 + (y2(t) — 1)2 + (u(t) — 2)2] dt, tr =20,
0

_}l/l(t) = .y2(t)7 (y1(0)7y1(tf)) = (133)
P2(t) = 1= yi(t) +y3 () + u(t),  (12(0), y2(tr)) = (1,0)
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Figure 1: (Blue) Static solution: (y,¥,,7) = (2,0,1).



EXAMPLE 1
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Figure 1: (Blue) Static solution: (¥;,¥,,d) = (2,0,1). (Red)
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SINGULAR PERTURBATION VIEWPOINT 7)

= Setting 7 = et with e = 1/t¢, (OCP);, becomes

min t,c/ 7‘0(y(7')7 u(T)) d,

(OCP) N y(7) = F(y(r), u(r))tr = ey(7) = F(y(7), u(r))

y(0) =yo, y(1) =y

= Thus: Turnpike control problems < singular perturbation control problems with only
fast variables.



Resolution of Optimal Control Problems by indirect method



PONTRYAGIN'S MAXIMUM PRINCIPLE 9)

Définition 1 — Pseudo-Hamiltonian

The pseudo-Hamiltonian is the function

H: R"xR"xR¥ — R
(y’qvu) — H(y7q7u):_fo(.y7u)+<q7f(y7u)>7

where (.,.) is the dot product.

Theorem 2 — Pontryagin’s Maximum Principle

Under classical assumptions, if (y, u) is a solution of (OCP.), then there exists an
absolute continuous function called co-state g such that we have

= the co-state equation

. OH
eq(r) = —a—y(Y(T)a q(7), u(7)) )
= The maximization of the pseudo-Hamiltonian

u(t) = argmax, cpx H(y(7), q(7), v)




SHOOTING METHOD

» We suppose that the maximization of the pseudo-Hamiltonian can be analytically
solved u(y(7), q(7))
We call true Hamiltonian the function H(z) = H(y, q) = H(y, q, u(y, q))

= We note also BH( )
H g V>4
H(z) = 99
@=(55%)

oy (0@ )\ _
401 = (B ) = e

Find a zero of
the shooting function

( ) 7:[( ( )) SE(QO):Y(LCIO)*%‘
ez(t) = H(z(r with y(1, go) solution of
(OCP.) (BVPE){ y(0) =y " 5:(7))52 ’};E)z(:))
y(1) =yr (IVP.) { y(0) = yo
q(0) = qo

Boundary value Problem




METHODOLOGY

= Goal: Solve (OCP;) for ¢ small.
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METHODOLOGY 1)

= Goal: Solve (OCP;) for ¢ small.
= Difficulty 1: Choice of the initial guess.

= Difficulty 2: The singular perturbation introduces stiffness that makes the numerical
integration difficult.

= Methodology:

= Step 1: Resolution of the KKT conditions of the static problem;
= Step 2: Continuation on the boundary conditions for sufficiently large € ;
= Step 3: Continuation on ¢.



©

STEP 2: HOMOTOPY ON THE BOUNDARY CONDITIONS

» We define the shooting homotopic function by

S:R"xR"xR — R
(qO,qu)\) = S(qoaqh)‘):z(0'570'720)_2(0'571'721)

where 2(0.5,0.,z) and z(0.5,1., z1) are the solutions at 7 = 0.5 of

(IVP x.0) )= ?j(Z(T)()l ) (IVP: 21) = 7A-Z(Z(T)()l A)
22,0 (A + 1=y e A1 _ (A (1 =A)y
2(0) = ( qo ) (1) = ( f il ) ’

Remarque 1.
= For A = 0 the solution is the solution of the static problem

SOCP;, : (y(7),q(7)) = (¥,9) (g is the Lagrange multiplier).
» For A =1 the solution is the solution of the (BVP.).

Now, we have to compute the path of zeros of S(qo,g1,\) =0



How to compute the path of zeros of a homotopy function

F: R"xR — R”"
(x,A\) +— F(x,A)



DIFFERENTIAL HOMOTOPY @

Under the assumptions
i) For all (x,\) € F7(0), rank(F'(x,)\)) = n
i) For all (x,0) € F~*(0), rank(%E(x,0)) = n and for all (x,1) € F~'(0),
rank(%E(x,1)) = n
F~1(0) is a set of curves (a manifold of dimension 1)

Co

:
:
:

:

Figure 2: F~1(0), possible path (left) and impossible (right) (z is in x-axis and X in y-axis).



TANGENT VECTOR @

If c(s) = (x(s), A(s)) is a smooth curve parametrized by the arc length such that
i) ¢(0) = (x0,0)
i) F(c(s))=0
i) rank(F'(c(s))) =n
iv) é(s) #0
then the tangent vector &(s) = T(c(s)) is defined by

i) F'(c(s))é(s) =0

i) |e(s)]=1
iii) sign det( Fé((‘;gi)) ) >0




PATH OF ZEROS AS SOLUTION OF AN (/VP) D)

)\J\
(X17 A= 1)

The smooth curve can be computed by integration
of the Initial Value Problem

&(s) = T(c(s))
(’VP){ c(0) = (x0,0).

(X07 A= 0) &0

Figure 3: lllustration of the homotopy
F(x,A\)=0



PREDICTOR—CORRECTOR ALGORITHM

= Prediction: Euler step

(%, 8) = (xx, A) + 85T(F(xx, M)

Prediction




PREDICTOR—CORRECTOR ALGORITHM

= Prediction: Euler step
(%, X) = (xa, A) + 6sT(F'(xx, A)) ol
« Correction: (xy+, A*) solution of fos-
min {|(x, ) = (%, 2}
s.t. F(x,A)=0

F(x,X) =0

Prediction




PREDICTOR—CORRECTOR ALGORITHM

09
F(x,X) =0
= Prediction: Euler step .l
07
(%, 8) = (xx, A) + 85T(F(xx, M)
0.6

= Correction: (xy+, AT) solution of Zost

min {|(x,\) — (%, \)[*}

4 Prediction

s.t. F(x,A)=0 ok
= until A =1. o




IMPLEMENTATION IN JULIA : SHOOTING FUNCTION

Automatic differentiation:

True
Hamiltonian
2
7 yvq)
H(y,q)=| %
H(y,q) .9 (—%(y,q))

Numerical integration:
Flow z(7, 70, 20)
solution at 7¢ of

(vP) { e2(7) = H(z(7))

Z(To) =20

https://ct.gitlabpages.inria.fr/gallery/homotopy-julia/FGS.html ou

http://localhost:8888/1ab


https://ct.gitlabpages.inria.fr/gallery/homotopy-julia/FGS.html
http://localhost:8888/lab

REMARK AND QQUESTIONS ®

The following diagram

(1) = F(2(r) Flow of the (IVP)

ez(t) = zlT N ical int ti

(IVP) { Z(O) o umerical integration Z(tf, Zo)
AutomaticJ/Diﬁ”crcntiation Automaticldiffcrcntiation

ez(r) = H(z(r))

(VAR) 6?8;) — %(z(t))é‘z(t) Numerical integration 6Z(tf) _ %(tf7zo)
z = 2y
0z(0) =1

commutes if we use Runge-Kutta algorithm with variable steps in the case where the
step control is only on the z variable (not on the §z for the (VAR) equations)

» What does exactly the ForwardDiff package on the flow in JULIA?

= How can we implement in JULIA the control on the z variable only for the numerical
integration of the variationnnal equation?



CONCLUSION AND PERSPECTIVES

» Thanks to Homotopy method to obtain the numerical solutions.

= Generalization to singularly perturbed optimal control problems

min [" FO(x(t), y(t), u(t)) dt
(P:) x(t) = f(x(t),y(t),u(t)), x(t) eR", x(0), x(1) given
ey(t) = g(x(1),y(t), u(t)), y(t) €R™, y(0), y(1) given
» Implementation of multiple shooting for solving
- Optimal control problems with Bang-Bang solution

- Optimal control problems with singular arcs

» Used a stiff integrator to compute the shooting function

» Numerical comparisons with codes for solving stiff Boundary Value Problem :

COLNEW from U. Ascher and al., HAGRON from J. R. Cash and M. H. Wright
= Comparison with direct methods
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