Vector-borne disease outbreak control via instant vector releases

Jesús Bellver Arnau
Thesis advisors: L. Almeida (LJLL) & Y. Privat (IRMA)
Joint work with C. Rebelo (Universidade de Lisboa)

Congrès Nationale d’Analyse Numérique
Evian-les-Bains

June 14th, 2022
Aedes mosquitoes: A public health problem

- *Aedes* mosquitoes transmit: Dengue fever, Zika, Chikungunya, Yellow fever, West Nile fever...
Aedes mosquitoes: A public health problem

- *Aedes* mosquitoes transmit: Dengue fever, Zika, Chikungunya, Yellow fever, West Nile fever...

- Up to 400 million infections every year and 3.9 billion people at risk in 129 countries for Dengue alone.
Aedes mosquitoes: A public health problem

- *Aedes* mosquitoes transmit: Dengue fever, Zika, Chikungunya, Yellow fever, West Nile fever...

- Up to 400 million infections every year and 3.9 billion people at risk in 129 countries for Dengue alone.

- No efficient vaccine, nor antiviral drugs.
Aedes mosquitoes: A public health problem

- Aedes mosquitoes transmit: Dengue fever, Zika, Chikungunya, Yellow fever, West Nile fever...

- Up to 400 million infections every year and 3.9 billion people at risk in 129 countries for Dengue alone.

- No efficient vaccine, nor antiviral drugs.

- Expansion of vector’s habitat (trade, global warming, reduction of predator populations ...)

![World map showing distribution of Aedes mosquitoes](image-url)
How to fight it? Two methods

- **Wolbachia** method
 - Reduction of the vector capacity.
 - Cytoplasmic incompatibility.
 - *Wolbachia* vertical transmission.
 - Population replacement.

![Diagram of Wolbachia method](image)

Source: http://www.elimatedengue.com/our-research/Wolbachia
How to fight it? Two methods

- **Wolbachia** method
 - Reduction of the vector capacity.
 - Cytoplasmic incompatibility.
 - Wolbachia vertical transmission.
 - Population replacement.

- Sterile insect technique
 - Population suppression.
 - Recurrent intervention

Source: http://www.eliminatedengue.com/our-research/Wolbachia
The model

\[S'_H = b_H H - \frac{\beta_M}{H} I_M S_H - b_H S_H \]
\[E'_H = \frac{\beta_M}{H} I_M S_H - \gamma_H E_H - b_H E_H \]
\[I'_H = \gamma_H E_H - \sigma_H I_H - b_H I_H \]

\[M' = b_M M \left(1 - \frac{M}{K}\right) - d_M M \]
The model

\[
S'_H = b_H H - \frac{\beta_M}{H} I_M S_H - b_H S_H
\]

\[
E'_H = \frac{\beta_M}{H} I_M S_H - \gamma_H E_H - b_H E_H
\]

\[
I'_H = \gamma_H E_H - \sigma_H I_H - b_H I_H
\]

\[
S'_M = b_M M \left(1 - \frac{M}{K}\right) - \frac{\beta_M}{H} S_M I_H - d_M S_M
\]

\[
E'_M = \frac{\beta_M}{H} S_M I_H - \gamma_M E_M - d_M E_M
\]

\[
I'_M = \gamma_M E_M - d_M I_M
\]
The model

\[
\begin{align*}
S'_H &= b_H H - \frac{\beta_M}{H} I_M S_H - b_H S_H \\
E'_H &= \frac{\beta_M}{H} I_M S_H - \gamma_H E_H - b_H E_H \\
I'_H &= \gamma_H E_H - \sigma_H I_H - b_H I_H \\
S'_M &= b_M M \left(1 - \frac{M}{K} \right) - \frac{\beta_M}{H} S_M I_H - d_M S_M \\
E'_M &= \frac{\beta_M}{H} S_M I_H - \gamma_M E_M - d_M E_M \\
I'_M &= \gamma_M E_M - d_M I_M
\end{align*}
\]

Impulsive control: \(u(t) = \sum_{i=1}^{n} c_i \delta(t - t_i) \) Constraint: \(\sum_{i=1}^{n} c_i = C \)
The model

\[S'_H = b_H H - \frac{\beta_M}{H} I_M S_H - b_H S_H \]
\[E'_H = \frac{\beta_M}{H} I_M S_H - \gamma_H E_H - b_H E_H \]
\[I'_H = \gamma_H E_H - \sigma_H I_H - b_H I_H \]
\[S'_M = b_M M \left(1 - \frac{M}{K} \right) - \frac{\beta_M}{H} S_M I_H - d_M S_M \]
\[E'_M = \frac{\beta_M}{H} S_M I_H - \gamma_M E_M - d_M E_M \]
\[I'_M = \gamma_M E_M - d_M I_M \]

Impulsive control: \(u(t) = \sum_{i=1}^{n} c_i \delta(t - t_i) \)

Constraint: \(\sum_{i=1}^{n} c_i = C \)

Goal: Minimise \(J(u) \) during an outbreak

\[J(u) := \int_0^T I_H(t) dt \]
Numerics

We compute $\frac{\delta J(u)}{\delta t_i}$ and $\frac{\delta J(u)}{\delta c_i}$ and we implement a numerical algorithm.

- For the t_i: Gradient descent
- For the c_i: Uzawa algorithm to deal with the constraint $\sum_{i=1}^{n} c_i = C$.
Results: Wolbachia

- $C < G(\theta)$: release before the outbreak reaches its peak.
- $C > G(\theta)$: Release at $t = 0$.

$C = 10000$
Reduction: 2.0%

$C = 20000$
Reduction: 80.3%

$G(\theta) \approx 14800$
Results SIT: 10 releases

\[C = 7.5 \cdot 10^7 \]
Reduction: 12.3%

\[C = 1.5 \cdot 10^8 \]
Reduction: 49.1%
Results SIT: 20 releases

\[C = 7.5 \cdot 10^7 \]
Reduction: 13.9%

\[C = 1.5 \cdot 10^8 \]
Reduction: 99.9%
Conclusions
Conclusions

- **Wolbachia:**
 - Optimal strategy: One single release
 - If we have enough mosquitoes to trigger a population replacement: release as soon as possible.
 - If we don’t have enough: release before the peak of the outbreak.
Conclusions

- **Wolbachia:**
 - Optimal strategy: One single release
 - If we have enough mosquitoes to trigger a population replacement: release as soon as possible.
 - If we don’t have enough: release before the peak of the outbreak.

- **Sterile mosquito:**
 - Strategy and results depend highly on the number of jumps at first.
 - After ~ 20 jumps almost no improvement.
 - With few mosquitoes: spaced releases around the peak.
 - With a lot of mosquitoes: spaced releases from the beginning.
Conclusions

- **Wolbachia:**
 - Optimal strategy: One single release
 - If we have enough mosquitoes to trigger a population replacement: release as soon as possible.
 - If we don’t have enough: release before the peak of the outbreak.

- **Sterile mosquito:**
 - Strategy and results depend highly on the number of jumps at first.
 - After ~ 20 jumps almost no improvement.
 - With few mosquitoes: spaced releases around the peak.
 - With a lot of mosquitoes: spaced releases from the beginning.

Thank you for your attention