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Motivation

Consider u(y) solution to{
− div(a∇u) = f in Ω

u = 0 on ∂Ω

with

a(y) = ā +
d∑

j=1

yj ψj

Model order reduction : Approximate all u(y), y ∈ Y ⊂ Rd , by functions
from Vn ⊂ H1

0 (Ω) with dim(Vn) = n

Reduced bases Vn = Span{u(y1), . . . , u(yn)}

Rate of convergence of un(y) = PVnu(y) towards u(y) ?
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Setting

Parameter domain Y ⊂ Rd , solution manifold

M := {u(y), y ∈ Y }

included in V := H1
0 (Ω)

Kolmogorov widths

dn(M)V = inf
dimVn=n

sup
u∈M

inf
v∈Vn

‖u − v‖V

Goal
Approximate all u ∈M by some space Vn ⊂ V

∀u ∈M, ‖u − un‖H1
0 (Ω) 6 εn ⇐⇒ dn(M)V 6 εn
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Exponential convergence in bounded contrast

Theorem (Bachmayr, Cohen, 2017)

Let Y = [−1, 1]d and a(y) = ā +
d∑

j=1

yj ψj such that
d∑

j=1

|ψj(x)| 6 δ ā(x)

For all k > 0, there exists Vn of dimension n ∼ kd such that∥∥∥u(y)− un(y)
∥∥∥
H1

0

6 ‖f ‖H−1 δk , y ∈ Y

Uniform Ellipticity Assumption : ∀x ∈ Ω, ∀y ∈ Y , r 6 a(x , y) 6 R

Corollary

Under (UEA), for δ = R−r
R+r , we get ‖u − un‖H1

0
6 Ce−n

1/d

Polynomial rates in large dimension (Beck et al. 2010, Tran et al. 2017)
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Sketch of proof

Define Ā,Ψj : H1
0 (Ω)→ H−1(Ω) by

〈Āu, v〉H−1,H1
0

=

∫
Ω

ā∇u · ∇v

and
〈Ψju, v〉H−1,H1

0
=

∫
Ω

ψj ∇u · ∇v

then (Ā +
∑d

j=1 yjΨj)u = f so

u(y) =

I +
d∑

j=1

yj Ā
−1Ψj

−1

Ā−1f ≈
k∑

`=0

− d∑
j=1

yj Ā
−1Ψj

`

Ā−1f

is a Taylor series expansion with
(
k+d
d

)
∼ kd terms
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High contrast regime

What happens when a(y) tends to 0 or +∞ at some points ?

The contrast
κ(y) :=

maxx∈Ω a(x , y)

minx∈Ω a(x , y)
6

R

r

tends to infinity, so we lose the approximation bound. Other problem :

‖u(y)− GVnu(y)‖H1
0
6
√
κ(y) ‖u(y)− un(y)‖H1

0

Assumption : Piecewise constant diffusion coefficient

a(y) =
d∑

j=1

yjχΩj

on a partition Ω1 ∪ · · · ∪ Ωd of Ω
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Soft inclusions problem

Homogeneity

u(ty) = t−1u(y)

If yi → 0 for some i such that f|Ωi
6= 0, then ‖u(y)‖H1

0 (Ω) →∞

Outside of Ωi , u(y) converges to

Soft inclusion problem

 − div(a∇u) = f in Ωc
i

∂nu = ∂nv on ∂Ωi ,
u = 0 on ∂Ω

v ∈ H1
0 (Ωi ), −∆v = f|Ωi

in Ωi
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Stiff inclusions problem

Let i ∈ {1, . . . , d} and consider

Vi = {v ∈ H1
0 (Ω),∇v = 0 on Ωi}

Then there exists a unique ui (y) ∈ Vi such that∑
j 6=i

yj

∫
Ωj

∇ui · ∇v = 〈f , v〉H−1,H1
0
, v ∈ Vi

It is characterised by

Stiff inclusion problem − div(a∇u) = f in Ωc
i

∇u = 0 in Ωi ,
u = 0 on ∂Ω

∫
∂Ωi

∂nu =

∫
Ωi

f
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Convergence of solutions

Lemma (Jikov, Kozlov, Oleinik, 2012)

u(y)→ ui (y) as yi →∞

Idea : The sequence (‖u(y)‖H1
0
) is bounded, extract a weakly converging

subsequence (u(yp)), then its limit ū is solution to the stiff inclusion
problem, and the convergence is strong due to the convergence of the
energy norm∫

Ω

a(yp)|∇u(yp)|2 = 〈f , u(yp)〉H−1,H1
0
→ 〈f , ū〉H−1,H1

0
=

∫
Ωc

j

a(y)|∇ū|2

Corollary

For a(y) =
d∑

j=1

yjχΩj and Y = [1,+∞]d , the setM = {u(y), y ∈ Y } is

compact, hence dn(M)V −→
n→∞

0
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Rate of convergence

Disjoint inclusions : The Ωj are Lipschitz and do not intersect for j > 2

Ω1

Ω2
Ω3

Ω4

Lemma

Assume that a(y) =
d∑

j=1

yjχΩj with (Ωj) disjoint inclusions, then

‖u(y)− ui (y)‖H1
0
6 Cy−1

i
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Exponential convergence for unbounded contrast

Theorem (Cohen, D., Somacal, 2021)

Assume a(y) =
∑d

j=1 yjχΩj with (Ωj) disjoint inclusions, Y = [1,+∞]d

There exists spaces V (1)
n , . . . ,V

(kd )
n of dimension n ∼ kd such that

∀y ∈ Y , ∃r , ‖u(y)− P
V

(r)
n

(y)‖H1
0
6 C2−k

In particular dn(M)V 6 Cn−1/2d

1/y1

1/y2

0

1

1

1/2

1/2

2−k

2−k

...

. . .
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Numerical illustration

Ω1

a = y1

Ω2

a = 1
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Numerical illustration
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Error of H1
0 projection
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Error of galerkin projection
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Perspectives

We proved exponential convergence of reduced order model
approximation for an elliptic PDE with unbounded diffusion coefficient

Does the result extend to reduced bases, and if so, how to choose
the samples ?
Can we improve the rate exp(−n1/2d) ?
Could the assumption on disjoint inclusions be removed ?

Thank you for your attention !
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