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 −∆~pu = λf (x, u) in Ω,

u = 0 on ∂Ω,
(D~pλ)

• Ω ⊂ RN with a boundary of class C1 and with N ≥ 2;
• ~p = (p1, p2, . . . , pN),~p ∈ RN ;
• p− = min {p1, p2 . . . , pN} > N;
• p+ = max {p1, p2 . . . , pN};
• λ > 0;
• f : [0, 1]× R→ R is an L1−Carathéodory function, that is:

1. x 7→ f (x, ξ) is measurable for every ξ ∈ R;
2. ξ 7→ f (x, ξ) is continuous for almost every x ∈ Ω;
3. for every s > 0 there is a function ls ∈ L1(Ω) such that

sup
|ξ|≤s

|f (x, ξ)| ≤ ls(x), for a.e. x ∈ Ω.
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Anisotropic p−Laplacian operator

∆~pu =
N∑

i=1

∂

∂xi

(∣∣∣∣ ∂u
∂xi

∣∣∣∣pi−2 ∂u
∂xi

)

If pi = 2 for all i = 1, . . . ,N

N∑
i=1

∂2u
∂x2

i
= ∆u, Laplacian operator.

If pi = p for all i = 1, . . . ,N

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u
∂xi

∣∣∣∣p−2 ∂u
∂xi

)
= ∆̃pu, pseudo−p−Laplacian operator.

[1] M. Belloni, B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p→∞, ESAIM
Control Optim. Calc. Var. 10 (2004), 28–52.

[2] L. Brasco, G. Franzina, An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities,
Nonlinear Differ. Equ. Appl. 20 (2013), 1795–1830.
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Let α ∈ NN be multiindices such that α = (α1, . . . , αN). The length of α is |α| = α1 + . . .+ αN .

Dαu :=
∂|α|u

∂xα1
1 ∂xα2

2 . . . ∂xαN
N
, (1)

D0u := u.

E =
{
α ∈ NN

0 : |α| ≤ 1
}

and~p = (p0, p1, . . . , pN) with p0 ≥ pi ≥ 1 for i = 1, . . . ,N.

WE,~p(Ω) = {u = u(x) : Dαu ∈ Lpα (Ω), for α ∈ E} , (2)

is a reflexive Banach space if it is equipped with the norm

‖u‖WE,~p(Ω) :=
∑
α∈E

‖Dαu‖Lpα (Ω) . (3)

We denote by WE,~p
0 (Ω) as closure of C∞0 (Ω) in the topology of WE,~p(Ω).
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Anisotripic Sobolev spaces

Consider the following N + 1 multiindices of N−tuple

E = {(0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . . (0, 0, . . . , 1)} ,
and consiter~p = (p0, p1, p2, . . . , pN) with pi ≥ 1 for all i = 1, . . .N.
Then, the set (2) becomes

W1,~p(Ω) =

{
u ∈ Lp0 (Ω) :

∂u
∂xi
∈ Lpi (Ω), for i = 1, . . . ,N

}
. (4)

in which we consider the norm

‖u‖W1,~p(Ω) = ‖u‖Lp0 (Ω) +
N∑

i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
Lpi (Ω)

. (5)

We define W1,~p
0 (Ω) as the closure of C∞0 (Ω) with respect to the norm (5). On W1,~p

0 (Ω) we can also
define the following norm

‖u‖
W1,~p

0 (Ω)
:=

N∑
i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
Lpi (Ω)

. (6)

Remark
We observe also that if~p is constant (that is pi = p for all i = 1, . . . ,N) we get

W1,p(Ω) =

{
u ∈ Lp(Ω) :

∂u
∂xi
∈ Lp(Ω)

}
.
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Main tool

Theorem (G. Bonanno and G. D’Aguì)
Let X be a real Banach space and let Φ, Ψ : X → R be two functionals of class C1 such that
inf

X
Φ(u) = Φ(0) = Ψ(0) = 0. Assume that there are r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
, (7)

and, for each

λ ∈ Λ =

Φ(ũ)

Ψ(ũ)
,

r
sup

u∈Φ−1(]−∞,r])
Ψ(u)

 ,
the functional Iλ = Φ− λΨ satisfies the (PS)−condition and it is unbounded from below.
Then, for each λ ∈ Λ, the functional Iλ admits at least two non-zero critical points uλ,1, uλ,2 ∈ X such
that I(uλ,1) < 0 < I(uλ,2).

[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct.
Anal. 14 (1973) 349–381.

[2] G. Bonanno, G. D’Aguì, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend. 35 (2016),
449–464.
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Preliminary results(
W1,~p

0 (Ω), ‖·‖
W1,~p

0 (Ω)

)
is a Banach space, where W1,~p

0 (Ω) is the closure of C∞0 (Ω) with

‖u‖
W1,~p

0 (Ω)
:=

N∑
i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
Lpi (Ω)

.

Proposition
W1,~p

0 (Ω) is compactely embedded in C0(Ω̄) and for each u ∈ W1,~p
0 (Ω)

‖u‖C0(Ω̄) ≤ 2
(N−1)(p−−1)

p− mp− max
1≤i≤N

{|Ω|
pi−p−

pip− }︸ ︷︷ ︸
=T0

‖u‖
W1,~p

0 (Ω)

Proof: p− > N, W1,p−

0 (Ω) is continuously embedded in C0(Ω̄), the embedding is compact and

‖u‖C0(Ω̄) ≤ mp− ‖u‖W1,p−
0 (Ω)

≤ 2
(N−1)(p−−1)

p− mp− max
1≤i≤N

{|Ω|
pi−p−

pip− } ‖u‖
W1,~p

0 (Ω)
.

mp− =
N
− 1

p−

√
π

[
Γ

(
1 +

N
2

)] 1
N
(

p− − 1
p− − N

)1− 1
p−
|Ω|

1
N−

1
p−

[1] M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat. 18 (1969), 3–24.
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Preliminary results

Proposition
Fix r > 0. Then for each u ∈ W1,~p

0 (Ω) such that

N∑
i=1

1
pi

∥∥∥∥ ∂u
∂xi

∥∥∥∥pi

Lpi (Ω)

< r,

one has
‖u‖C0(Ω̄) < T max{r1/p− ; r1/p+},

where T = T0

N∑
i=1

pi
1/pi .
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Variational approach

Φ,Ψ : W1,~p
0 (Ω)→ R, F(x, t) =

∫ t

0
f (x, ξ)dξ for all (x, t) ∈ Ω× R.

Iλ(u) =
N∑

i=1

1
pi

∫
Ω

∣∣∣∣ ∂u
∂xi

∣∣∣∣pi

dx

︸ ︷︷ ︸
Φ(u)

−λ
∫

Ω
F(x, u(x))dx︸ ︷︷ ︸

Ψ(u)︸ ︷︷ ︸
Energy functional

.

Definition
A function u : Ω→ R is a weak solution of problem (D~pλ) if u ∈ X satisfies the following condition for
all v ∈ X

N∑
i=1

∫
Ω

∣∣∣∣ ∂u
∂xi

∣∣∣∣pi−2 ∂u
∂xi

∂v
∂xi

dx

︸ ︷︷ ︸
Φ′(u)(v)

= λ

∫
Ω

f (x, u(x))v(x)dx︸ ︷︷ ︸
Ψ′(u)(v)

.

(AR) There exist constants µ > p+ and M > 0 such that, 0 < µF(x, t) ≤ tf (x, t) for all x ∈ Ω and for
all |t| ≥ M.

Lemma 1
Assume that the (AR)−condition holds. Then Iλ satisfies the (PS)−condition and it is unbounded from
below.
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The sign of solutions

f +(x, t) =

{
f (x, 0), if t < 0,
f (x, t), if t ≥ 0, (8)

for all (x, t) ∈ Ω× R and {
−∆~pu = λf +(x, u) in Ω,
u = 0 on ∂Ω.

(D~p
λ,f+

)

Lemma 2
Assume that

f (x, 0) ≥ 0 for a.e. x ∈ Ω.

Then, any weak solution of (D~p
λ,f+

) is nonnegative and it is also a weak solution of (D~pλ).

Lemma 3
Assume that

f (x, t) ≥ 0 for a.e. x ∈ Ω, for all t ≥ 0.

Then, any non-zero weak solution of (D~p
λ,f+

) is positive and it is also a weak solution of (D~pλ).

[1] A. Di Castro, E. Montefusco, Nonlinear eigenvalues for anisotropic quasilinear degenerate elliptic equations,
Nonlinear Anal. 70 (2009), 4093–4105.



Introduction Basic notations and preliminary results Main result and some consequences

Main result

R := sup
x∈Ω

dist(x, ∂Ω) ⇒ ∃x0 ∈ Ω such that B(x0,R) ⊆ Ω

ωR := |B(x0,R)| =
π

N
2

Γ(1 + N
2 )

RN , K =
1[

N∑
i=1

1
pi

(
2
R

)pi
]
ωR

(
2N − 1

2N

)
max

{
Tp− ; Tp+

}
Theorem
Assume that the (AR)-condition holds and ∃c, d > 0, with max

{
dp−;dp+

}
<min

{
cp−;cp+

}
, s.t.

F(x, t) ≥ 0, for all (x, t) ∈ Ω× [0, d] , (9)∫
Ω

max
|ξ|≤c

F(x, ξ)dx

min
{

cp− ; cp+
} < K

∫
B(x0,

R
2 )

F (x, d) dx

max
{

dp− ; dp+
} . (10)

Then, for each

λ ∈ Λ̃ :=
] 1

max
{

Tp−;Tp+
} 1
K

max
{

dp−;dp+
}

∫
B(x0,

R
2 )

F (x, d) dx
,

1

max
{

Tp−;Tp+
} min

{
cp−;cp+

}
∫

Ω
max
|ξ|≤c

F(x, ξ)dx

[
,

problem (D~pλ) has at least two non-zero weak solutions.
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Sketch of Proof

• X = W1,~p
0 (Ω) and λ ∈ Λ̃.

• Iλ =
N∑

i=1

1
pi

∫
Ω

∣∣∣∣ ∂u
∂xi

∣∣∣∣pi

dx− λ
∫

Ω
F(x, u(x))dx = Φ(u)− λΨ(u).

•
from (AR)−condition Lemma 1⇒ Iλ satisfies the (PS)-condition

Iλ is unbounded from below.

• Put r = min{
( c

T

)p−

;
( c

T

)p+

} and

ũ(x) =


0 if x ∈ Ω \ B(x0,R),
2d
R

(R− |x− x0|) if x ∈ B(x0,R) \ B
(
x0,

R
2

)
,

d if x ∈ B
(
x0,

R
2

)
.

Clearly, ũ ∈ W1,~p
0 (Ω). From max

{
dp− ; dp+

}
< min

{
cp− ; cp+

}
+ (10)⇒ 0 < Φ(ũ) < r

Ψ(ũ)

Φ(ũ)
≥max

{
Tp−;Tp+

}
K

∫
B(x0,

R
2 )

F (x, d)dx

max
{

dp−;dp+
} >max

{
Tp−;Tp+

}∫
Ω

max
|ξ|≤c

F(x, ξ)dx

min
{

cp−;cp+
} ≥ sup

u∈Φ−1(]−∞,r])
Ψ(u)

r

• λ ∈ Λ̃ ⊆
]Φ(ũ)

Ψ(ũ)
,

r
sup

u∈Φ−1(]−∞,r])
Ψ(u)

[
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Some consequences

Theorem
Let f : Ω× R→ R be a continuous function such that f (x, t) ≥ 0 for a.e. x ∈ Ω and for all t ≥ 0.
Assume that

(AR+) ∃ µ > p+ and M > 0 such that 0 < µF(x, t) ≤ tf (x, t) ∀ x ∈ Ω and ∀ t ≥ M.

Moreover, assume that there are two positive constants c and d, with d < 1 ≤ c, such that∫
Ω

F(x, c)dx

cp−
< K

∫
B(x0,

R
2 )

F (x, d) dx

dp−
.

Then, for each λ ∈
] 1

max
{

Tp− ; Tp+
} 1
K

dp−∫
B(x0,

R
2 )

F (x, d) dx
,

1

max
{

Tp− ; Tp+
} cp−∫

Ω
F(x, c)dx

[
,

problem (D~pλ) has at least two positive weak solutions.

Sketch of Proof
•

from (AR+)−condition Lemma 1⇒ I+λ := Φ− λΨ+satisfies the (PS)−condition
I+λ is unbounded from below

• From Lemma 3, any non-zero weak solution of (D~p
λ,f+

) is a positive weak solution of (D~pλ).
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Some consequences

Theorem
Let f : Ω× R→ R be a continuous function such that f (x, t) ≥ 0 for a.e. x ∈ Ω and for all t ≥ 0.
Assume that

(AR+) ∃ µ > p+ and M > 0 such that 0 < µF(x, t) ≤ tf (x, t) ∀ x ∈ Ω and ∀ t ≥ M.

Moreover, assume that there are two positive constants c and d, with d < c ≤ 1, such that∫
Ω

F(x, c)dx

cp+
< K

∫
B(x0,

R
2 )

F (x, d) dx

dp−
.

Then, for each λ ∈
] 1

max
{

Tp− ; Tp+
} 1
K

dp−∫
B(x0,

R
2 )

F (x, d) dx
,

1

max
{

Tp− ; Tp+
} cp+∫

Ω
F(x, c)dx

[
,

problem (D~pλ) has at least two positive weak solutions.

Sketch of Proof
•

from (AR+)−condition Lemma 1⇒ I+λ := Φ− λΨ+satisfies the (PS)−condition
I+λ is unbounded from below

• From Lemma 3, any non-zero weak solution of (D~p
λ,f+

) is a positive weak solution of (D~pλ).
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Some consequences

Theorem
Let f : Ω× R→ R be a continuous function such that f (x, t) ≥ 0 for a.e. x ∈ Ω and for all t ≥ 0.
Assume that

(AR+) ∃ µ > p+ and M > 0 such that 0 < µF(x, t) ≤ tf (x, t) ∀ x ∈ Ω and ∀ t ≥ M.

Moreover, assume that there are two positive constants c and d, with 1 ≤ d < c, such that∫
Ω

F(x, c)dx

cp−
< K

∫
B(x0,

R
2 )

F (x, d) dx

dp+
.

Then, for each λ ∈
] 1

max
{

Tp− ; Tp+
} 1
K

dp+∫
B(x0,

R
2 )

F (x, d) dx
,

1

max
{

Tp− ; Tp+
} cp−∫

Ω
F(x, c)dx

[
,

problem (D~pλ) has at least two positive weak solutions.

Sketch of Proof
•

from (AR+)−condition Lemma 1⇒ I+λ := Φ− λΨ+satisfies the (PS)−condition
I+λ is unbounded from below

• From Lemma 3, any non-zero weak solution of (D~p
λ,f+

) is a positive weak solution of (D~pλ).
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Example 1: N = 3, Ω = B(0, 2), p1 = 4, p2 = 5, p3 = 6, c = 1 and d = 10−14


−

3∑
i=1

∂

∂xi

(∣∣∣∣ ∂u
∂xi

∣∣∣∣pi−2 ∂u
∂xi

)
= 10−12(x2 + y2 + z2)u8 + 10−12u in Ω,

u = 0 on ∂Ω,

(11)

f (x, y, z, t) = (x2 + y2 + z2)t8 + t2 ⇒ F(x, y, z, t) = (x2 + y2 + z2)
t9

9
+

t3

3
.

We have that (AR+)−condition holds and

mp− =
4

√
33

2π
, T0 = 3

√
25 · 32
√
π
, T = (

√
2 +

5√5 +
6√6) 3

√
25 · 32
√
π
,

max
{

Tp− ; Tp+
}

= T6 = (
√

2 +
5√5 +

6√6)6

(
25 · 32

)2

π
, K =

5

210 · 32 · 7 · 37(
√

2 + 5√5 + 6√6)6
.

1

max
{

Tp− ; Tp+
} 1
K

dp−∫
B(x0,

R
2 )

F (x, d) dx
=

7 · 37
5

1
22

5 d5 + 22

d

≤
7 · 37

4
d =

7 · 37
4

10−14 < 10−12

<
1

max
{

Tp− ; Tp+
} cp−∫

Ω
F(x, c)dx

=
5

(
√

2 + 5√5 + 6√6)621534
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Some consequences

 −∆~pu = λf (u) in Ω,

u = 0 on ∂Ω.
(AD~pλ)

Put
K∗ =

ωR

2N |Ω|
K.

(AR+
1 ) there exist constants µ > p+ and M > 0 such that, 0 < µF(t) ≤ tf (t) for all t ≥ M.

Theorem
Let f : [0,+∞[→ [0,+∞[ be a continuous function such that the (AR+

1 )−condition holds. Moreover,
assume that there are two positive constants c and d, with d < 1 ≤ c, such that

F(c)

cp−
< K∗

F (d)

dp−
. (12)

Then, for each

λ ∈ Λ̃1 :=

 1

max
{

Tp− ; Tp+
} 1
|Ω|

1
K∗

dp−

F (d)
,

1

max
{

Tp− ; Tp+
} 1
|Ω|

cp−

F(c)

,

the problem (AD~pλ) has at least two positive weak solutions.
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Some consequences

 −∆~pu = λf (u) in Ω,

u = 0 on ∂Ω.
(AD~pλ)

(AR+
1 ) There exist constants µ > p+ and M > 0 such that, 0 < µF(t) ≤ tf (t) for all t ≥ M.

Theorem
Let f : [0,+∞[→ [0,+∞[ be a continuous function such that the (AR+

1 )−condition holds. Assume that

lim sup
t→0+

F(t)

tp−
= +∞. (13)

Put λ∗ =
1

max
{

Tp− ; Tp+
} 1
|Ω|

sup
c≥1

cp−

F(c)
.

Then, for each λ ∈ ]0, λ∗[, the problem (AD~pλ) admits at least two positive weak solutions.

Remark

λ∗ =
1

max
{

Tp− ; Tp+
} 1
|Ω|

max

{
sup
c≥1

cp−

F(c)
; sup

0<c<1

cp+

F(c)

}
.
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Some consequences

Theorem
Fix s, q such that 0 ≤ s < p− − 1 and p+ − 1 < q. Put

η∗= min


1− p+

q+1
p+
s+1−1

,

 (s+1)(q+1)

max
{

Tp−;Tp+
}
|Ω|

(
p+

s+1−1
)p+−(s+1)

q−s
(

1− p+

q+1

)(q+1)−p+

q−s

(q+1)
(

1− p+
q+1

)
+(s+1)

(
p+
s+1−1

)


q−s
(q+1)−p+

.
Then, for each η ∈]0, η∗[ the problem −∆~pu = ηus + uq in Ω,

u = 0 on ∂Ω
(AD~pη)

has at least two positive weak solutions.
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Example 2: N = 2, Ω = B(0, 1), p1 = 3 and p2 = 4

For each η ∈
]

0, 3

28(2
1
2 +3

1
3 )8

[
, the problem−

∂

∂x1

(∣∣∣∣ ∂u
∂x1

∣∣∣∣ ∂u
∂x1

)
−

∂

∂x2

(∣∣∣∣ ∂u
∂x2

∣∣∣∣2 ∂u
∂x2

)
= ηu + u5 in Ω,

u = 0 on ∂Ω,

admits at least two positive weak solutions.
Indeed

mp− =

(
2
π

) 1
3
, T0 =

2

π
1
4

, T = (3
1
3 + 4

1
4 )

2

π
1
4

,

max
{

Tp− ; Tp+
}
|Ω| = (3

1
3 + 4

1
4 )424, (s + 1)(q + 1) = 12,

(
p+

s+1 − 1
) p+−(s+1)

q−s
(

1− p+

q+1

) (q+1)−p+

q−s

(q + 1)
(

1− p+
q+1

)
+ (s + 1)

(
p+
s+1 − 1

) =
1

3
1
2 4
,

η∗ = min

1
3

;

[
3

1
2

(3
1
3 + 4

1
4 )424

]2
 =

3

(3
1
3 + 4

1
4 )828

.
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Thank you for your kind attention
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