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Context of this work

Helioseismology in a nutshell:
I Aims at imaging the solar interior thanks to surface observations
I Surfacic «acoustic waves» can be measured thanks to the

Doppler effect
I The full models are too complicated for numerical simulation, two

main approaches for computational helioseismology:
I Aeroacoustics: magnetic effects are neglected
I Magnetoacoustics: hydrodynamics effects are neglected

(a) Dopplergram (b) Power
spectrum
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I Aims at imaging the solar interior thanks to surface observations
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Doppler effect
I The full models are too complicated for numerical simulation, two

main approaches for computational helioseismology:
I Aeroacoustics: magnetic effects are neglected
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If you want to know more about helioseismology:
J. Christensen-Dalsgaard.
Lecture Notes on Stellar Oscillations.
University of Aarhus



Model problem and discretization
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Admissible cases

To construct ABCs for the convected Helmholtz equation, we limit
ourselves to the following configurations:

I the physical parameters can vary inside of the computational
domain,

I but they become uniform far from the source.

K

∂K

v0(x , y)

v0 = v∞ex

Figure: Admissible configuration
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Convected Helmholtz equation

Model problem :

ρ0
(
−ω2p − 2iωv0 · ∇p + v0 · ∇(v0 · ∇p)

)
− div

(
ρ0c0

2∇p
)

= s

where
I p: acoustic potential (∼ pressure perturbation)
I ρ0: mass density
I v0: velocity field
I c0: sound speed
I s: acoustic source

We only consider the subsonic case where

M =
|v0|
c0

< 1, ∀x ∈ O.
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Convected Helmholtz equation

Model problem :

ρ0
(
−ω2p − 2iωv0 · ∇p

)
− div (K0∇p) = s

where K0 = ρ0c0
2Id− ρ0v0v0

T .
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Convected Helmholtz equation

Model problem : We solve the total flux formulation

σ + K0∇p + 2iωpρ0v0 = 0,

−ρ0ω
2p + div (σ) = s,

where σ = −K0∇p − 2iωpρ0v0 using a HDG method.
H. Barucq, N. Rouxelin, S. Tordeux.
HDG and HDG+ methods for harmonic wave problems with convection.
https://hal.inria.fr/hal-03253415
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(a) DG (b) HDG

Figure: Degrees of freedom for degree 3
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Convected Helmholtz equation

Model problem : We solve the total flux formulation

σ + K0∇p + 2iωpρ0v0 = 0,

−ρ0ω
2p + div (σ) = s,

where σ = −K0∇p − 2iωpρ0v0 using a HDG method.
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Figure: Sizes of the system to solve
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Domain truncation

To simulate wave propagation in infinite domains, we need to truncate
the domain

Incident wave

Transmitted waveReflected wave

Figure: Reflection at the artificial boundary
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Domain truncation

To simulate wave propagation in infinite domains, we need to truncate
the domain

I Perfectly Matched Layers: absorbing layer surrounding the
domain

JP. Berenger.
A perfectly matched layer for the absorption of electromagnetic waves.
Journal of Computational Physics - 1994

P. Marchner, H. Beriot, X. Antoine, C. Geuzaine.
Stable Perfectly Matched Layers with Lorentz transformation for the
convected Helmholtz equation.
Journal of Computational Physics - 2021
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5
Domain truncation

To simulate wave propagation in infinite domains, we need to truncate
the domain

I Perfectly Matched Layers: absorbing layer surrounding the
domain

I Absorbing Boundary Conditions
B. Engquist, A. Majda.
Absorbing Boundary Conditions for the Numerical Simulation of Waves.
Mathematics of Computation - 1977

A. Bayliss, E. Turkel.
Radiation boundary conditions for wave-like equations.
Communications on Pure and Applied Mathematics - 1980

H. Barucq, N. Rouxelin, S. Tordeux.
Prandtl-Glauert-Lorentz based ABCs for the convected Helmholtz equation.
Submitted – 2021
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First idea

Usual idea: Construct an ABC that selects outgoing planewaves that
are locally orthogonal to the boundary.
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(a) Numerical solution
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(b) Exact solution

Figure: Planewave-based ABC with M = 0.6

The flow generates spurious oscillations !
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(b) Local error

Figure: Planewave-based ABC with M = 0.6

The flow generates spurious oscillations !
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Construction of ABCs

Standard Helmholtz

−ω̃2p̃ − c0
2∆̃p̃ = s̃

Convected Helmholtz

−ω2p−2iωv0 ·∇p−div (K0∇p) = s

Prandtl-Glauert-Lorentz transformation

x̃ = Ax =

(
Id +

1
α(1 + α)

v0v0
T

c0
2

)
x , ω̃ =

ω

α
, α =

√
1− |v0|2

c0
2

Then

p̃(x̃ , ω̃) := α exp

[
iω

α2c0
2 v0 · x

]
p(x , ω)

Only for uniform physical parameters !
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Construction of ABCs

Standard Helmholtz

−ω̃2p̃ − c0
2∆̃p̃ = s̃

Convected Helmholtz

−ω2p−2iωv0 ·∇p−div (K0∇p) = s

Prandtl-Glauert-Lorentz transformation

x̃ = Ax =

(
Id +

1
α(1 + α)

v0v0
T

c0
2

)
x , ω̃ =

ω

α
, α =

√
1− |v0|2

c0
2

Then

p̃(x̃ , ω̃) := α exp

[
iω

α2c0
2 v0 · x

]
p(x , ω)

Furthermore, if p̃ is an outgoing solution, so is p.
Limiting Amplitude Principle:

lim
t→+∞

∥∥p(x , t)− p(x , ω)e−iωt
∥∥ = 0,

where p is the solution of the time-domain equation with
s = g(x)e−iωt .
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Construction of ABCs

Standard Helmholtz

p̃(x̃ , ω̃)
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(a) Boundary Σ̃

Convected Helmholtz
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, α =
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2

Then

p̃(x̃ , ω̃) := α exp
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Construction of ABCs

Standard Helmholtz

p̃(x̃ , ω̃)
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(a) Boundary Σ̃

∂ñp̃ + Z̃p̃ = 0

Convected Helmholtz

p(x , ω)
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(b) Boundary Σ

σ · n + Zp = 0

Change of ABC

Z = −c0
2|A−T n|Z̃(x̃ , ω̃) + iωv0 · n
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Construction of ABCs

Standard Helmholtz

p̃(x̃ , ω̃)

−2 −1 0 1 2
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(a) Boundary Σ̃

∂ñp̃ + Z̃p̃ = 0

Convected Helmholtz

p(x , ω)

−2 −1 0 1 2
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(b) Boundary Σ

σ · n + Zp = 0
Example :

Z̃ = − iω̃
c0

+
1

2R
=⇒ Z = −c0

2|A−T n|
2R

+ i
(

c0|A−T n|
α

+ v0 · n
)
ω
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Performance assessment – 1/4
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Figure: First-order PGL-based ABC with M = 0.6
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Performance assessment – 2/4

We define the relative error as

EO :=

√√√√∑K ,i |ph − pref|2(xK
i )∑

K ,i |pref|2(xK
i )

,

and the convected Helmholtz number as

He :=
ωαR

2π(1 + M)
.

R He ABC-0 ABC-1 ABC-PW
0.5 0.75 2.14% 0.67% 8.3%
1.0 1.5 1.21% 0.62% 7.31%
1.5 2.25 0.98% 0.66% 8.02%
2.0 3.0 0.83% 0.64% 7.1%

Table: Relative error EO in the domain for M = 0.6
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Performance assessment – 3/4

Local error
Eloc(x) = |ph − pref|2
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Figure: ABC-1
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Performance assessment – 4/4
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Figure: EO with respect to M

I Good numerical results for low and intermediate Mach numbers.
I Not robust to high Mach numbers: higher order ABCs or PMLs

should be considered.
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Higher-order ABCs ?

I In principle, it’s possible...
I but very difficult with DG methods !
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Higher-order ABCs ?

I In principle, it’s possible...
I but very difficult with DG methods !

Indeed, the second-order boundary involves the Laplace-Beltrami
operator on Γ = ∪k [sk , sk+1], which leads to the following term

∑
k

∫ sk+1

sk

∂2
ννΦj Φidσ = −

∑
k

∫ sk+1

sk

∂νΦj∂νΦidσ +
∑

k

[∂νΦj Φi ]
sk+1
sk



Numerical experiments
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Illustrative examples

Uniform flow:

v0 = 0.6
[

cos π4
sin π

4

]
Validation: comparison with analytic solutions, for both cases the
relative error

E :=

(∑
i |ph(xi )− pref(xi )|2∑

i |pref(xi )|2

) 1
2

< 1%.
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(a) One point-source
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(b) Two point-sources

Figure: Numerical experiments using HDG-σh
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Illustrative examples

Potential flow around a circular obstacle:

v0 = M∞

[(
1−

R2
C

r2

)
cos θer +

(
1 +

R2
C

r2

)
sin θeθ

]
,

where RC is the radius of the obstacle and M∞ the Mach number at
infinity.

Figure: Potential flow around a circular obstacle
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Illustrative examples
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v0 = M∞
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C

r2

)
cos θer +

(
1 +

R2
C
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sin θeθ

]
,

where RC is the radius of the obstacle and M∞ the Mach number at
infinity.
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Figure: Point source in a potential flow around an obstacle using HDG



Thank you for your attention!
Any questions ?
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