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Motivation

In this work, we are interested in solving an Helmholtz like equation:

where:  is a 2x2 symmetric positive definite matrix,A

−div(A∇u) + ia ⋅ ∇u + μu = f

 is a vecteur of ,a ℝ2

 is a real constant.μ
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where:  is a 2x2 symmetric positive definite matrix,A

−div(A∇u) + ia ⋅ ∇u + μu = f

 is a vecteur of ,a ℝ2

 is a real constant.μ

This type of equation occurs in several contexts:

The convected Helmholtz  equation 

H. Barucq et al, HDG and HDG+ methods for harmonic 
wave problems with convections, 2021 v

f

( ,  ,  )A = c0I−vvt a = − 2ωv μ = − ω2

−div((c0−vvt)∇u) − 2iωv ⋅ ∇u+ω2u = f
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Motivation

In this work, we are interested in solving an Helmholtz like equation:

−div(A∇u) + ia ⋅ ∇u + μu = f

where:  is a 2x2 symmetric positive definite matrix,A

 is a vecteur of ,a ℝ2

 is a real constant.μ

This type of equation occurs in several contexts:

The convected Helmholtz  equation ( ,  ,  )A = c0I−vvt a = − 2ωv μ = − ω2

The Gröss-Pitaevskii  equation (computation of the ground states) 

I. Danaila et al, Computation of ground states of the Gröss-Pitaevskii 
functional via Riemannian optimization, 2017 
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Motivation

In this work, we are interested in solving an Helmholtz like equation:

−div(A∇u) + ia ⋅ ∇u + μu = f

where:  is a 2x2 symmetric positive definite matrix,A

 is a vecteur of ,a ℝ2

 is a real constant.μ

This type of equation occurs in several contexts:

The convected Helmholtz  equation ( ,  ,  )A = c0I−vvt a = − 2ωv μ = − ω2

The Gröss-Pitaevskii  equation (computation of the ground states) 

The wave-ray  equation

P. Verburg et al, Multi-level wave-ray method for 2d Helmholtz equation, 2010 

( ,  ,  )A = I a = v μ = 0

−Δu+ia ⋅ ∇u = f
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Motivation

In this work, we are interested in solving an Helmholtz like equation:

−div(A∇u) + ia ⋅ ∇u + μu = f

where:  is a 2x2 symmetric positive definite matrix,A

 is a vecteur of ,a ℝ2

 is a real constant.μ

Goal:    Propose an efficient iterative algorithm of resolution

In short, it is as difficult as solving the Helmholtz equation !!

O.G. Ernst et al, Why is it difficult to solve the Helmholtz equation ? 2012 
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Link with the Helmholtz equation

Let us consider u solution to

−div(A∇u) + ia ⋅ ∇u + μu = f

Then, setting  with   one get thatu = eık⋅xv′ k =
1
2

A−1a

−div(A∇v′ ) + (μ−
∥a∥2

A−1

4 ) v′ = f′ 
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Link with the Helmholtz equation

Let us consider u solution to

−div(A∇u) + ia ⋅ ∇u + μu = f

Then, setting  with   one get thatu = eık⋅xv′ k =
1
2

A−1a

−div(A∇v′ ) + (μ−
∥a∥2

A−1

4 ) v′ = f′ 

Remark: Even if , we see that the problem is not coercive if  is large.μ ≥ 0 ∥a∥
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Then, setting  with   one get thatu = eık⋅xv′ k =
1
2

A−1a

−div(A∇v′ ) + (μ−
∥a∥2

A−1

4 ) v′ = f′ 

Now, taking the change of variables  where  is a matrix, we get(x, y) ← T(x, y) T

−div(TATt ∇v) + (μ−
∥a∥2

A−1

4 ) v = f̃
′ 

A simple idea then to obtain the Helmholtz equation is to take  where .T = G−1 A = GGt

Remark: The choice of the transformation is not unique !
F.Q. Hu et al, On the use of Prandtl-Glauert-Lorentz transformation for acoustic 
scattering by rigid bodies with a uniform flow,  2019  
Y. Gao et al, Wave scattering in layered orthotropic media I: a stable PML and a high-
accuracy boundary integral equation method,  2021  
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Link with the Helmholtz equation

Cartesian PML formulation:

−div(A∇u) + ia ⋅ ∇u + μu = f
Convected Helmholtz equation
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−div(A∇u) + ia ⋅ ∇u + μu = f
Convected Helmholtz equation

−Δv + ω̃ u = f
Helmholtz equation

−div(DPML ∇vPML)+ρPML ω̃ uPML = f

PML Helmholtz equation

Coordinates transformation

Complex stretching

Coordinates transformation

−div(APML ∇uPML) +
i
2

aPML ⋅ ∇uPML

+
i
2

div(aPMLuPML)+μPMLuPML = f

PML Convected Helmholtz equation

P. Marchner et al, Stable Perfectly Matched Layers with Lorentz transformation for the convected 
Helmholtz equation,  2019 

E. Becache et al, Perfectly matched layers for the convected Helmholtz equation,  2004 
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Illustration (Convected Hemlholtz):
,    

 
a = 2ωv ω = 20
v = [0.8, 0]t

A = Id − vvt
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Link with the Helmholtz equation

−div(A∇u) + ia ⋅ ∇u + μu = f
Convected Helmholtz equation

−Δv + ω̃ u = f
Helmholtz equation

−div(DPML ∇vPML)+ρPML ω̃ uPML = f

PML Helmholtz equation

Coordinates transformation

Complex stretching

Coordinates transformation

−div(APML ∇uPML) +
i
2

aPML ⋅ ∇uPML

+
i
2

div(aPMLuPML)+μPMLuPML = f

PML CH equation

Complex stretching

ABC (Absorbing Boundary Conditions):

N. Rouxelin et al, Prandtl-Glauert-Lorentz based Absorbing Boundary Conditions for 
the convected Helmholtz equation,  2021 
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Convergence analysis on a toy problem

Formulation of the problem

−div(A∇u) + ia ⋅ ∇u + μu = f
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in     Ω
u = 0 on    ∂Ω

We will consider four configurations :

D-D D-PML PML-D PML-PML
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ℒCHu1,n = f1

u1,n = 0 on    ∂Ω

in     Ω1

(∂x+p1,2)u1,n = (∂x+p1,2)u2,n−1 on    Γ12

Convergence analysis on a toy problem

Schwarz algorithm:
ℒCHu12,n = f2

u2,n = 0 on    ∂Ω

in     Ω2

(∂x+p2,1)u2,n = (∂x+p2,1)u1,n−1 on    Γ21
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Remarks: The convergence analysis can be done only for the Helmholtz equation.

To preserve the separable geometry in the Helmholtz case, we need to 
assume that  is diagonale.A
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M.J. Gander et al, Optimized schwarz methods with overlap for the helmholtz 
equation 2016



Convergence analysis on a toy problem

Convergence analysis (D-D case)
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A = Id Ω̃ = [0,1]2 Γ̃ 1,2 = {β} × [0,1]
Γ̃ 2,1 = {β} × [0,1]
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Illustration on an example (Wave Ray: , , )−Δu+ia ⋅ ∇u = 0 ω̃ = 5 p̃1,2 = p̃2,1 = iω

 

| ρ
D

D
(ξ
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 Questions ?

Using PML has a strong impact on the convergence of classical iterative algorithm.

We propose an alternated algorithm based on splitting once vertically and once 
horizontally the domain. This algorithm :

improve the convergence factor in every case
and have a different behaviour depending 
on the PML BCs,

Thank you for your attention !!


