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Motivation

In this work, we are interested in solving an Helmholtz like equation:
—diviAvuy) +ia- Vu+uu =f

where: *  Aisa 2x2 symmetric positive definite matrix,

* aisavecteur of RZ

* puisareal constant.
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In this work, we are interested in solving an Helmholtz like equation:
—diviAvuy) +ia- Vu+uu =f

where: *  Aisa 2x2 symmetric positive definite matrix,

* aisavecteur of RZ

* puisareal constant.

This type of equation occurs in several contexts:

*  The convected Helmholtz equation (A =¢y/—vV, a = — 20V, u = — ©?)

—div((cy—VV') VU) — 2iwV - Vi+@*U = f

C— H. Barueq et al, HDG and HDG+ methods for harmonic 3
wave problems with convections, 2021 /
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In this work, we are interested in solving an Helmholtz like equation:
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* aisavecteur of RZ

* puisareal constant.

This type of equation occurs in several contexts:
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Motivation

In this work, we are interested in solving an Helmholtz like equation:
—diviAvuy) +ia- Vu+uu =f

where: *  Aisa 2x2 symmetric positive definite matrix,

* aisavecteur of RZ

* puisareal constant.

This type of equation occurs in several contexts:

*  The convected Helmholtz equation (A =¢y/—vV, a = — 20V, u = — ©?)
*  The Gross-Pitaevskii equation (computation of the ground states)

* Thewave-ray equation (A=1 a=v, u=0)
—Av+ia-vVu="*

P Verburg et al, Multi-level wave-ray method for 2d Helmholtz equation, 2010
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Motivation

In this work, we are interested in solving an Helmholtz like equation:
—diviAvuy) +ia- Vu+uu =f

where: *  Aisa 2x2 symmetric positive definite matrix,

* aisavecteur of RZ

* puisareal constant.

Goal: Propose an efficient iterative algorithm of resolution

—— |nshort, it is as difficult as solving the Helmholtz equation !

| 0.G. Ernst et al, Why is it difficult to solve the Helmholtz equation 7 2012
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Link with the Helmholiz equation

Let us consider u solution to
—divAvu)+ia- Vu+ =t

e 1
Then, setting u = ¢*“*v' with k = EA—la one get that

: , @l N
—diviAaVvv) + | u— n v=t




Link with the Helmholiz equation

Let us consider u solution to
—divAvu)+ia- Vu+ =t

e 1
Then, setting u = ¢*“*v' with k = EA—lat one get that

—div(A VV) + v—F

Remark: Even if 1 > 0, we see that the problem is not coercive if ||a|| is large.
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Link with the Helmholiz equation

Let us consider u solution to
—divAvu)+ia- Vu+ =t

e 1
Then, setting u = ¢*“*v' with k = EA—la one get that
, a 2—1 , /
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A simple idea then to obtain the Helmholtz equation is fo take 7= G~! where A = GG



Link with the Helmholiz equation

Let us consider u solution to
—divAvu)+ia- Vu+ =t

e 1
Then, setting u = ¢*“*v' with k = EA—lat one get that
/ a 2—1 / &
—div(AVYV) + (M— | |4|1A >v = f

Now, taking the change of variables (x, y) < T(x,y) where T is a matrix, we get

] : gl oy =
—div(TAT'VV) + | pu— > y=—F

A simple idea then to obtain the Helmholtz equation is fo take 7= G~! where A = GG

Remark: The choice of the transformation is not unique !

FQ. Hu et al, On the use of Prandtl-Glauert-Lorentz transformation for acoustic
scattering by rigid bodies with a uniform flow, 2019

Y. Gao et al, Wave scatiering in layered orthotropic media |: a stable PML and a high-

accuracy boundary integral equation method, 2021
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Link with the Helmholiz equation

Cartesian PML formulation:

—diviAvVu) +ia-Vu+ v =f
Convected Helmholtz equation
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Cartesian PML formulation:
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—diviAvVu) +ia-Vu+ v =f > _AV+Du=f
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—div(Dpyy; VVPy)+Ppys @ Upyr = f

PML Helmholtz equation



Link with the Helmholiz equation

Cartesian PML formulation:

: Coordinates transformation
—diviAvVu) +ia-Vu+ v =f > _AV+Du=f

Convected Helmholtz equation Helmholtz equation

Complex stretching

. I
—diV(Apy VUpyr) + EaPML - VUpyr, Y
; < —diV(Dpyyr VVpuL)+Ppy @ Upp = £
+5dlv(aPMLuPML)+/“‘PMLuPML =f Coordinates transformation PML Helmholtz equation

PML Convected Helmholtz equation

| P. Marchner et al, Stable Perfectly Matched Layers with Lorentz transformation for the convected
S—  Helmholiz equation, 2019

E. Becache et al, Perfectly matched layers for the convected Helmholiz equation, 2004
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Link with the Helmholtz equation

Cartesian PML formulation:
Coordinates transformation

—diviAvu) +ia-Vu+uu =1 > —AV+ U=
Convected Helmholtz equation Helmholtz equation
Complex stretching
: i
—div(Apy VUpyr) + EaPML - VUpuyr, \ 4
; < —diV(Dpy; VVei)+ppp @ Uy = £
+5d|v(aPMLUPML)+MPMLUPML = Coordinates transformation PML Helmholtz equaﬁo"

PML Convected Helmholtz equation

i — lllustration (Convected Hemlholt2):
, | a=2wV, w=20
i Sy v=[08, 0]

I - A=1Id—VV




Link with the Helmholiz equation

Cartesian PML formulation:

: Coordinates transformation
—divAavu)+ia-Vu+uu =f - _AV+ U ="*

Convected Helmholtz equation Helmholtz equation

Complex stretching

: I
—div(Apy; VUp) + EaPML - Vlpyi A4
z < —diV(Dpyyr VVpuL)+Ppy @ Uppy, = €
+Edlv(aPMLUPML)+ﬂPMLuPML =1 Coordinates transformation PML Helmholtz equation

PML Convected Helmholtz equation

//////, i

/HHHH'.“.; ‘‘‘‘




Link with the Helmholiz equation

Cartesian PML formulation:

: Coordinates transformation
—diviAvVu) +ia-Vu+ v =f > _AV+Du=f

Convected Helmholtz equation Helmholtz equation

Complex stretching

; i
—diV(Apy VUpyr) + EaPML - VUpyr, Y
; < —diV(Dpyyr VVpuL)+Ppy @ Uppy, = €
+5le(apMLUPML)+MPMLUpML =1 Coordinates transformation PML Helmholtz equation
PML CH equation

ABC (Absorbing Boundary Conditions);

S—— N Rouxelin et al, Prandtl-Glauert-Lorentz based Absorbing Boundary Conditions for
the convected Helmholtz equation, 2021
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Convergence analysis on a toy problem

Formulation of the problem

—divAavVuo) +ia-Vu+uw=f in Q
U=0 on 0Q

We will consider four configurations :

D-0 P-PML PML-P PML-PML

12



Convergence analysis on a toy problem

Formulation of the problem

S

on 0Q

We will consider four conﬁgura’ﬂons

p-PML PML-D PMI-PML
In each case, we will consider a Schwarz iterative algorithm of resolution with 2 subdomains.

- . in

U =0 on oQ
(0, P V" = (9,+p; V> on [},
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Convergence analysis on a toy problem

Formulation of the problem

—divAavVuo) +ia-Vu+uw=f in Q
U=0 on 0Q

We will consider four conﬁguraﬁons

p-PML PML-D PMI-PML
In each case, we will consider a Schwarz iterative algorithm of resolution with 2 subdomains.
ety in Q, L' = 1t in Q,
g0 on 0Q Teuar—ui on 0Q
(0, +p; V" = (0, +p JV>"! on T}, (0, Py, " = (0,+p, W™ on T,
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Convergence analysis on a toy problem

Schwarz algorithm:
L' =1
U =0

(0P U = (0, 4P U}

in  Q,
on 0«

Lo =1 in Q,
gt =0 oh 0Q
(ax+p2,l)uz’n G (dx+p2,l)ul,n—l on le

Equivalent Schwarz algorithm for Helmholtz equation:

QCZHVI’H e fl
vir=(

in Q,
on 0Q

@AD i1V = (04D 1 V"' on T,

13

Vir =10 oh 0Q
(@D, V" = (0P V" on Ty,



Convergence analysis on a toy problem

Schwarz algorithm:
L' =1
U =0

(0P U = (0, 4P U}

in  Q,
on 0«

gCHulz’n i f2 in Q,
ei= 1 on 0Q
(ax+p2,l)uz’n G (ax+p2,l)ul’n_1 on le

Equivalent Schwarz algorithm for Helmholtz equation:

QCZHVI’H e fl
vir=(

in Q,
on 0Q

@AD i1V = (04D 1 V"' on T,

Vir =10 oh 0Q
(@D, V" = (0P V" on Ty,

Remarks: sk The convergence analysis can be done only for the Helmholtz equation.
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Convergence analysis on a toy problem

Schwarz algorithm:
vl =0 on 0Q 02 =10 on 0Q
(0, +p U = (0, +p JU"™1 on Ty, (0, +py " = (0P W™ on Ty,

Equivalent Schwarz algorithm for Helmholtz equation:

LV = £, in Q, Lo = £, in Q,
Ui on 90 Vir =10 on 0Q
@AP IV = (0P 1V"! on T, (0P V" = 0, +Po V"7 on T,

Remarks: sk The convergence analysis can be done only for the Helmholtz equation.

%k To preserve the separable geometry in the Helmholtz case, we need to
assume that A is diagonale.
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Convergence analysis on a toy problem

Schwarz algorithm:
Lo =1

Equivalent Schwarz algorithm for Helmholiz equation:

vie = om 9Q V21 = () on o

(a _|_.)v1n= _|'v2,n—l on ’1:"12

Remarks: sk Optimized TC can be derived from optimized TC for the Helmholtz equation

S—  MJ. Gander et al, Optimized schwarz wethods with overlap for the helmholtz
equation 2016
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Convergence analysis on a toy problem

Convergence analysis (0-D case)

lsn = z 4 iz o AR s 0o
a0 in Q, ZpV>t =0 in Q,
it i o on 03
@ AP 1V = 04D V" on T, (O APy, V" = (0P V! on T,

Remark: For simplicity, we will assume that A = 1dsk G — 10117 F s = {F1 < [0.1]
and I', | = {#} X [0,1] 14



Convergence analysis on a toy problem

Convergence analysis (0-D case)

lsn = z 4 iz o AR s 0o
a0 in Q, ZpV>t =0 in Q,
it i o on 03
@ AP 1V = 04D V" on T, (O APy, V" = (0P V! on T,

Using separation of variables methods, we get that

vir =N, Sin(éﬂy)(Ai’n(§)€i§(§)x+Bi’n(é)e_i§(5)x) where $(¢) = \/i-(&n)”

ceN
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Convergence analysis on a toy problem

Convergence analysis (D-D case)

1, ! s 2 D 2 B s ] g
a0 in Q, LV =0 in Q,
Vi =0 om 0Q om 0Q
(B tn V= TdFp V" on T (04D V" = (04D, V™! on T,

Using separation of variables methods, we get that

vin = 3 N.sin(éry) (A“'(©es @+B(©)em ) where S(8) = RGP

ceN

The boundary conditions implies: B'"(&) = —A""(&) and B>(&) = — 2SOA™" (&)
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Convergence analysis on a toy problem

Convergence analysis (D-D case)

i A 5 75 S i EBE . g g
LV " =0 in Q, LV =0 i Q,

vln = on 0Q V=1 on 0Q

EERRESCEREE o T, OcAP ¥ = @AP V" on T,

Using separation of variables methods, we get that

vir =D N, Sin(&w)(Ai’n(f)eié’(g)x+Bi’n(f)e—i&@x) where (&) = 1/ fi-(n)”

ceN

The boundary conditions implies: B'"(&) = —A""(&) and B>(&) = — 2SOA™" (&)

e NGS(E)+P| ) + €20 Qe (S (E)—P ,) 2]

LEBaieRiERE A e
The TC implies: A "(¢) = eSS (E)+Pp1o) + e ISOBIS(E)—Dp) »)

(&)
'S (E)+Dy ) + e PSS (E) =Py ) p L]

2.n S5
N = Sy + IS )T

(©)

14



Convergence analysis on a toy problem

Convergence analysis (0-D case)

lsn = z 4 iz o AR s 0o
a0 in Q, ZpV>t =0 in Q,
it i o on 03
@ AP 1V = 04D V" on T, (O APy, V" = (0P V! on T,

Using separation of variables methods, we get that

vir =N, Sin(éﬂy)(Ai’n(§)€i§(§)x+Bi’n(é)e_i§(5)x) where $(¢) = \/i-(&n)”

ceN

The boundary conditions implies: B'"(&) = —A""(&) and B>(&) = — 2SOA™" (&)

2.n—1

The TC implies:  A"(5) = pPPEOA™" (&)

1,n—1

Rl pDE A )
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Convergence analysis on a toy problem

Convergence analysis (0-D case)

lsn = z 4 iz o AR s 0o
a0 in Q, ZpV>t =0 in Q,
it i o on 03
@ AP 1V = 04D V" on T, (04D V" = (04D, V™! on T,

Using separation of variables methods, we get that

vin = 3 N.sin(éry) (A“'(©es @+B(©)em ) where S(8) = RGP

ceN

The boundary conditions implies: B'"(&) = —A""(&) and B>(&) = — 2SOA™" (&)

2.n—1 1,n=-2

The TC implies:  A'"'(&) = pPPOA™" (&) ———> A7) = pPP(OPPPEA (&)

1,n—1

AY"(&) = pPPOA ") ——>  AP(©) = pPPEPPPEONT ()
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Convergence analysis on a toy problem

Convergence analysis (D-D case)

1, ! s 2 D 2 B s ] g
LV " =0 in—Q LV =0 i Q,
¥ =0 on 0Q Vo =0 om 0Q
@ AP 1V = 04D V" on T, (04D V" = (04D, V™! on T,

Using separation of variables methods, we get that

vin = 3 N.sin(éry) (A“'(©es @+B(©)em ) where S(8) = NP

ceN

The boundary conditions implies: B'"(&) = —A""(&) and B>(&) = — 2SOA™" (&)

The TC implies: Al’”(g)zpf)D(g)Az’”_l(f) Ly A :-Al’”_z(é)

Aiel ek o > MG -2’”‘2<§>

=pPD)
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Convergence analysis on a toy problem
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Convergence analysis on a toy problem
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Convergence analysis on a toy problem

Convergence analysis (0-PML case)

PMLyl,n : 15 71N : ‘N
C V=0 in Q, LNt =0 Qs
e i e on 08
@ AP 1V = 04D V" on T, (04D V" = (04D, V™! on T,

Using separation of variables methods, we get that

i 2 NAE.()) < A (£)eiSUox LB ( g)e—i&(ﬂé)x>

ceN

where (\115, /15) are the eigenfunctions and eigenvalues of

— 0¥, =A; ¥, yel0,1]

where 7 is the complex stretched coordinate.
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Convergence analysis on a toy problem

Convergence analysis (0-PML case)

PMLyl,n — : 15 71N : ‘N
C V=0 in Q, LNt =0 Qs
vl = () on aa V21 = () on a?i
@ AP 1V = 04D V" on T, (04D V" = (04D, V™! on T,

Using separation of variables methods, we get that

i 2 NAE.()) < A (£)eiSUox LB ( g)e—ié’(/lg)x)

ceN

where (\115, /15) are the eigenfunctions and eigenvalues of

— 0¥, =A; ¥, yel0,1]

where 7 is the complex stretched coordinate.

Rewmark: Ifis not clear that the eigenfunctions (\P‘f) form a basis of L>([0,1])!
5
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Convergence analysis on a toy problem

Convergence analysis (0-PML case)

PMIyln : 1 7 : N
- c8ram mdieatl in Q, LNt =0 in Q,
e i o on 08
@ AP 1V = 04D V" on T, (04D V" = (04D, V™! on T,

Using separation of variables methods, we get that

i 2 NAE.()) ( Ai,n( £)eiS s LB ( g)e—ié’(/lé)x) .

ceN

Similar calculations as before show that

AB= PR (D
At R AT
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Convergence analysis on a toy problem

Convergence analysis (D-PML case)

PMIyln : = 7 . N
L Vi =4 in Q, LNt =0 i Q,
e i e on 08
@ AP 1V = 04D V" on T, (04D V" = (04D, V™! on T,

Using separation of variables methods, we get that

Vi’n i 2 Né\{,é(y)<Ai,n(5)eio§(/15)x+Bi,n(f)e—iS(ﬂQx) ;

ceN

Similar calculations as before show that

A =P oR O ——> A7 =[O
A = proh o ——> A0 -

S

18



Convergence analysis on a toy problem

Convergence analysis (0-PML case)
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Convergence analysis on a toy problem

Convergence analysis (0-PML case)

Q,
on 0Q
om I,

in
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(0,+ Dy V2" = (04D, PVt

gZMva,n

in Q,
on 0Q
I 12
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= iw)

AT

=010

lllustration on an example (Wave Ray: —Au+ia- Vu

S any 171,2
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Convergence analysis on a toy problem

Comparison of the four situations (Wave Ray: —Au+ia- Vu =0, @ = 3, opy;; = 10)
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Convergence analysis on a toy problem

Comparison of the four situations (Wave Ray: —Au+ia- Vu =0, @ = 5, opy; = 50)
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Convergence analysis on a toy problem

Comparison of the four situations (Wave Ray: —Au+ia- Vu =0, @ = 5, opy; = 50)
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Convergence analysis on a toy problem

Comparison of the four situations (Wave Ray: —Au+ia- Vu =0, @ = 50, op,; = 10)

EomsutiCin

|pDPML(5) |
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Convergence analysis on a toy problem

Comparison of the four situations (Wave Ray: —Au+ia- Vu =0, @ = 50, op; = 10)
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Convergence analysis on a toy problem

Comparison of the four situations (Wave Ray: —Au+ia- Vu =0, @ = 50, op; = 10)

EomsutiCin

by p=miral

Sawe convergence factor

7 dow.M \bi’r # solution !

@ 0.8 -
=
S
X
% subdomains o
« Sawe solution »
« but # convergence factor

24



In the next...

l. Motivation

2. Llink with Helmholtz equation

3. Convergence analysis on a toy problem
4. Analternated iterative algorithm

5. Cownclusion

25



Step 1

e {1,2}

An alternated iterative algorithm

gCHui,lfH-l/Z o= fi i“ Qi
ui,n+1/2 e O on ag Ql

D = (0 p V" ol Iia

26




Step 1

Step 2

FE T T He 1A B]

e {1,2}

An alternated iterative algorithm

ez = oh 0Q
D = (0 p V" ol Iia

Glo aE ‘@12—>Glo((ul n+1/2))

U = Glo|£2

26




Step 1

Step 2

e {12}, je {A, B}

Step 3

T2

J € {A, B}

An alternated iterative algorithm

2
gCHUl n = fi

ui,n+ g 0

(ddp W =0 4p D"

UL = P g(@9))

Jn — i
U uGlolﬂj

AL o
Z gV =

uj,n+1/2 =)

(a +p]]+1)U JE1n

in
on
on

in
on
on

26
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e {1,2}

Step 1

Step 2

FE T T He 1A B]

Step 3
e {AB}

Step 4

i€ {12}, j€{A,B}

An alternated iterative algorithm

ui,n+1/2 =0 on oQ
D = (0 p V" ol Iia

Glo D tg512_>(;10(((,z n+1/2))

U] e ur(l?lo |£2j
3CHUj’n+1/2 = fj i“ Qj
pintl2 — on 0Q

(0 _|_p”+ )u] 725 F ARSI = (0 +p]]+1)U jtl.n on F'jil

Vet = Pap (@ 12))

in+l — gn
U uGlo |Ql-
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An alternated iterative algorithm

lllustration of the algorithm (Wave Ray: —Au+ia- Vu =6, @ = 5) D

Step 1

27



An alternated iterative algorithm

lllustration of the algorithm (Wave Ray: —Au+ia- Vu =6, @ = 5) D
|

Step 1
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An alternated iterative algorithm

lllustration of the algorithm (Wave Ray; —Au+ia- Vu =6, @ = 5)
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An alternate iterative algorithm

Convergence in the four situations (Wave Ray: —Au+ia- Vu =0, @ = 5, opy,; = 10)
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An alternated iterative algorithm

Some ideas on the convergence analysis of the alternated algorithm:

Ai’n(fk)
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An alternated iterative algorithm

Some ideas on the convergence analysis of the alternated algorithm:
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Let us denote by |7, 4 ., the coefficients that maps A~ (&) to K
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An alternated iterative algorithm

lllustration of the matrix &, _ ,, (Wave Ray: —Au+ia- Vu = 0)
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An alternated iterative algorithm

lllustration of the matrix &,  ,, (Wave Ray: —Au+ia- Vu = 0)
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An alternated iterative algorithm

lllustration of the matrix &,  ,, (Wave Ray: —Au+ia- Vu = 0)

@ =5 =50 @ = 150

Interpretation: vin(&) = Sin(fny)<Ai’n(cf)ei§ x4 B (£)e~iS @‘)x) where $(&) = \/ i—(En)’.

High oscillation Slow oscillation
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An alternated iterative algorithm

lllustration of the matrix &, _ ,, (Wave Ray: —Au+ia- Vu = 0)

@ = 150
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In the next...

l. Motivation

2. Llink with Helmholtz equation

3. Convergence analysis on a toy problem
4. Analternated iterative algorithm

5. Cownclusion
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Using PML has a strong impact on the convergence of classical iterative algorithm.
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Also, the PML
coefficients must be
chosen carefully !

Conclusion
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Conclusion

Using PML has a strong impact on the convergence of classical iterative algorithm.
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Conclusion

Using PML has a strong impact on the convergence of classical iterative algorithm.
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Questions ?

Using PML has a strong impact on the convergence of classical iterative algorithm.

%k improve the convergence factor in every case D D

sk and have a different behaviour depending
on the PML BCs,
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