Introduction
 Model
 Analysis
 Results
 Q?

 0000000
 00000000
 0000
 0000
 0000

Host mixtures for plant disease control: Benefits from pathogen selection and immune priming

Pauline Clin

Joint work with Frédéric Hamelin, Frédéric Grognard, Ludovic Mailleret, and Didier Andrivon.

> Congrès d'analyse numérique 2022 Evian-les-bains 14 - 06 - 2022

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
French cor	itext			

- Pesticide use impacts public health and biodiversity
- Target: halve pesticide use by 2025
- Constraints:
 - Plant breeding for new disease resistance genes
 - Breakdown and durability of resistance

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
French cor	ntext			

- Pesticide use impacts public health and biodiversity
- Target: halve pesticide use by 2025
- Constraints:
 - Plant breeding for new disease resistance genes
 - Breakdown and durability of resistance

Wanted New agro-ecological methods

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
The issue with	monocultures			

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
The issue with	monocultures			

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
The issue with	monocultures			

Hast mixtures	for plant discose	control		
000000	000000000	0000	0000	0
Introduction	Model	Analysis	Results	Q?

Host mixtures for plant disease control

Cultivar mixture

Multiline

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
Gene-for-gene	interactions			

A large part of plant-pathogen interactions are gene-for-gene:

+ : infection succeeds / - : infection fails

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
The Yunnan	province expe	erimentation	(2000)	

In mixtures, the prevalence of Rice blast was reduced from 20% to 1% on susceptible varieties compared to susceptible monocultures (dilution effect)

On resistant varieties compared to resistant monocultures, the prevalence decreased from 2% to 1%. Why is that?

1		· · · · · · · · · · · · · · · · · · ·		
0000000	000000000	0000	0000	0
Introduction	Model	Analysis	Results	Q?

Case of infection success

1		• •		
0000000	000000000	0000	0000	0
Introduction	Model	Analysis	Results	Q?

Case of infection success

1		· · · · · · · · · · · · · · · · · · ·		
0000000	000000000	0000	0000	0
Introduction	Model	Analysis	Results	Q?

Case of infection failure (avirulent pathogen/resistant plant)

1		• •		
0000000	000000000	0000	0000	0
Introduction	Model	Analysis	Results	Q?

Case of infection failure \rightarrow Hypersensitive response

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
Immune p	riming			

Case of infection failure \rightarrow Systemic acquired resistance

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
Updated intera	action matrix			

Taking into account plant immune response:

 \pm : infection may not succeed

Introduction	Model	Analysis	Results	Q?
000000	•00000000	0000	0000	0

Mixing n resistant varieties

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
Mixture with η	<i>i</i> resistant	varieties		

- Variety: a plant genotype with a single resistance gene
- For n = 2 varieties or loci:

	Pathogen genotypes			
Host genotypes	10	01	11	
10	+	Priming	+	
01	Priming	+	+	

Introduction	Model	Analysis	Results	Q?
0000000	00000000	0000	0000	0
Mixture wit	h n resistant va	rieties		

- Variety: a plant genotype with a single resistance gene
- For n = 2 varieties or loci:

	Pathogen genotypes			
Host genotypes	10	01	11	
10	+	Priming	+	
01	Priming	+	+	

• For n = 3 host varieties or loci:

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
Mixture wit	h n resistant va	rieties		

- Variety: a plant genotype with a single resistance gene
- For n = 2 varieties or loci:

	Pathogen genotypes			
Host genotypes	10	01	11	
10	+	Priming	+	
01	Priming	+	+	

• For n = 3 host varieties or loci:

Genotypes	Pathogen						
Host	100	010	001	110	101	011	111
100	+	Priming	Priming	+	+	Priming	+
010	Priming	+	Priming	+	Priming	+	+
001	Priming	Priming	+	Priming	+	+	+

1. Is there **a number of varieties** to use in a mixture **to get rid of** the disease?

2. How much does **priming** improve the mixture efficiency?

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
Model with	n=2 host ger	otypes		

- Each host genotype has a single resistance gene.
- Virulence complexity k: the number of resistant genes that a pathogen genotype is able to overcome.

Gene-for-gene interaction matrix (two loci)

	Pathogen genotypes		
Host genotypes	10	01	11
10	+	Priming	+
01	Priming	+	+
Virulence complexity k	1	1	2

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
Model with	n=2 host ger	notypes		

- Each host genotype has a single resistance gene.
- Virulence complexity k: the number of resistant genes that a pathogen genotype is able to overcome.

Gene-for-gene	interaction	matrix	(two l	oci)
---------------	-------------	--------	--------	------

	Pathogen genotypes			
Host genotypes	10	01	11	
10	J_1	S_1^*	G_1	
01	S_2^*	J_2	G_2	
Virulence complexity k	1	1	2	

Based on the previous interaction matrix, for a given resistant host:

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
Epidemic mod	lel			

Based on the previous interaction matrix, for a given resistant host:

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
Epidemic mod	lel			

Based on the previous interaction matrix, for a given resistant host:

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
3 important	parameters			

Basic reproductive number of the pathogen 1 < R = eta N/lpha < 500

Average number of hosts that an infected host can infect (can take huge values in plant diseases).

Frantzen, 2007 Mikaberidze & Mundt, 2016

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
3 important	parameters			

Basic reproductive number of the pathogen $1 < R = \beta N/lpha < 500$

Average number of hosts that an infected host can infect (can take huge values in plant diseases).

Frantzen, 2007 Mikaberidze & Mundt, 2016

Virulence cost 0 < c < 1

Decreases the fitness of the pathogen genotype bearing virulent gene.

Xanthamonas axonopodis (Wichmann and Bergelson, 2004)

Meloidogyne incognita (Castagnone-Serenoet al, 2007)

Potato virus Y (Janzac et al, 2010)

Phytophtora infestans (Montarry et al, 2010)

Leptosphaeria maculans (Bousset et al, 2018)

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
3 important	t parameters			

Basic reproductive number of the pathogen $1 < R = \beta N/lpha < 500$

Average number of hosts that an infected host can infect (can take huge values in plant diseases).

Frantzen, 2007 Mikaberidze & Mundt, 2016

Virulence cost 0 < c < 1

Decreases the fitness of the pathogen genotype bearing virulent gene.

Xanthamonas axonopodis (Wichmann and Bergelson, 2004)

Meloidogyne incognita (Castagnone-Serenoet al, 2007)

Potato virus Y (Janzac et al, 2010)

Phytophtora infestans (Montarry et al, 2010)

Leptosphaeria maculans (Bousset et al, 2018)

Priming efficiency $0 < \rho < 1$

Reduces the infection success of the virulent pathogen genotype on primed resistant plants.

Tobacco mosaic virus (Ross, 1961) Full priming efficiency (Kuc, 1982) *A. thaliana* (Maleck et al., 2000)

Model for m -	2 host rong	typoc		
0000000	0000000000	0000	0000	0
Introduction	Model	Analysis	Results	Q?

System in dimensions $n(1+2^{n-1}) = 6$:

o

$$\begin{split} \dot{S}_1^* &= (1-c)\beta J_2 S_1 - (1-\rho)\beta S_1^* \left((1-c)J_1 + (1-c)^2 (G_1+G_2) \right) - (\gamma+\alpha)S_1^* , \\ \dot{S}_2^* &= (1-c)\beta J_1 S_2 - (1-\rho)\beta S_2^* \left((1-c)J_2 + (1-c)^2 (G_1+G_2) \right) - (\gamma+\alpha)S_2^* , \\ \dot{J}_1 &= (1-c)\beta J_1 \left(S_1 + (1-\rho)S_1^* \right) - \alpha J_1 , \\ \dot{J}_2 &= (1-c)\beta J_2 \left(S_2 + (1-\rho)S_2^* \right) - \alpha J_2 , \\ \dot{G}_1 &= (1-c)^2 \beta (G_1+G_2) \left(S_1 + (1-\rho)S_1^* \right) - \alpha G_1 , \\ \dot{G}_2 &= (1-c)^2 \beta (G_1+G_2) \left(S_2 + (1-\rho)S_2^* \right) - \alpha G_2 . \end{split}$$

Multiplicative fitness cost $\rightarrow (1-c)^k$ where k is the virulence complexity

Introduction	Model	Analysis	Results	Q?
0000000	0000000000	0000	0000	0
Model for $n =$	3 host genotype	S		

For $\boldsymbol{3}$ host genotypes:

Gene-for-gene interaction matrix (3 loci)

Genotypes			F	Pathogen			
Host	100	010	001	110	101	011	111
100	+	Priming	Priming	+	+	Priming	+
010	Priming	+	Priming	+	Priming	+	+
001	Priming	Priming	+	Priming	+	+	+
Virulence	1	1	1	2	2	2	3
complexity k	1	T	T	2	2	2	J

Introduction 0000000	Model 00000000●0	Analysis 0000	Results 0000	Q? O					
Model for 3 h	Model for 3 host genotypes								
System in dim	ensions $n(1+2^{n-1}) =$	15 :							
	$\begin{split} S_1^{*'} &= (1-c)\beta(l_2+l_3)S_{r1} + (1-c)^2\beta(l_1)\\ &-(1-\rho)(1-c)^2\beta(l_1,2+l_{2,1})S_1^* \\ &-(1-\rho)(1-c)^3\beta(G_1+G_2+G_3)\\ S_2^{*'} &= (1-c)\beta(l_1+l_3)S_{r2} + (1-c)^2\beta(l_1)\\ &-(1-\rho)(1-c)^2\beta(l_1,2+l_{2,1})S_2^* \\ &-(1-\rho)(1-c)^2\beta(G_1+G_2+G_3)\\ S_3^{*'} &= (1-c)\beta(l_1+l_2)S_{r3} + (1-c)^2\beta(l_1)\\ &-(1-\rho)(1-c)^2\beta(I_1,3+J_{3,1})S_3^* \\ &-(1-\rho)(1-c)^2\beta(G_1+G_2+G_3)\\ l_1' &= (1-c)\beta l_2S_{r2} + (1-\rho)(1-c)\beta l_1\\ l_2' &= (1-c)\beta l_2S_{r3} + (1-\rho)(1-c)\beta l_3\\ l_1' &= (1-c)\beta l_2S_{r3} + (1-\rho)(1-c)\beta l_3\\ l_1' &= (1-c)\beta l_2S_{r3} + (1-\rho)(1-c)\beta l_3\\ l_1' &= (1-c)^2\beta(l_{1,2}+l_{2,1})S_{r4} + (1-\rho)\\ l_2' &= (1-c)^2\beta(l_{1,2}+l_{2,1})S_{r4} + (1-\rho)\\ l_{1,3}' &= (1-c)^2\beta(l_{1,2}+l_{2,1})S_{r2} + (1-\rho)\\ l_{2,1}' &= (1-c)^2\beta(l_{1,2}+l_{2,1})S_{r2} + (1-\rho)\\ l_{2,1}' &= (1-c)^2\beta(l_{1,2}+l_{2,1})S_{r3} + (1-\rho)\\ l_{3,1}' &= (1-c)^2\beta(l_{3,2}+l_{3,2})S_{r2} + (1-\rho)\\ l_{3,2}' &= (1-c)^2\beta(l_3+l_{2,2}+l_{2,3})S_{r4} + (1-\rho)\\ l_3' &= (1-c)^2\beta(l_3+l_{2,2}+l_{2,3})S_{r4} + (1-\rho)\\ l_2' &= (1-c)^2\beta(l_3+l_{2,2}+l_{2,3})S_{r4} + (1-\rho)\\ l_3' &= (1-c)^2\beta(l_3+l_{2,2}+$	$\begin{split} & \lambda_{2,3} + j_{3,2} j_{5'1} - (1-\rho)(1-c)\beta l_1 S_1^* \\ & -(1-\rho)(1-c)^2 \beta (j_{1,3}+j_{3,1}) S_1^* \\ & + j_{3,1} j_{5'2} - (1-\rho)(1-c)\beta l_2 S_2^* \\ & -(1-\rho)(1-c)^2 \beta (j_{2,3}+j_{3,2}) S_2^* \\ & j_{5'2}^* - (\gamma+\alpha) S_2^* \\ & , j_{5'2}^* - (\gamma+\alpha) S_2^* \\ & , j_{5'2}^* - (\gamma+\alpha) S_2^* \\ & , j_{5'2}^* - (\gamma+\alpha) S_3^* \\ & , j_{5'2}^* - (\gamma+\alpha) S_3^* \\ & , j_{5'}^* - (\gamma+\alpha) S_3$							

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
Model for	or an arbitrary	number n of	varieties	

Assumptions:

- All resistant plant genotypes present in the same proportion: 1/n
- All pathogen diversity initially present: $2^n 1$ genotypes
- Symmetry assumptions: same virulence cost c and reproductive number R for each pathogen genotypes
- All pathogen genotypes have the same initial prevalence

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
Model for	an arbitrary	number n of varie	eties	

Assumptions:

- All resistant plant genotypes present in the same proportion: 1/n
- All pathogen diversity initially present: $2^n 1$ genotypes
- Symmetry assumptions: same virulence cost c and reproductive number R for each pathogen genotypes
- All pathogen genotypes have the same initial prevalence

The system is in dimension n+1 for a focal host genotype: for $k=1,\ldots,n,$

$$\begin{aligned} m' &= XP - (1-\rho)mF - \nu m, \\ x'_k &= f_k \left(X + (1-\rho)m \right) - x_k \,, \end{aligned}$$

where

 \boldsymbol{m} : density of primed hosts for the focal host genotype,

 x_k : density of hosts of the focal host genotype infected by a single pathogen genotype with virulence complexity k.

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
At most one c	omplexity p	persists at ec	quilibrium	

$$x'_{k} = x_{k} \left(\phi_{k} \left(\frac{1}{n} - \rho m - \sum_{i=1}^{n} \binom{n-1}{i-1} x_{i} \right) - 1 \right)$$

ightarrow either $x_k=0$ or $(\cdots)=0$ at equilibrium,

	ممر ممسمه المرسم	waista at anui	: :	
0000000	000000000	0000	0000	0
Introduction	Model	Analysis	Results	Q?

At most one complexity persists at equilibrium

$$x'_{k} = x_{k} \left(\phi_{k} \left(\frac{1}{n} - \rho m - \sum_{i=1}^{n} \binom{n-1}{i-1} x_{i} \right) - 1 \right)$$

 \rightarrow either $x_k=0$ or $(\cdots)=0$ at equilibrium, but no two (\cdots) can be equal to 0 simultaneously.

Introduction	Model	Analysis	Results	Q?
0000000	000000000	●000	0000	0
At most o	one complexity pe	rsists at equ	ilibrium	

$$x'_{k} = x_{k} \left(\phi_{k} \left(\frac{1}{n} - \rho m - \sum_{i=1}^{n} \binom{n-1}{i-1} x_{i} \right) - 1 \right)$$

 \rightarrow either $x_k=0$ or $(\cdots)=0$ at equilibrium, but no two (\cdots) can be equal to 0 simultaneously.

Three types of equilibria:

- (0,0,0,0) : **Disease-free** equilibrium
- $(\hat{m}, 0, ..., 0, \hat{x}_k, 0, ..., 0)$: n 1 equilibria
- $(0,..,0,\hat{x}_n)$: Generalist only equilibrium

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
At most or	ne complexity pe	ersists at equi	ilibrium	

$$x'_{k} = x_{k} \left(\phi_{k} \left(\frac{1}{n} - \rho m - \sum_{i=1}^{n} \binom{n-1}{i-1} x_{i} \right) - 1 \right)$$

 \rightarrow either $x_k=0$ or $(\cdots)=0$ at equilibrium, but no two (\cdots) can be equal to 0 simultaneously.

Three types of equilibria:

- (0,0,0,0) : **Disease-free** equilibrium
- $(\hat{m}, 0, .., 0, \hat{x}_k, 0, .., 0)$: n 1 equilibria
- $(0,..,0,\hat{x}_n)$: Generalist only equilibrium

Competitive exclusion principle

Introduction	Model	Analysis	Results G	2?
0000000	000000000	0000	0000 0	b
Stability of the	$e(0,\ldots,0,\bar{x}_k,0,$	$\ldots, 0, \bar{m}_k)$ ec	Juilibrium	

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
Stability of the	$e(0,\ldots,0,\bar{x}_k,0,$	$\ldots, 0, \bar{m}_k)$ eq	quilibrium	

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
Stability ($0,\ldots,0,\bar{x}_k,0,\ldots$	$(,0,ar{m}_k)$ equ	ilibrium	

The Jacobian matrix \tilde{J} has the following form

$$\tilde{J} = \begin{pmatrix} D_1 & 0\\ * & B \end{pmatrix}$$

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000		0
Stability (0.	$(1, 1, 0, \bar{x}_k, 0,, 0)$	$(0, \bar{m}_{k})$ equ	ilibrium	

The Jacobian matrix \tilde{J} has the following form

$$\tilde{J} = \begin{pmatrix} D_1 & 0\\ * & B \end{pmatrix}$$

e

The stability conditions are defined using the determinant and the trace of the sub-matrix B, and the eigenvalues of the matrix D which are its diagonal terms: for all i = 1, ..., n such that $i \neq k$,

$$\lambda_i = \frac{\phi_i}{\phi_k} - 1$$

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
Stability (0	$0 \bar{x}_{l} 0$	$(0, \bar{m}_{lk})$ equ	ilibrium	

The Jacobian matrix \tilde{J} has the following form

$$\tilde{J} = \begin{pmatrix} D_1 & 0\\ * & B \end{pmatrix}$$

The stability conditions are defined using the determinant and the trace of the sub-matrix B, and the eigenvalues of the matrix D which are its diagonal terms: for all i = 1, ..., n such that $i \neq k$,

$$\lambda_i = \frac{\phi_i}{\phi_k} - 1$$

The $(0, \ldots, 0, \bar{x}_k, 0, \ldots, 0, \bar{m})$ equilibrium is locally asymptotically stable if and only if $\phi_k > \phi_i$ for all $i = 1, \ldots, n$ such that $i \neq k$.

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0

At most one complexity persists at equilibrium

$$x'_{k} = x_{k} \left(\phi_{k} \left(\frac{1}{n} - \rho m - \sum_{i=1}^{n} \binom{n-1}{i-1} x_{i} \right) - 1 \right)$$

 \rightarrow either $x_k=0$ or $(\cdots)=0$ at equilibrium, but no two (\cdots) can be equal to 0 simultaneously.

Three types of equilibria:

- (0,0,0,0) : **Disease-free** equilibrium
- $(\hat{m}, 0, ..., 0, \hat{x}_k, 0, ..., 0)$: n 1 equilibria
- $(0,..,0,\hat{x}_n)$: Generalist only equilibrium

A single equilibrium is asymptotically stable, the one containing \hat{x}_k that maximizes $\phi_k = R(1-c)^k k$.

Competitive exclusion principle

 Introduction
 Model
 Analysis
 Results
 Q7

 0000000
 000000000
 0000
 0000
 0

One virulence complexity maximizes the pathogen fitness

There is a virulence complexity k^* that maximizes the fitness: $\phi_k = R(1-c)^k k$

 Introduction
 Model
 Analysis
 Results
 Q7

 0000000
 000000000
 0000
 0000
 0

One virulence complexity maximizes the pathogen fitness

There is a virulence complexity k^* that maximizes the fitness: $\phi_k = R(1-c)^k k$

 Introduction
 Model
 Analysis
 Results
 Q?

 0000000
 00000000
 0000
 0
 0
 0

Threshold number of varieties to get rid of the disease

Prevalence of the disease, $P = \binom{n}{k} k x_k$.

Threshold number of varieties

$$n_c = \frac{R}{-\log(1-c)e}$$

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
Take-Home	Messages			

o

• Threshold number of host genotypes to get rid of the disease

Introduction	Model	Analysis	Results	Q?
000000	000000000	0000	0000	0
Take-Home	Messages			

- Threshold number of host genotypes to get rid of the disease
- Priming reduces the number of varieties to be used

Introduction	Model	Analysis	Results	Q?
0000000	000000000	0000	0000	0
Take-Home	Messages			

- Threshold number of host genotypes to get rid of the disease
- Priming reduces the number of varieties to be used
- Even for a small number of varieties, priming strongly reduces the disease prevalence

Thank you for you attention! Questions ?

Clin, P., Grognard, F., Andrivon, D., Mailleret, L. & Hamelin, F. M. (2022). Host mixtures for plant disease control: benefits from pathogen selection and immune priming. Accepted in Evolutionary Applications.

https://share.streamlit.io/paulineclin/multiresistance_priming_ model/main/app.py

Binomial coefficients

- $\binom{n-1}{k-1}$: The number of pathogen genotypes of virulence complexity k capable of infecting the focal genotype. This is because a pathogen genotype of complexity k that infects the focal host genotype can also infect k-1 host genotypes among the n-1 non-focal host genotypes \rightarrow **Infection**
- (ⁿ⁻¹): The number of pathogen genotypes of complexity k and able to prime the focal host genotype (n − 1 since we disregard pathogen genotypes capable of infecting the focal host genotype) → Priming
- $\binom{n}{k}$: The number of pathogen genotypes of complexity k having infected the focal host genotype \rightarrow **Prevalence**

Existence of equilibria

If
$$x_k>0$$
 for $k\in\{1,\cdots,n\},$ there is $x_k'=0$ if
$$X+(1-\rho)m=\frac{1}{\phi_k}\,.$$

Theorem: There can be at most one complexity that persists at equilibrium.

Proof (by contradiction): Assume there exists an equilibirum such that at least 2 complexities, j, k = 1, ..., n, can persist. That means:

 $X_j > 0$ and $X_k > 0$.

 $X_j > 0$ implies $X + (1 - \rho)m = 1/\phi_j$, $X_k > 0$ implies $X + (1 - \rho)m = 1/\phi_k$,

This is impossible unless $\phi_j = \phi_k$, which is a non-generic case (biologically irrelevant).

Therefore, the model is simplified as

$$m' = X \binom{n-1}{k} \phi_k x_k - (1-\rho)m \binom{n-1}{k-1} \phi_k x_k - \nu m,$$

$$x'_k = x_k (\phi_k (X + (1-\rho)m) - 1).$$

Convergence of virulence complexity

Stability Disease-free equilibrium $(0, \ldots, 0)$

The Jacobian matrix of size $(n+1) \times (n+1)$ is

$$J = \begin{pmatrix} \frac{\phi_1}{n} - 1 & 0 & \dots & \dots & 0\\ 0 & \ddots & \ddots & \ddots & \ddots\\ \vdots & \ddots & \ddots & \ddots & \vdots\\ 0 & \dots & 0 & \frac{\phi_n}{n} - 1 & 0\\ \frac{\binom{n-1}{1}\phi_1}{n} & \dots & \frac{\binom{n-1}{n-1}\phi_{n-1}}{n} & 0 & -\nu \end{pmatrix}$$

λ

Triangular matrix \rightarrow the eigenvalues are its **diagonal elements**: for all i = 1, ..., n, ϕ_i

$$\lambda_i = \frac{\phi_i}{n} - 1,$$

$$\mu_{n+1} = -\nu < 0.$$

The Disease-free equilibrium (0, ..., 0) is locally asymptotically stable if and only if the pathogen fitness $\phi_i < n$ for all i = 1, ..., n.

Stability of the $(0, \ldots, 0, \bar{x}_n, 0)$ equilibrium

The jacobian matrix is

$$J = \begin{pmatrix} \frac{\phi_1}{\phi_n} - 1 & 0 & \dots & \dots & 0 & 0 & 0 \\ 0 & \ddots & \ddots & & \vdots & & \vdots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & & \vdots & & \vdots & & \vdots \\ \vdots & & \ddots & \ddots & 0 & & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \frac{\phi_{n-1}}{\phi_n} - 1 & 0 & 0 & 0 \\ \hline - \binom{n-1}{0} \phi_n x_n & \dots & \dots & -\binom{n-1}{2} \phi_n x_n & \phi_n (\frac{1}{n} - 2x_n) - 1 & -\phi_n x_n \rho \\ \binom{n-1}{1} \frac{\phi_1}{\phi_n} & \dots & \dots & \binom{n-1}{p_n} \frac{\phi_n}{\phi_n} & 0 & -(1-\rho) \phi_n x_n - \nu \end{pmatrix}$$

and has the following form

$$J = \begin{pmatrix} D_2 & 0\\ * & T \end{pmatrix}$$

J is a block triangular matrix, and its eigenvalues are the eigenvalues of D_2 and $T,\, {\rm i.e.}\,$ the diagonal terms.

Stability of the $(0, \ldots, 0, \bar{x}_n, 0)$ equilibrium

Therefore, the eigenvalues are: for all $i = 1, \ldots, n-1$,

$$\lambda_i = \frac{\phi_i}{\phi_n} - 1,$$

$$\lambda_n = \phi_n \left(\frac{1}{n} - 2x_n\right) - 1,$$

$$\lambda_{n+1} = -(1-\rho)\phi_n x_n - \nu < 0.$$

The $(0, ..., 0, \bar{x}_n, 0)$ equilibrium is locally asymptotically stable if and only if $\phi_n > \phi_i$ for all i = 1, ..., n - 1.

Cooperative systems

Hal Smith, 2008 ; Hirsch, 1989

Conditions

- Positive interactions between variables,
- Irreducible jacobian matrix.

2 levels of immunity (Jones and Dangl, 2006; Milgroom, 2015)

PAMPs = Pathogen molecules, **PTI** = PAMP triggered immunity, **ETI** = Effector triggered immunity

2 levels of immunity (Jones and Dangl, 2006; Milgroom, 2015)

PAMPs = Pathogen molecules, **PTI** = PAMP triggered immunity, **ETI** = Effector triggered immunity

2 levels of immunity (Jones and Dangl, 2006; Milgroom, 2015)

2 levels of immunity (Jones and Dangl, 2006; Milgroom, 2015)

PAMPs = Pathogen molecules, **PTI** = PAMP triggered immunity, **ETI** = Effector triggered immunity

2 levels of immunity (Jones and Dangl, 2006; Milgroom, 2015)

PAMPs = Pathogen molecules, **PTI** = PAMP triggered immunity, **ETI** = Effector triggered immunity