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French context

e Pesticide use impacts public health and biodiversity
e Target: halve pesticide use by 2025
e Constraints:

e Plant breeding for new disease resistance genes
e Breakdown and durability of resistance
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French context

e Pesticide use impacts public health and biodiversity
e Target: halve pesticide use by 2025
e Constraints:

e Plant breeding for new disease resistance genes
e Breakdown and durability of resistance
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The issue with monocultures
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Gene-for-gene interactions

A large part of plant-pathogen interactions are gene-for-gene:

Gene-for-gene interaction matrix J
Pathogen | Avirulent Virulent
Host
Susceptible + +
Resistant - +

+ : infection succeeds / — : infection fails
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The Yunnan province experimentation (2000)

In mixtures, the prevalence of Rice blast was reduced from 20% to 1% on
susceptible varieties compared to susceptible monocultures (dilution effect)
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On resistant varieties compared to resistant monocultures, the prevalence
decreased from 2% to 1%. Why is that?
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Immune response to gene-for-gene interactions

Case of infection success
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Immune response to gene-for-gene interactions

Case of infection failure (avirulent pathogen/resistant plant)
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Immune response to gene-for-gene interactions

Case of infection failure — Hypersensitive response
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Immune priming

Case of infection failure — Systemic acquired resistance

7/27



Introduction Model Analysis Results Q?
000000e 0000000000 0000 0000 o]

Updated interaction matrix

Taking into account plant immune response:

Gene-for-gene interaction matrix |
Pathogen Avirulent Virulent
Host
Susceptible + +
Resistant - but priming +
Primed resistant - +

=+ : infection may not succeed
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Mixture with n resistant varieties

e Variety: a plant genotype with a single resistance gene

e For n = 2 varieties or loci:

Pathogen genotypes
Host genotypes 10 01 11
10 + Priming +
01 Priming + +
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e Variety: a plant genotype with a single resistance gene
e For n = 2 varieties or loci:

Host genotypes

Pathogen genotypes
10 01 11

10

+ Priming +

01 Priming + +

e For n = 3 host varieties or loci:

Genotypes

Pathogen
Host 100 010 001 110 101 011 111
100 + Priming Priming + + Priming +
010 Priming + Priming + Priming + +
001 Priming  Priming + Priming + + +
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Questions

1. Is there a number of varieties to use in a
mixture to get rid of the disease?

2. How much does priming improve the mixture
efficiency?
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Model with n = 2 host genotypes

e Each host genotype has a single resistance gene.

e Virulence complexity k: the number of resistant genes that a
pathogen genotype is able to overcome.

Gene-for-gene interaction matrix (two loci) J

Pathogen genotypes

Host genotypes 10 01 11
10 + Priming +
01 Priming + +

Virulence complexity k 1 1 2
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Model with n = 2 host genotypes

e Each host genotype has a single resistance gene.
e Virulence complexity k: the number of resistant genes that a

Analysis
0000

pathogen genotype is able to overcome.

0000

Gene-for-gene interaction matrix (two loci)

Pathogen genotypes

Host genotypes 10 01 11

10 J1 ST G4

01 S3 J2 G2

Virulence complexity k 1 1 2
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Epidemic model

Based on the previous interaction matrix, for a given resistant host:
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3 important parameters

Basic reproductive number of the pathogen 1 < R = BN/a < 500

Average number of hosts that an infected host can infect (can take huge val

in plant di ).

Frantzen, 2007
Mikaberidze & Mundt, 2016
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3 important parameters

Basic reproductive number of the pathogen 1 < R = BN/a < 500

in plant di ).

Average number of hosts that an infected host can infect (can take huge

Frantzen, 2007
Mikaberidze & Mundt, 201GJ

Virulence cost 0 < ¢ < 1

Decreases the fitness of the pathogen genotype bearing virulent gene.

Xanthamonas axonopodis (Wichmann and Bergelson, 2004)
Meloidogyne incognita (Castagnone-Serenoet al, 2007)
Potato virus Y (Janzac et al, 2010)
Phytophtora infestans (Montarry et al, 2010)

Leptosphaeria maculans (Bousset et al, 2018)J
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3 important parameters

Basic reproductive number of the pathogen 1 < R = BN/a < 500

Average number of hosts that an infected host can infect (can take huge val

in plant di

Frantzen, 2007
Mikaberidze & Mundt, 2016J

)-

Virulence cost 0 < ¢ < 1

Decreases the fitness of the pathogen genotype bearing virulent gene.

Xanthamonas axonopodis (Wichmann and Bergelson,
Meloidogyne incognita (Castagnone-Serenoet al,
Potato virus Y (Janzac et al,

Phytophtora infestans (Montarry et al,

Leptosphaeria maculans (Bousset et al,

2004)
2007)
2010)
2010)
2018)
y

Priming efficiency 0 < p < 1

Reduces the infection success of the virulent pathogen genotype on primed resistant plants.

Tobacco mosaic virus (Ross,
Full priming efficiency (Kuc,
A. thaliana (Maleck et al.,

1961)
1982)

2000) )
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Model for n = 2 host genotypes

System in dimensions n(1 +2""1) =6 :

57
53
o
I
G
G2

(1= )BJ2S1 — (1= p)BST (1= ) J1 + (1 = )*(G1 + G2)) — (Y + @)S]
(1= )BJ1Sz — (1= p)8S; (1= )2 + (1 = ©*(G1 + G2)) — (v + @)S} ,
(1—0¢)BJ1 (S14+ (1 —p)S7) —ali,

(L—¢)BJ2 (S2+ (1 —p)S3) —alda,

(1—¢)?B(G1 4 G2) (S1+ (1 —p)S;) — aGy ,

(1—¢)2B(G1+ Ga) (S2+ (1 —p)S;) — aGa.

Multiplicative fitness cost — (1 — ¢)*

where k is the virulence complexity
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Model for n = 3 host genotypes

For 3 host genotypes:

Gene-for-gene interaction matrix (3 loci)

Genotypes Pathogen
Host 100 010 001 110 101 011 111
100 + Priming  Priming + + Priming +
010 Priming + Priming + Priming + +
001 Priming  Priming + Priming + + +
Virulence 1 1 1 s 2 9 3
complexity k
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Model for 3 host genotypes

System in dimensions n(1 +2""1) =15 :

55’

(1- B2 +5)Sr1 + (1= )*BU25+5.2)5r — (1 —p)(1 — B S}
—(1=-p)A~)’BUL2 +J21)5; — (1—p)(1 ~ ©)’BU13 +J31)S;
—(1—p)(1—€)*B(G1 + G2 + G3)S] — (Y +Q)S] .

(1= )1 +E5)Sr2 + (1= )*BU15+5.1)S2 — (1—p)(1 — C)BLLS;
—(1-p)(1—)?BUr2 +J21)5; — (1—p)(1~)?BU23 +J32)S]
—(1-p)1—)*B(G1 + G2 + G3)S; — (¥ + @IS},

(1—- 0B +1)Srs + (1= €)*BU1.2 +J22)Sr2 — (1= P)(1 = C)BI:S;
—(1—p)(1—€)?BU15+J51)55 — (1)1~ c)*BUz3 +J32)S5
—(1-p)(1—c)P*B(G1 + G2 + G3)S] — (v + @)S]
(1-0)BLSa+(1-p)(1-)BhS] —al1,
(1-0)BLS2+(1-p)(1-C)pLS; —alz,

(1-0)BLESs+(1—p)(1— c)BhS; —als,

(1-)’BU12 +J21)S + (1= p)(1—€)BU12+/21)5] — 12,

(1= )?BU13 +J31)Sa + (1= p)L—€PBU13+/31)S; — 13,

(1= )21z +J21)Sr2 + (1= p)(L—€PBU12+/21)S3 — Oz,

(1- )’ BU23 +J32)Sr2 + (1= p)(1 —€)*BU25+/32)S3 — af23,

(1= 0BU31+/13)S3 + (1= PI(1—C)BU31+/13)S5 — a1,

(1= C)?BU32 +J23)S3+ (1= p)L—€PB32+/23)5; — 32,
(1-¢)B(G1+ G2 + G3)Sr1 +(1—p)(1— c)*B(G1 + G2 + G3)S; —aGa,
(1—c)*B(G1+ G2+ G3)52+(1—p)(1—c)*B(G1+ G2 + G;)Sz'—usz,

(1-0)*B(GL+ Gz + G3)S,3 + (1= p)(1—0)*(G1 + G2+ G3)S; —aG3-
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Model for an arbitrary number n of varieties

Assumptions:

e All resistant plant genotypes present in the same proportion: 1/n

All pathogen diversity initially present: 2" — 1 genotypes

Symmetry assumptions: same virulence cost ¢ and reproductive
number R for each pathogen genotypes

All pathogen genotypes have the same initial prevalence
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Model for an arbitrary number n of varieties

Assumptions:
e All resistant plant genotypes present in the same proportion: 1/n
e All pathogen diversity initially present: 2™ — 1 genotypes

e Symmetry assumptions: same virulence cost ¢ and reproductive
number R for each pathogen genotypes

e All pathogen genotypes have the same initial prevalence

The system is in dimension n + 1 for a focal host genotype: for
k=1,...,n,

m' = XP—(1-pmF—vm,
a, = fe(X+ (1 —p)m) -y,
where
m . density of primed hosts for the focal host genotype,

xy, . density of hosts of the focal host genotype infected by a single
pathogen genotype with virulence complexity k.
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At most one complexity persists at equilibrium

— either z;; = 0 or (---) = 0 at equilibrium,
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— either z;, = 0 or (---) = 0 at equilibrium, but no two (---) can be
equal to 0 simultaneously.
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At most one complexity persists at equilibrium

— either z;, = 0 or (---) = 0 at equilibrium, but no two (---) can be
equal to 0 simultaneously.
Three types of equilibria:
e (0,0,0,0) : Disease-free equilibrium
e (m,0,..,0,%&,0,..,0) : n — 1 equilibria
e (0,..,0,%,) : Generalist only equilibrium
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Stability of the (0,...,0,Z,0,...,0,m) equilibrium
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Stability (0,...,0,Z,0,...,0,my) equilibrium

The Jacobian matrix J has the following form

/ (Dl 0)
J p—
* B
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Stability (0,...,0,Z,0,...,0,my) equilibrium

The Jacobian matrix J has the following form

J =5
* B

The stability conditions are defined using the determinant and the trace
of the sub-matrix B, and the eigenvalues of the matrix D which are its

diagonal terms: for all i = 1,...,n such that i # k,
N
bk
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Stability (0,...,0,Z,0,...,0,my) equilibrium

The Jacobian matrix J has the following form

J =5
* B

The stability conditions are defined using the determinant and the trace
of the sub-matrix B, and the eigenvalues of the matrix D which are its
diagonal terms: for all i = 1,...,n such that i # k,

N

b

The (0,...,0,Z,0,...,0,m) equilibrium is locally asymptotically stable
if and only if ¢, > ¢; for all 2 = 1,...,n such that ¢ # k.
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At most one complexity persists at equilibrium

ol 260

— either z;; = 0 or (---) = 0 at equilibrium, but no two (---) can be
equal to 0 simultaneously.

Three types of equilibria:
e (0,0,0,0) : Disease-free equilibrium
e (1,0,..,0,4,0,..,0) : m — 1 equilibria
e (0,..,0,Z,) : Generalist only equilibrium

A single equilibrium is asymptotically stable, the one containing 7y,
that maximizes ¢, = R(1 — c)*k.

Competitive exclusion principle
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One virulence complexity maximizes the pathogen fitness

There is a virulence complexity k* that maximizes the fitness:
oL = R(1 — c)*k

1 -==- k=3lines

Pathogen Fitness
w

L S —

6 9 12 15 18
Virulence complexity k
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One virulence complexity maximizes the pathogen fitness

There is a virulence complexity k* that maximizes the fitness:
oL = R(1 — c)*k

1 -==- k=3lines

1 — Fitness max

Pathogen Fitness
w S

N
L

6 9 12 15 18
Virulence complexity k

L S —
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Threshold number of varieties to get rid of the disease

Analysis
0000

Prevalence of the disease, P = (}) k.

1.0

Results
o] lele)

0.8

0.6

0.4

Disease prevalence

0.0

—o— p =0 (nopriming)

—o— p=1 (full priming)

p=0.5

1

Threshold number of varieties

Ne =

R

—log(l—c)e

2 3 4 5
Number of resistant host genotypes

6
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Priming effect on mixtures efficiency
Prevalence of the disease, P = (Z) kxy.
1.0

: —o— p =0 (no priming)
1
1

8 0.8 o —o— p =1 (full priming)
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Take-Home Messages

R=20,c=0.50,nu=1,k*=1
1.0

=== 10% threshold

Disease prevalence

0.0 T T T T Y T
2 4 6 8 10 12 14

Number of resistant host genotypes

e Threshold number of host genotypes to get rid of the disease
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Take-Home Messages

R=20,c=0.50,nu=1,k*=1
1.0

=== 10% threshold

Disease prevalence

0.0 T T T T Y T
2 4 6 8 10 12 14

Number of resistant host genotypes

e Threshold number of host genotypes to get rid of the disease
e Priming reduces the number of varieties to be used

e Even for a small number of varieties, priming strongly reduces the
disease prevalence
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Thank you for you attention!
Questions ?

Clin, P., Grognard, F., Andrivon, D., Mailleret, L. & Hamelin, F. M.
(2022). Host mixtures for plant disease control: benefits from
pathogen selection and immune priming. Accepted in Evolutionary
Applications.
https://share.streamlit.io/paulineclin/multiresistance_priming_

model/main/app.py
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Binomial coefficients

° (k 1) The number of pathogen genotypes of virulence complexity k
capable of infecting the focal genotype. This is because a pathogen
genotype of complexity k that infects the focal host genotype can
also infect &k — 1 host genotypes among the n — 1 non-focal host
genotypes — Infection

e (", 1) The number of pathogen genotypes of complexity k and able
to prime the focal host genotype (n — 1 since we disregard pathogen
genotypes capable of infecting the focal host genotype) — Priming

° (Z) The number of pathogen genotypes of complexity k having
infected the focal host genotype — Prevalence
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Existence of equilibria

If 2, >0 for k € {1,---,n}, thereis 2}, =0 if
1
X+(1-pm=—.
Pk
Theorem: There can be at most one complexity that persists at
equilibrium.

Proof (by contradiction): Assume there exists an equilibirum such that
at least 2 complexities, j,k = 1,..,n, can persist. That means:

X; >0and X > 0.
X, >0 implies X + (1 — p)m = 1/¢;,
Xi > 0 implies X + (1 — p)m = 1/¢y,
This is impossible unless ¢; = ¢z, which is a non-generic case

(biologically irrelevant).
Therefore, the model is simplified as

m = X(n;1)¢kxk—(l—p)m(z_i)qbkmk—um,
i, = zk(BR(X+(1—-pm)-1).

27 /27



Convergence of virulence complexity

A.

Infected density
o o o o o o o
S 8 8 8 5 & &

o
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o

Infected density
o o o o o o o
g 8 8 8 2 £ &
g 2 8 8 B & &

o
o
3

n=3R=20,c=049 p=08v=1 B.

00@00000

n=3,R=20,c=0.49,p=038,v=1

_x
X3
—m

time
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100

time
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200
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—x

time

50

100

time
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Stability Disease-free equilibrium (0, ..., 0)

The Jacobian matrix of size (n +1) x (n+1) is

&1 0 0
0
0o ... 0 1 0
n—1 n—1
(e Ges Ty,
Triangular matrix — the eigenvalues are its diagonal elements: for all
t1=1,..,n, &
>\7,' = = - 13
n
)\n+1 = —v<0.

The Disease-free equilibrium (0, ...,0) is locally asymptotically stable if
and only if the pathogen fitness ¢; < n for all 2 = 1,...,n.
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Stability of the (0, ...,0,Z,,0) equilibrium

The jacobian matrix is

O =1 0 0 0 0
0 -
J =
: 0 : :
0 00 ooa @ OBl 0 0
*("al)iﬁnﬂ”n P 7(2:;)@;90” ¢n(% —2zp) —1 —GnTnp
e L (fDpEe 0 —(1 = p)pnan —v

J is a block triangular matrix, and its eigenvalues are the eigenvalues of
Dy and T, i.e. the diagonal terms.
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Stability of the (0, ...,0,Z,,0) equilibrium

Therefore, the eigenvalues are: forallt=1,...,n—1,
Ao = ﬂ - ]-a
On
1
>\n = ¢n <__217n) —1,
n
Any1 = —(1—=p)pnpx, —v <0.

The (0,...,0,Z,,0) equilibrium is locally asymptotically stable if
and only if ¢,, > ¢p; forall: =1,...,n — 1.
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Cooperative systems
Hal Smith, 2008 ; Hirsch, 1989

Conditions
e Positive interactions between variables,

e Irreducible jacobian matrix.

]
Jacobian matrix

o | + *
o ¥ O
+ % o |

Only positive loops
—
The system converges towards an equilibrium which can only be
the coexistence equilibrium!
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Plant immune system
2 levels of immunity (Jones and Dangl, 2006; Milgroom, 2015)
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