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Introduction Model Analysis Results Q?

French context

• Pesticide use impacts public health and biodiversity

• Target: halve pesticide use by 2025

• Constraints:

• Plant breeding for new disease resistance genes
• Breakdown and durability of resistance

Wanted
New agro-ecological methods
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The issue with monocultures
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Host mixtures for plant disease control

Cultivar mixture Multiline
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Gene-for-gene interactions

A large part of plant-pathogen interactions are gene-for-gene:

Gene-for-gene interaction matrix

Host

Pathogen Avirulent Virulent

Susceptible + +

Resistant - +

+ : infection succeeds / − : infection fails
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The Yunnan province experimentation (2000)

In mixtures, the prevalence of Rice blast was reduced from 20% to 1% on
susceptible varieties compared to susceptible monocultures (dilution effect)

On resistant varieties compared to resistant monocultures, the prevalence
decreased from 2% to 1%. Why is that?
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Immune response to gene-for-gene interactions

Case of infection success
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Immune response to gene-for-gene interactions

Case of infection failure (avirulent pathogen/resistant plant)
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Immune response to gene-for-gene interactions

Case of infection failure → Hypersensitive response
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Immune priming

Case of infection failure → Systemic acquired resistance
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Updated interaction matrix

Taking into account plant immune response:

Gene-for-gene interaction matrix

Host

Pathogen Avirulent Virulent

Susceptible + +

Resistant - but priming +

Primed resistant - ±

± : infection may not succeed
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Mixing n resistant varieties
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Mixture with n resistant varieties

• Variety: a plant genotype with a single resistance gene

• For n = 2 varieties or loci:

Pathogen genotypes

Host genotypes 10 01 11

10 + Priming +

01 Priming + +

• For n = 3 host varieties or loci:

Genotypes Pathogen

Host 100 010 001 110 101 011 111

100 + Priming Priming + + Priming +

010 Priming + Priming + Priming + +

001 Priming Priming + Priming + + +
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Questions

1. Is there a number of varieties to use in a
mixture to get rid of the disease?

2. How much does priming improve the mixture
efficiency?
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Model with n = 2 host genotypes

• Each host genotype has a single resistance gene.

• Virulence complexity k: the number of resistant genes that a
pathogen genotype is able to overcome.

Gene-for-gene interaction matrix (two loci)

Pathogen genotypes

Host genotypes 10 01 11

10 + Priming +

01 Priming + +

Virulence complexity k 1 1 2
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Model with n = 2 host genotypes

• Each host genotype has a single resistance gene.

• Virulence complexity k: the number of resistant genes that a
pathogen genotype is able to overcome.

Gene-for-gene interaction matrix (two loci)

Pathogen genotypes

Host genotypes 10 01 11

10 J1 S∗
1 G1

01 S∗
2 J2 G2

Virulence complexity k 1 1 2
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Epidemic model

Based on the previous interaction matrix, for a given resistant host:

S1

S2

J1

J2

G1

G2
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3 important parameters

Basic reproductive number of the pathogen 1 < R = βN/α < 500

Average number of hosts that an infected host can infect (can take huge values in plant diseases).

Frantzen, 2007
Mikaberidze & Mundt, 2016

Virulence cost 0 < c < 1

Decreases the fitness of the pathogen genotype bearing virulent gene.

Xanthamonas axonopodis (Wichmann and Bergelson, 2004)
Meloidogyne incognita (Castagnone-Serenoet al, 2007)

Potato virus Y (Janzac et al, 2010)
Phytophtora infestans (Montarry et al, 2010)
Leptosphaeria maculans (Bousset et al, 2018)

Priming efficiency 0 < ρ < 1

Reduces the infection success of the virulent pathogen genotype on primed resistant plants.

Tobacco mosaic virus (Ross, 1961)
Full priming efficiency (Kuc, 1982)
A. thaliana (Maleck et al., 2000)
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Model for n = 2 host genotypes

System in dimensions n(1 + 2n−1) = 6 :

Ṡ
∗
1 = (1 − c)βJ2S1 − (1 − ρ)βS

∗
1

(
(1 − c)J1 + (1 − c)

2
(G1 + G2)

)
− (γ + α)S

∗
1 ,

Ṡ
∗
2 = (1 − c)βJ1S2 − (1 − ρ)βS

∗
2

(
(1 − c)J2 + (1 − c)

2
(G1 + G2)

)
− (γ + α)S

∗
2 ,

J̇1 = (1 − c)βJ1

(
S1 + (1 − ρ)S

∗
1

)
− αJ1 ,

J̇2 = (1 − c)βJ2

(
S2 + (1 − ρ)S

∗
2

)
− αJ2 ,

Ġ1 = (1 − c)
2
β(G1 + G2)

(
S1 + (1 − ρ)S

∗
1

)
− αG1 ,

Ġ2 = (1 − c)
2
β(G1 + G2)

(
S2 + (1 − ρ)S

∗
2

)
− αG2 .

Multiplicative fitness cost → (1− c)k

where k is the virulence complexity
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Model for n = 3 host genotypes

For 3 host genotypes:

Gene-for-gene interaction matrix (3 loci)

Genotypes Pathogen

Host 100 010 001 110 101 011 111

100 + Priming Priming + + Priming +

010 Priming + Priming + Priming + +

001 Priming Priming + Priming + + +

Virulence
1 1 1 2 2 2 3

complexity k
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Model for 3 host genotypes

System in dimensions n(1 + 2n−1) = 15 :
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Model for an arbitrary number n of varieties

Assumptions:

• All resistant plant genotypes present in the same proportion: 1/n

• All pathogen diversity initially present: 2n − 1 genotypes

• Symmetry assumptions: same virulence cost c and reproductive
number R for each pathogen genotypes

• All pathogen genotypes have the same initial prevalence

The system is in dimension n+ 1 for a focal host genotype: for
k = 1, . . . , n,

m′ = XP − (1− ρ)mF − νm,

x′
k = fk (X + (1− ρ)m)− xk ,

where

m : density of primed hosts for the focal host genotype,

xk : density of hosts of the focal host genotype infected by a single
pathogen genotype with virulence complexity k.
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At most one complexity persists at equilibrium

x′
k = xk

(
ϕk

(
1

n
− ρm−

n∑
i=1

(
n− 1

i− 1

)
xi

)
− 1

)
→ either xk = 0 or (· · · ) = 0 at equilibrium,

but no two (· · · ) can be
equal to 0 simultaneously.

Three types of equilibria:

• (0, 0, 0, 0) : Disease-free equilibrium

• (m̂, 0, .., 0, x̂k, 0, .., 0) : n − 1 equilibria

• (0, .., 0, x̂n) : Generalist only equilibrium

Competitive exclusion principle
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Stability of the (0, . . . , 0, x̄k, 0, . . . , 0, m̄k) equilibrium

J =



ϕ1
ϕk

− 1 0 . . . . . . . . . . . . . . . . . . 0

0
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . 0
ϕk−1
ϕk

− 1 0 . . . . . . . . . 0

−
(n−1

0

)
ϕkxk . . . . . . −

(n−1
k−2

)
ϕkxk −

(n−1
k−1

)
ϕkxk −

(n−1
k

)
ϕkxk . . . −

(n−1
n−1

)
ϕkxk −ϕkxkρ

0 . . . . . . . . . 0
ϕk+1
ϕk

− 1 0 . . . 0

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . . . . . . . . . . . . . 0 ϕn
ϕk

− 1 0

∗ ∗ ∗ ∗ Jn+1,k ∗ ∗ ∗ Jn+1,n+1



y

J̃ =



ϕ1
ϕk

− 1 0 . . . . . . . . . . . . . . . . . . . . . 0

0
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

ϕk−1
ϕk

− 1
. . .

.

.

.

.

.

.
. . . ϕn

ϕk
− 1

. . .
.
.
.

.

.

.
. . .

ϕk+1
ϕk

− 1
. . .

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . . . . . . . . . . . . . 0
ϕn−1
ϕk

− 1 0 0

−
(n−1

0

)
ϕkxk . . . . . . −

(n−1
k−2

)
ϕkxk −

(n−1
n−1

)
ϕkxk −

(n−1
k

)
ϕkxk . . . . . . −

(n−1
k−1

)
ϕkxk −ϕkxkρ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Jn+1,k Jn+1,n+1



20 / 27



Introduction Model Analysis Results Q?

Stability of the (0, . . . , 0, x̄k, 0, . . . , 0, m̄k) equilibrium

J =



ϕ1
ϕk

− 1 0 . . . . . . . . . . . . . . . . . . 0

0
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . 0
ϕk−1
ϕk

− 1 0 . . . . . . . . . 0

−
(n−1

0

)
ϕkxk . . . . . . −

(n−1
k−2

)
ϕkxk −

(n−1
k−1

)
ϕkxk −

(n−1
k

)
ϕkxk . . . −

(n−1
n−1

)
ϕkxk −ϕkxkρ

0 . . . . . . . . . 0
ϕk+1
ϕk

− 1 0 . . . 0

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . . . . . . . . . . . . . 0 ϕn
ϕk

− 1 0

∗ ∗ ∗ ∗ Jn+1,k ∗ ∗ ∗ Jn+1,n+1


y

J̃ =



ϕ1
ϕk

− 1 0 . . . . . . . . . . . . . . . . . . . . . 0

0
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

ϕk−1
ϕk

− 1
. . .

.

.

.

.

.

.
. . . ϕn

ϕk
− 1

. . .
.
.
.

.

.

.
. . .

ϕk+1
ϕk

− 1
. . .

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . . . . . . . . . . . . . 0
ϕn−1
ϕk

− 1 0 0

−
(n−1

0

)
ϕkxk . . . . . . −

(n−1
k−2

)
ϕkxk −

(n−1
n−1

)
ϕkxk −

(n−1
k

)
ϕkxk . . . . . . −

(n−1
k−1

)
ϕkxk −ϕkxkρ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Jn+1,k Jn+1,n+1


20 / 27



Introduction Model Analysis Results Q?

Stability (0, . . . , 0, x̄k, 0, . . . , 0, m̄k) equilibrium

The Jacobian matrix J̃ has the following form

J̃ =

(
D1 0

∗ B

)

The stability conditions are defined using the determinant and the trace
of the sub-matrix B, and the eigenvalues of the matrix D which are its
diagonal terms: for all i = 1, . . . , n such that i ̸= k,

λi =
ϕi

ϕk
− 1

The (0, . . . , 0, x̄k, 0, . . . , 0, m̄) equilibrium is locally asymptotically stable
if and only if ϕk > ϕi for all i = 1, . . . , n such that i ̸= k.
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At most one complexity persists at equilibrium

x′
k = xk

(
ϕk

(
1

n
− ρm−

n∑
i=1

(
n− 1

i− 1

)
xi

)
− 1

)
→ either xk = 0 or (· · · ) = 0 at equilibrium, but no two (· · · ) can be

equal to 0 simultaneously.

Three types of equilibria:

• (0, 0, 0, 0) : Disease-free equilibrium

• (m̂, 0, .., 0, x̂k, 0, .., 0) : n − 1 equilibria

• (0, .., 0, x̂n) : Generalist only equilibrium

A single equilibrium is asymptotically stable, the one containing x̂k

that maximizes ϕk = R(1 − c)kk.

Competitive exclusion principle
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One virulence complexity maximizes the pathogen fitness

There is a virulence complexity k∗ that maximizes the fitness:
ϕk = R(1 − c)kk
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k = 3 lines
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Threshold number of varieties to get rid of the disease

Prevalence of the disease, P =
(
n
k

)
kxk.
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0.0

0.2

0.4

0.6

0.8

1.0

D
is

e
a
se

 p
re

v
a
le

n
ce

(no priming)

(full priming)

Threshold number of varieties

nc = R
− log(1−c) e
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Priming effect on mixtures efficiency

Prevalence of the disease, P =
(
n
k

)
kxk.
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Take-Home Messages

• Threshold number of host genotypes to get rid of the disease

• Priming reduces the number of varieties to be used

• Even for a small number of varieties, priming strongly reduces the
disease prevalence
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Thank you for you attention!
Questions ?

Clin, P., Grognard, F., Andrivon, D., Mailleret, L. & Hamelin, F. M.
(2022). Host mixtures for plant disease control: benefits from
pathogen selection and immune priming. Accepted in Evolutionary
Applications.

https://share.streamlit.io/paulineclin/multiresistance_priming_

model/main/app.py
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Binomial coefficients

•
(
n−1
k−1

)
: The number of pathogen genotypes of virulence complexity k

capable of infecting the focal genotype. This is because a pathogen
genotype of complexity k that infects the focal host genotype can
also infect k − 1 host genotypes among the n− 1 non-focal host
genotypes → Infection

•
(
n−1
k

)
: The number of pathogen genotypes of complexity k and able

to prime the focal host genotype (n− 1 since we disregard pathogen
genotypes capable of infecting the focal host genotype) → Priming

•
(
n
k

)
: The number of pathogen genotypes of complexity k having

infected the focal host genotype → Prevalence
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Existence of equilibria

If xk > 0 for k ∈ {1, · · · , n}, there is x′
k = 0 if

X + (1− ρ)m =
1

ϕk
.

Theorem: There can be at most one complexity that persists at
equilibrium.
Proof (by contradiction): Assume there exists an equilibirum such that
at least 2 complexities, j, k = 1, .., n, can persist. That means:

Xj > 0 and Xk > 0.

Xj > 0 implies X + (1− ρ)m = 1/ϕj ,
Xk > 0 implies X + (1− ρ)m = 1/ϕk,

This is impossible unless ϕj = ϕk, which is a non-generic case
(biologically irrelevant).
Therefore, the model is simplified as

m′ = X

(
n− 1

k

)
ϕkxk − (1− ρ)m

(
n− 1

k − 1

)
ϕkxk − νm ,

x′
k = xk (ϕk(X + (1− ρ)m)− 1) .
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Convergence of virulence complexity

A. B.

C. D.
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Stability Disease-free equilibrium (0, . . . , 0)

The Jacobian matrix of size (n+ 1)× (n+ 1) is

J =



ϕ1

n − 1 0 . . . . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 ϕn

n − 1 0
(n−1

1 )ϕ1

n . . .
(n−1
n−1)ϕn−1

n 0 −ν


Triangular matrix → the eigenvalues are its diagonal elements: for all
i = 1, ..., n,

λi =
ϕi

n
− 1 ,

λn+1 = −ν < 0 .

The Disease-free equilibrium (0, . . . , 0) is locally asymptotically stable if
and only if the pathogen fitness ϕi < n for all i = 1, . . . , n.
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Stability of the (0, . . . , 0, x̄n, 0) equilibrium

The jacobian matrix is

J =



ϕ1
ϕn

− 1 0 . . . . . . 0 0 0

0
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

...

...
. . .

. . . 0
...

...

0 . . . . . . 0
ϕn−1

ϕn
− 1 0 0

−
(n−1

0

)
ϕnxn . . . . . . . . . −

(n−1
n−2

)
ϕnxn ϕn(

1
n
− 2xn)− 1 −ϕnxnρ(n−1

1

) ϕ1
ϕn

. . . . . . . . .
(n−1
n−1

)ϕn
ϕn

0 −(1− ρ)ϕnxn − ν


and has the following form

J =

(
D2 0

∗ T

)

J is a block triangular matrix, and its eigenvalues are the eigenvalues of
D2 and T , i.e. the diagonal terms.
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Stability of the (0, . . . , 0, x̄n, 0) equilibrium

Therefore, the eigenvalues are: for all i = 1, . . . , n− 1,

λi =
ϕi

ϕn
− 1 ,

λn = ϕn

(
1

n
− 2xn

)
− 1 ,

λn+1 = −(1− ρ)ϕnxn − ν < 0 .

The (0, ..., 0, x̄n, 0) equilibrium is locally asymptotically stable if
and only if ϕn > ϕi for all i = 1, . . . , n − 1.
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Cooperative systems
Hal Smith, 2008 ; Hirsch, 1989

Conditions

• Positive interactions between variables,

• Irreducible jacobian matrix.

Jacobian matrix

J =


∗ 0 − 0

+ ∗ 0 −
− 0 ∗ +

0 − + ∗


_
__

Is

Sr
*

Js

Jr

Only positive loops
=⇒

The system converges towards an equilibrium which can only be
the coexistence equilibrium!
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Plant immune system
2 levels of immunity (Jones and Dangl, 2006; Milgroom, 2015)

A
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High

PAMPs
 Effective
resistance

PAMPs = Pathogen molecules, PTI = PAMP triggered immunity,
ETI = Effector triggered immunity
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