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Context

Goal: Non destructive monitoring of industrial structures like
metal plates, boat hulls, aircraft parts, bridges, rain tracks...

Figure: Industrial monitoring of a
large aircraft part.

Figure: Width defect in a 3D
elastic plate.
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Motivation Forward Problem Inverse Problem

Modal decomposition
A source f generates an elastic displacement field u satisfying{

∇ · σ(u) + ω2u = f in Ω,
σ(u) · ν = 0 on ∂Ω, (1)

where Ω is the plate, σ the stress tensor, ω the frequency.
Modal decomposition at width h for almost every ω ∈ R+:

u(x , y) =
∑
n>0

(an(x)un(y), bn(x)vn(y)), (2)

(un, vn) are Lamb modes associated to the wavenumber kn ∈ C.

Figure: Elastic deformation of a plate e iknx (un(y), vn(y)) for a symmetric
and an anti-symmetric Lamb mode.
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Motivation Forward Problem Inverse Problem

State of the art

Usual experimental setup:

h(x)u inc us

• One frequency ω, different incident waves: Linear sampling
method, Far-field asymptotic developments...

• Different frequencies ω, one incident wave: MUSIC algorithm,
Born approximations...

⇒ Avoid the so-called resonant frequencies.

[1] Bourgeois, Lunéville. The linear sampling method in a waveguide: A modal formulation. Inverse Problems,
2008.
[2] Ammari, Iakovleva, Kang. Reconstruction of a small inclusion in a two- dimensional open waveguide. SIAM
Journal on Applied Mathematics, 2005.
[3] Bonnetier, Niclas, Seppecher, Vial. Small defects reconstruction in waveguide from multifrequency one-side
scattering data. Inverse Problems & Imaging, 2022.
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Motivation Forward Problem Inverse Problem

Resonant frequencies
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Figure: Rayleigh-Lamb dispersion curves and resonant frequencies. At
resonant frequencies, Lamb modal decomposition fails and the elastic
problem is not well-posed.
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Figure: Rayleigh-Lamb dispersion curves and resonant frequencies.
Three types of resonant points. L: kn = 0 and un = 0. T: kn = 0 and
vn = 0. ZGV: kn 6= 0, un, vn 6= 0
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Motivation Forward Problem Inverse Problem

Experimental setup at Institut Langevin

Figure: Response amplitude of a plate with two different widths
(white/black) at the resonant frequency of the white area. Measurements
are made along the dotted line.

[4] Balogun, Murray, Prada. Simulation and measurement of the optical excitation of the s1 zero group velocity
lamb wave resonance in plates. Journal of Applied Physics, 2007.
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Motivation Forward Problem Inverse Problem

General setting

f

u

Measures

2h(x)

Figure: Slowly varying waveguide of width 2h(x).

Modal decomposition:

u(x , y) =
∑
n>0

(an(x)un(x ,y), bn(x)vn(x ,y)). (3)

Issue: if there exists x? (called locally resonant point) such that
ωh(x?) is resonant then this decomposition fails.
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Motivation Forward Problem Inverse Problem

Longitudinal mode

We define the quantity Jn =
∫ h(x)

−h(x)
σ(un)2vn − σ(un)1un

To avoid the issue at x?, we introduce a modified Lamb basis

ũn = un
Jn
, ṽn = vn. (4)

This modified basis is complete even at x? and we have
b′′n + kn(x)2bn = F n

1 ,

an = b′n
ikn(x) + F n

2 .
(5)

⇒ We recognize a Schrödinger equation on bn.

[5] Pagneux, Maurel. Lamb wave propagation in elastic waveguides with variable thickness. Proceedings of the
Royal Society A, 2006.
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Motivation Forward Problem Inverse Problem

Green function
Using the previous study of the Schrödinger equation, we can
approximate bn and then an with the approximated Green function
Gapp

n . For n a locally resonant mode and s > x > x?,

Gapp
n (x , s) = C A

(
−
(3
2

∫ x

x?
kn

)2/3
)
. (6)
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Figure: Wavefield at a longitudinal locally resonant point.

[6] Bonnetier, Niclas, Seppecher, Vial. The Helmholtz problem in slowly varying waveguides at locally resonant
frequencies, submitted in Wave Motion, 2022
[7] Niclas, Prada. Reconstruction of shape defects in elastic waveguides using longitudinal, transverse and ZGV
resonances, in preparation, 2022 9/15



Motivation Forward Problem Inverse Problem

Transverse and zero-group velocity mode
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Figure: Wavefield at a transverse locally resonant point.
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Figure: Wavefield at a zero-group velocity locally resonant point.
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Motivation Forward Problem Inverse Problem

Locally resonant point

x?
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Figure: Wavefield |u| for different transverse locally resonant frequencies.

If we recover the position of x?, we know the local width

h(x?) = ωcrit/ω. (7)

For instance, if ωh(x?) = 3.2 then h(x?) = 3.2/ω.
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Motivation Forward Problem Inverse Problem

Filtering of measurements
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Figure: Measurements and filtering of the data for a transverse locally
resonant mode.
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Motivation Forward Problem Inverse Problem

Reconstruction of x ?

Doing a Taylor expansion on Gapp
n , we notice that around x?, the

data d satisfy
d ≈ zA(α(x − x?)), (8)

where z , α > 0. We minimize the function
J(z , α, x?) = ‖zA(α(x − x?))− d‖2. (9)
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Figure: Comparison between the data d and the Airy function obtained
by minimizing J .

[8] Niclas, Seppecher. Reconstruction of smooth shape defects in waveguides using locally resonant frequencies
surface measurements, submitted in Inverse Problems, 2022 13/15
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Motivation Forward Problem Inverse Problem

Reconstruction of h

Figure: Reconstruction of two width profiles. Black: initial shape. Red:
reconstruction slightly shifted for comparison purposes.

‖h′‖∞ 9.10−4 3.10−3 7.10−3 1.10−2

L, ‖h − happ‖∞/‖h‖∞ 2.8% 7.6% 13.2% 23.4%
T, ‖h − happ‖∞/‖h‖∞ 2.9% 5.3% 10.2% 17.4%

ZGV, ‖h − happ‖∞/‖h‖∞ 1.7% 2.3% 5.7% 8.2%

Table: Relative errors on the reconstruction for increasing values of ‖h′‖∞
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Conclusion
Main results:

• A wavefield approximation in slowly varying waveguides near
L, T and ZGV resonances

• An efficient and stable multi-frequency method to reconstruct
the width with high sensibility

Outlook:
• Collaboration to test our method on real data
• Generalization when top and bottom of the waveguide vary
• Generalization to quickly variable waveguides
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Figure: Numerical simulation of wavefield propagation in a waveguides
with width steps.
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