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Goal: Non destructive monitoring of industrial structures like
metal plates, boat hulls, aircraft parts, bridges, rain tracks...

Figure: Industrial monitoring of a Figure: Width defect in a 3D
large aircraft part. elastic plate.
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Goal: Non destructive monitoring of industrial structures like
metal plates, boat hulls, aircraft parts, bridges, rain tracks...

-
Figure: Industrial monitoring of a Figure: Width defect in a 2D
large aircraft part. elastic plate.
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Motivation /ars oble Problem

@000

Modal decomposition

A source f generates an elastic displacement field u satisfying

V.-o(u)+w?u=Ff inQ, (1)
o(u)-v=0 on 09,

where Q is the plate, o the stress tensor, w the frequency.
Modal decomposition at width h for almost every w € R:

u(x,y) =Y _(an(x)un(y), bn(x)va(¥)). ()

n>0
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Motivation rd Problem
@000

Modal decomposition

A source f generates an elastic displacement field u satisfying
V.-o(u)+w?u=Ff inQ, (1)
o(u)-v=0 on 09,
where Q is the plate, o the stress tensor, w the frequency.
Modal decomposition at width h for almost every w € R,:

j{:(an X)un(y), ba(x)va(y)), (2)
n>0

(un, vn) are Lamb modes associated to the wavenumber k, € C.

Figure: Elastic deformation of a plate e (u,(y), vs(y)) for a symmetric
and an anti-symmetric Lamb mode.
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State of the art

Usual experimental setup:

u'"S NN 1 h(x) U NN

[1] Bourgeois, Lunéville. The linear sampling method in a waveguide: A modal formulation. Inverse Problems,

2008.
[2] Ammari, lakovleva, Kang. Reconstruction of a small inclusion in a two- dimensional open waveguide. SIAM

Journal on Applied Mathematics, 2005.
[3] Bonnetier, Niclas, Seppecher, Vial. Small defects reconstruction in waveguide from multifrequency one-side

scattering data. Inverse Problems & Imaging, 2022.
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Motivation rd Problem
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State of the art

Usual experimental setup:

TUCEa VAV, 1 h(x) U NN

= One frequency w, different incident waves: Linear sampling
method, Far-field asymptotic developments...

= Different frequencies w, one incident wave: MUSIC algorithm,
Born approximations...

[1] Bourgeois, Lunéville. The linear sampling method in a waveguide: A modal formulation. Inverse Problems,

[2] Ammari, lakovleva, Kang. Reconstruction of a small inclusion in a two- dimensional open waveguide. SIAM
Journal on Applied Mathematics, 2005.

[3] Bonnetier, Niclas, Seppecher, Vial. Small defects reconstruction in waveguide from multifrequency one-side
scattering data. Inverse Problems & Imaging, 2022.
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Motivation rd Problem
[e] Je]e}

State of the art

Usual experimental setup:

u'"S NN 1 h(x) U NN

= One frequency w, different incident waves: Linear sampling
method, Far-field asymptotic developments...

= Different frequencies w, one incident wave: MUSIC algorithm,
Born approximations...

= Avoid the so-called resonant frequencies.

[1] Bourgeois, Lunéville. The linear sampling method in a waveguide: A modal formulation. Inverse Problems,

[2] Ammari, lakovleva, Kang. Reconstruction of a small inclusion in a two- dimensional open waveguide. SIAM
Journal on Applied Mathematics, 2005.

[3] Bonnetier, Niclas, Seppecher, Vial. Small defects reconstruction in waveguide from multifrequency one-side
scattering data. Inverse Problems & Imaging, 2022.
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Resonant frequencies

Problem

wh(x)

Real(kn(x))h(x) Imag(kn(x))h(x)

‘ —— propagative — inhomogeneous —— evanescent ‘

Figure: Rayleigh-Lamb dispersion curves and resonant frequencies. At
resonant frequencies, Lamb modal decomposition fails and the elastic
problem is not well-posed.

Problem
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Resonant frequencies

Real(kn(x))h(x) Imag(ka(x))h(x)

‘ —— propagative — inhomogeneous —— evanescent ‘

Figure: Rayleigh-Lamb dispersion curves and resonant frequencies. At
resonant frequencies, Lamb modal decomposition fails and the elastic
problem is not well-posed.
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Resonant frequencies
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Real(kn(x))h(x) Imag(kn(x))h(x)
‘ —— propagative — inhomogeneous —— evanescent ‘

Figure: Rayleigh-Lamb dispersion curves and resonant frequencies. At
resonant frequencies, Lamb modal decomposition fails and the elastic
problem is not well-posed.
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Resonant frequencies

0l L =1 ] |
01 0
2 3 4 5 6 ; 5 6 4 2

8
Real(kn(x))h(x) Imag(kn(x))h(x)

‘+ Longitudinal (L) @ Tranverse (T) -®- Zero-group-velovity (ZGV) ‘

Figure: Rayleigh-Lamb dispersion curves and resonant frequencies. At
resonant frequencies, Lamb modal decomposition fails and the elastic
problem is not well-posed.
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Resonant frequencies

01 0
2 3 4 5 6 ; 5 6 4 2

8
Real(kn(x))h(x) Imag(kn(x))h(x)

‘+ Longitudinal (L) @ Tranverse (T) -®- Zero-group-velovity (ZGV) ‘

Figure: Rayleigh-Lamb dispersion curves and resonant frequencies.
Three types of resonant points. L: k, =0 and u, =0. T: k, =0 and
vp, =0. ZGV: k, #0, up, v, #0
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Experimental setup at Institut Langevin

350 um Aluminium
membrane

Nickel
| mesh
bar

Figure: Response amplitude of a plate with two different widths
(white/black) at the resonant frequency of the white area. Measurements
are made along the dotted line.

[4] Balogun, Murray, Prada. Simulation and measurement of the optical excitation of the sl zero group velocity
lamb wave resonance in plates. Journal of Applied Physics, 2007.
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Experimental setup at Institut Langevin
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Figure: Response amplitude of a plate with two different widths
(white/black) at the resonant frequency of the white area. Measurements

are made along the dotted line.

[4] Balogun, Murray, Prada. Simulation and measurement of the optical excitation of the sl zero group velocity
lamb wave resonance in plates. Journal of Applied Physics, 2007.

6/15



Forward Problem
[ eJele]

Measures

Figure: Slowly varying waveguide of width 2h(x).
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Forward Problem verse Problem

@000

Measures

Figure: Slowly varying waveguide of width 2h(x).

Modal decomposition:

u(x,y) = D _(an(x)un(x.y), ba(x)va(x.y)). (3)

n>0

Issue: if there exists x* (called locally resonant point) such that
wh(x*) is resonant then this decomposition fails.
7/15
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Longitudinal mode

h(x)

We define the quantity J, = / o(un)2va — o(up)iun
—h(x)

To avoid the issue at x*, we introduce a modified Lamb basis

u —
unp = J—:, Vnh = Vn. (4)

[5] Pagneux, Maurel. Lamb wave propagation in elastic waveguides with variable thickness. Proceedings of the
Royal Society A, 2006.
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Forward Problem
[e] Jele]

Longitudinal mode

h(x)

We define the quantity J, = / o(un)2va — o(up)iun
—h(x)

To avoid the issue at x*, we introduce a modified Lamb basis

u —
unp = J—:, Vnh = Vn. (4)

This modified basis is complete even at x* and we have
by, + kn(x)?bp = FY',

bn
F.
() "2

dn =

= We recognize a Schroédinger equation on b,.

[5] Pagneux, Maurel. Lamb wave propagation in elastic waveguides with variable thickness. Proceedings of the
Royal Society A, 2006.
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Forward Problem Inverse Problem
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Green function

Using the previous study of the Schrodinger equation, we can
approximate b, and then a, with the approximated Green function
GZPP. For n a locally resonant mode and s > x > x*,

3 /X 2/3
G2PP(x,s) = C A —<§ / k,,> . (6)

|ul [v]

2
0.5 1
-0.1
-5 0

5

Figure: Wavefield at a longitudinal locally resonant point.

[6] Bonnetier, Niclas, Seppecher, Vial. The Helmholtz problem in slowly varying waveguides at locally resonant

frequencies, submitted in Wave Motion, 2022

[7] Niclas, Prada. Reconstruction of shape defects in elastic waveguides using longitudinal, transverse and ZGV

resonances, in preparation, 2022 9/15
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Transverse and zero-group velocity mode

_01—i -i

Figure: Wavefield at a transverse locally resonant point.

-i “i4
-0.1 0 —0.1

Figure: Wavefield at a zero-group velocity locally resonant point.
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10/15



Forward Problem Inverse Problem
O [ elele]e]

Locally resonant point

Figure: Wavefield |u| for different transverse locally resonant frequencies.
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-6 —4 —2 0 2 4 6

Figure: Wavefield |u| for different transverse locally resonant frequencies.

If we recover the position of x*, we know the local width
h(x*) = werit/w. (7)
For instance, if wh(x*) = 3.2 then h(x*) = 3.2/w.
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rd Problem Inverse Problem
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Figure: Measurements and filtering of the data for a transverse locally
resonant mode.
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Inverse Problem
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—0.1 at the
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300 F
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Problem

Figure: Measurements and filtering of the data for a transverse locally
resonant mode.
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Filtering of
propagative
modes

Figure: Measurements and filtering of the data for a transverse locally

resonant mode.
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Reconstruction of x*

Doing a Taylor expansion on GZPP, we notice that around x*, the
data d satisfy

d ~ zA(a(x — x*)), (8)
where z, & > 0. We minimize the function
J(z,a,x*) = ||zA(a(x — x*)) — d]|2- (9)

[8] Niclas, Seppecher. Reconstruction of smooth shape defects in waveguides using locally resonant frequencies
surface measurements. submitted in Inverse Problems. 2022 13/15



Forward Problem Inverse Problem
O 00e00

Reconstruction of x*

Doing a Taylor expansion on GZPP, we notice that around x*, the
data d satisfy

d ~ zA(a(x — x*)), (8)
where z, & > 0. We minimize the function
J(z,a,x*) = ||zA(a(x — x*)) — d]|2- (9)

300 [ —
—zA(a(x — x*))
200 -
100
0—6

Figure: Comparison between the data d and the Airy function obtained
by minimizing J.

[8] Niclas, Seppecher. Reconstruction of smooth shape defects in waveguides using locally resonant frequencies
surface measurements. submitted in Inverse Problems. 2022 13/15



Inverse Problem
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Figure: Reconstruction of two width profiles. Black: initial shape. Red:
reconstruction slightly shifted for comparison purposes.

17 oo 9.10 %[ 3.10°3 | 7.10 % | 1.10 2

L A= ™o/l | 2.8% | 7.6% | 13.2% | 23.4%
T, A= b/l | 2.9% | 53% | 10.2% | 17.4%
ZGV, [[h— hPP[ o /[l | 1.7% | 2.3% | 5.7% | 8.2%

Table: Relative errors on the reconstruction for increasing values of ||h'||oo
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Conclusion

Main results:
= A wavefield approximation in slowly varying waveguides near
L, T and ZGV resonances
= An efficient and stable multi-frequency method to reconstruct
the width with high sensibility

15/15



Conclusion

Main results:
= A wavefield approximation in slowly varying waveguides near
L, T and ZGV resonances
= An efficient and stable multi-frequency method to reconstruct
the width with high sensibility
Outlook:
= Collaboration to test our method on real data
= Generalization when top and bottom of the waveguide vary
= Generalization to quickly variable waveguides

0.1 0.3
0.2
0.1
05T 2 o 2 4 0

Figure: Numerical simulation of wavefield propagation in a waveguides
with width steps.
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