

Reconstruction de défauts dans les plaques élastiques à l'aide d'ondes de Lamb localement résonantes

Angèle Niclas

Join work with Éric Bonnetier, Claire Prada, Laurent Seppecher, Grégory Vial

16/06/2022

Goal: Non destructive monitoring of industrial structures like metal plates, boat hulls, aircraft parts, bridges, rain tracks...

Figure: Industrial monitoring of a large aircraft part.

Figure: Width defect in a 3D elastic plate.

Goal: Non destructive monitoring of industrial structures like metal plates, boat hulls, aircraft parts, bridges, rain tracks...

A source f generates an elastic displacement field u satisfying

$$\begin{cases} \nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}) + \omega^2 \boldsymbol{u} = \boldsymbol{f} & \text{in } \Omega, \\ \boldsymbol{\sigma}(\boldsymbol{u}) \cdot \boldsymbol{\nu} = 0 & \text{on } \partial\Omega, \end{cases}$$
(1)

where Ω is the plate, σ the stress tensor, ω the frequency. Modal decomposition at width *h* for almost every $\omega \in \mathbb{R}_+$:

$$u(x,y) = \sum_{n>0} (a_n(x)u_n(y), b_n(x)v_n(y)),$$
(2)

Modal decomposition

Motivation

A source f generates an elastic displacement field u satisfying

$$\begin{cases} \nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}) + \omega^2 \boldsymbol{u} = \boldsymbol{f} & \text{in } \Omega, \\ \boldsymbol{\sigma}(\boldsymbol{u}) \cdot \boldsymbol{\nu} = 0 & \text{on } \partial\Omega, \end{cases}$$
(1)

where Ω is the plate, σ the stress tensor, ω the frequency. Modal decomposition at width h for almost every $\omega \in \mathbb{R}_+$:

$$u(x,y) = \sum_{n>0} (a_n(x)u_n(y), b_n(x)v_n(y)),$$
(2)

 (u_n, v_n) are Lamb modes associated to the wavenumber $k_n \in \mathbb{C}$.

Figure: Elastic deformation of a plate $e^{ik_n \times}(u_n(y), v_n(y))$ for a symmetric and an anti-symmetric Lamb mode.

Inverse Problem

Usual experimental setup:

$$u^{\text{inc}}$$
 (x) u^{s} (x)

[1] Bourgeois, Lunéville. The linear sampling method in a waveguide: A modal formulation. Inverse Problems, 2008.

[2] Ammari, lakovleva, Kang. Reconstruction of a small inclusion in a two- dimensional open waveguide. SIAM Journal on Applied Mathematics, 2005.

[3] Bonnetier, Niclas, Seppecher, Vial. Small defects reconstruction in waveguide from multifrequency one-side scattering data. Inverse Problems & Imaging, 2022.

Usual experimental setup:

$$u^{\text{inc}}$$
 (x) u^{s} (x)

- One frequency ω, different incident waves: Linear sampling method, Far-field asymptotic developments...
- Different frequencies ω, one incident wave: MUSIC algorithm, Born approximations...

^[1] Bourgeois, Lunéville. The linear sampling method in a waveguide: A modal formulation. Inverse Problems, 2008.

^{2000.} [2] Ammari, lakovleva, Kang. Reconstruction of a small inclusion in a two- dimensional open waveguide. SIAM Journal on Applied Mathematics, 2005.

^[3] Bonnetier, Niclas, Seppecher, Vial. Small defects reconstruction in waveguide from multifrequency one-side scattering data. Inverse Problems & Imaging, 2022.

Usual experimental setup:

$$u^{\text{inc}}$$
 (x) u^{s} (x)

- One frequency ω, different incident waves: Linear sampling method, Far-field asymptotic developments...
- Different frequencies ω, one incident wave: MUSIC algorithm, Born approximations...

 \Rightarrow Avoid the so-called resonant frequencies.

[1] Bourgeois, Lunéville. The linear sampling method in a waveguide: A modal formulation. Inverse Problems, 2008.

[2] Ammari, lakovleva, Kang. Reconstruction of a small inclusion in a two- dimensional open waveguide. SIAM Journal on Applied Mathematics, 2005.

[3] Bonnetier, Niclas, Seppecher, Vial. Small defects reconstruction in waveguide from multifrequency one-side scattering data. Inverse Problems & Imaging, 2022.

Forward Problem

Inverse Problem

Resonant frequencies

Forward Problem

Resonant frequencies

Figure: Rayleigh-Lamb dispersion curves and resonant frequencies. Three types of resonant points. L: $k_n = 0$ and $u_n = 0$. T: $k_n = 0$ and $v_n = 0$. ZGV: $k_n \neq 0$, u_n , $v_n \neq 0$ Motivation 000● Forward Problem

Inverse Problem

Experimental setup at Institut Langevin

Figure: Response amplitude of a plate with two different widths (white/black) at the resonant frequency of the white area. Measurements are made along the dotted line.

[4] Balogun, Murray, Prada. Simulation and measurement of the optical excitation of the s1 zero group velocity lamb wave resonance in plates. Journal of Applied Physics, 2007. Motivation 000● Forward Problem

Inverse Problem

Experimental setup at Institut Langevin

Figure: Response amplitude of a plate with two different widths (white/black) at the resonant frequency of the white area. Measurements are made along the dotted line.

[4] Balogun, Murray, Prada. Simulation and measurement of the optical excitation of the s1 zero group velocity lamb wave resonance in plates. Journal of Applied Physics, 2007.

Forward Problem ●000 Inverse Problem

General setting

Figure: Slowly varying waveguide of width 2h(x).

Forward Problem

Inverse Problem

General setting

Figure: Slowly varying waveguide of width 2h(x).

Modal decomposition:

$$\boldsymbol{u}(x,y) = \sum_{n>0} (a_n(x)u_n(\boldsymbol{x},y), b_n(x)v_n(\boldsymbol{x},y)). \tag{3}$$

Issue: if there exists x^* (called locally resonant point) such that $\omega h(x^*)$ is resonant then this decomposition fails.

Forward Problem

Inverse Problem

Longitudinal mode

We define the quantity $J_n = \int_{-h(x)}^{h(x)} \sigma(\boldsymbol{u}_n)_2 v_n - \sigma(\boldsymbol{u}_n)_1 u_n$ To avoid the issue at x^* , we introduce a modified Lamb basis

$$\widetilde{u_n} = \frac{u_n}{J_n}, \qquad \widetilde{v_n} = v_n.$$
 (4)

[5] Pagneux, Maurel. Lamb wave propagation in elastic waveguides with variable thickness. Proceedings of the Royal Society A, 2006.

Forward Problem

Inverse Problem

Longitudinal mode

We define the quantity $J_n = \int_{-h(x)}^{h(x)} \sigma(\boldsymbol{u}_n)_2 v_n - \sigma(\boldsymbol{u}_n)_1 u_n$ To avoid the issue at x^* , we introduce a modified Lamb basis

$$\widetilde{v_n} = \frac{u_n}{J_n}, \qquad \widetilde{v_n} = v_n.$$
 (4)

This modified basis is complete even at x^* and we have

$$\begin{cases} b_n'' + k_n(x)^2 b_n = F_1^n, \\ a_n = \frac{b_n'}{ik_n(x)} + F_2^n. \end{cases}$$
(5)

 \Rightarrow We recognize a Schrödinger equation on b_n .

[5] Pagneux, Maurel. Lamb wave propagation in elastic waveguides with variable thickness. Proceedings of the Royal Society A, 2006.

Forward Problem

Inverse Problem

Green function

Using the previous study of the Schrödinger equation, we can approximate b_n and then a_n with the approximated Green function G_n^{app} . For n a locally resonant mode and $s > x > x^*$,

$$G_n^{\text{app}}(x,s) = C \mathcal{A}\left(-\left(\frac{3}{2}\int_{x^*}^x k_n\right)^{2/3}\right).$$
 (6)

Figure: Wavefield at a longitudinal locally resonant point.

[6] Bonnetier, Niclas, Seppecher, Vial. The Helmholtz problem in slowly varying waveguides at locally resonant frequencies, submitted in Wave Motion, 2022

[7] Niclas, Prada. Reconstruction of shape defects in elastic waveguides using longitudinal, transverse and ZGV resonances, in preparation, 2022

Inverse Problem

Transverse and zero-group velocity mode

Figure: Wavefield at a transverse locally resonant point.

Figure: Wavefield at a zero-group velocity locally resonant point.

Inverse Problem

Locally resonant point

Figure: Wavefield |u| for different transverse locally resonant frequencies.

Inverse Problem

Locally resonant point

Figure: Wavefield |u| for different transverse locally resonant frequencies.

If we recover the position of x^* , we know the local width

$$h(x^{\star}) = \omega_{\rm crit}/\omega. \tag{7}$$

For instance, if $\omega h(x^*) = 3.2$ then $h(x^*) = 3.2/\omega$.

Inverse Problem

Filtering of measurements

Figure: Measurements and filtering of the data for a transverse locally resonant mode.

Inverse Problem

Filtering of measurements

Figure: Measurements and filtering of the data for a transverse locally resonant mode.

Inverse Problem

Filtering of measurements

Figure: Measurements and filtering of the data for a transverse locally resonant mode.

Reconstruction of x^*

Doing a Taylor expansion on G_n^{app} , we notice that around x^* , the data d satisfy

$$d \approx z \mathcal{A}(\alpha(x - x^*)), \tag{8}$$

where $z, \alpha > 0$. We minimize the function

$$J(z,\alpha,x^{\star}) = \|z\mathcal{A}(\alpha(x-x^{\star})) - d\|_2.$$
(9)

Reconstruction of x^*

Doing a Taylor expansion on G_n^{app} , we notice that around x^* , the data d satisfy

$$d \approx z \mathcal{A}(\alpha(x - x^{\star})), \qquad (8)$$

where $z, \alpha > 0$. We minimize the function

$$J(z,\alpha,x^{\star}) = \|z\mathcal{A}(\alpha(x-x^{\star})) - d\|_2.$$
(9)

Figure: Comparison between the data d and the Airy function obtained by minimizing J.

[8] Niclas, Seppecher. Reconstruction of smooth shape defects in waveguides using locally resonant frequencies surface measurements, submitted in Inverse Problems, 2022

Reconstruction of *h*

Figure: Reconstruction of two width profiles. Black: initial shape. Red: reconstruction slightly shifted for comparison purposes.

$\ h'\ _{\infty}$	9.10^{-4}	3.10^{-3}	7.10^{-3}	1.10^{-2}
L, $\ h - h^{app}\ _{\infty} / \ h\ _{\infty}$	2.8%	7.6%	13.2%	23.4%
T, $\ h - h^{app}\ _{\infty} / \ h\ _{\infty}$	2.9%	5.3%	10.2%	17.4%
ZGV, $\ h - h^{app}\ _{\infty} / \ h\ _{\infty}$	1.7%	2.3%	5.7%	8.2%

Table: Relative errors on the reconstruction for increasing values of $\|h'\|_\infty$

Conclusion

Main results:

- A wavefield approximation in slowly varying waveguides near L, T and ZGV resonances
- An efficient and stable multi-frequency method to reconstruct the width with high sensibility

Conclusion

Main results:

- A wavefield approximation in slowly varying waveguides near L, T and ZGV resonances
- An efficient and stable multi-frequency method to reconstruct the width with high sensibility

Outlook:

- Collaboration to test our method on real data
- Generalization when top and bottom of the waveguide vary
- Generalization to quickly variable waveguides

Figure: Numerical simulation of wavefield propagation in a waveguides with width steps.