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Control with constraints

Consider the following control problem: Q ¢ RY, bounded, regular,

Yt — Ay = U(t [L'),
y =0 on 012, (1)
u(t,-) €Ue, Vte|0,T].

The control must fulfill a set of time-independent constraints given by
U.. For instance, positivity, mass constraint...
Depending on U,:

e What controllability properties?
e What do the controls look like?

A particular constraint set: 1-shapes

uslhape = {va |W| < mL}, my < ’Q|
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Shape control

We work on “generalised” shapes: let my < |9,

ushape = {Mwa M >0, |W| < mL'}
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Shape control

We work on “generalised” shapes: let mp < |Q],

ushape = {MXun M >0, |W| < mL'}

Theorem (Pouchol, TrA®©lat, Z. 2021)

Let mp, < |Q|, T >0, ¢ > 0. Any nonnegative y; € L*(Q) is
e-approximately reachable from 0 in time T with controls u such that

u(t,) € Ushape fa.et e (0,T).

Controllability results with two kinds of controls:
U(t, ) = M(t)Xw(t)’

u(t7 ) = MXw(t)'

We can’t expect better: comparison principle!
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Summary

o Preliminary: a NSC for constrained approximate controllability




The unconstrained case

Well-known NSC: unique continuation.

y= Ay + Bu, Lpu:= /OT e(T*t)ABu(t)dt
Condition: injectivity i.e. Lyp =0 = p=0, Vp.
Dual of: ({p, Lyu) =0,VYu € U) = p=0ie. Im(Ly) is dense.
Focus on one target ys: yy € m

Vp, ({(Ltu,p) =0 Vu e U) = (ys,p) = 0.

Geometrical interpretation: there exists no (strict) separating
hyperplane between {y¢} and Im(Lr).
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Constrained case

Same system, but with the constraint
u(t) e, Vtelo,T].
Using the separating hyperplane interpretation:
Vp, for any a,e s.t. (p,Lru) <a—¢e, Yu€el,

(p,yp) < a+e.
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Constrained case

Same system, but with the constraint
u(t) e, Vtelo,T].
Using the separating hyperplane interpretation:
Vp, for any a,e s.t. (p,Lru) <a—e, Yu€el,

(p,yp) < a+e.

Take a = sup(p, Lyu) + &:
ueU

(p.yf) <sup(p, Lru) + 2¢
ueU
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Constrained case

Same system, but with the constraint
u(t) e, Vtelo,T].
Using the separating hyperplane interpretation:
Vp, for any a,e s.t. (p,Lru) <a—e, Yu€el,

(p,yp) < a+e.

Take a = sup(p, Lyu) + &:
ueU

tpyp) = sup(p. L)
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Constrained case

Same system, but with the constraint
u(t) elU, Vtelo,T).
Using the separating hyperplane interpretation:
Vp, for any a,e s.t. (p,Lru) <a—e, Yu€el,
(p,yp) < a+e.
Take o = sup(p, Lru) + ¢:

ueU

(p,yy) < sup(Lyp,u)
ueU
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Constrained case

Same system, but with the constraint

u(t) e, Vtelo,T].
Using the separating hyperplane interpretation:

Vp, for any a,e s.t. (p,Lru) <a—¢e, Yu€cl,
(p,yf) <a+e.
Take o = sup(p, Lru) + ¢:
ueU
(p,ys) < ou(Lpp)

Support function of U.
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Summary

9 Constrained controllability by optimal control: constructive method

16 June 202:



Shape control

The equation is simple (linear, Dirichlet boundary conditions, internal

control) but the control is of a non-standard type.
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Shape control

The equation is simple (linear, Dirichlet boundary conditions, internal
control) but the control is of a non-standard type.

— “nonlinear” control problem
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Shape control

The equation is simple (linear, Dirichlet boundary conditions, internal
control) but the control is of a non-standard type.

— “nonlinear” control problem

Optimal control approach

Incorporate constraints and obtain special properties by characterizing
optimal controls for a certain cost.

See also:
Lions (1992), Kunisch Wang (’13), Berrahmoune (14 ’19), Ervedoza
(’20), Biccari-Zuazua ('22)
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The HUM method (J.-L. LIONS)

Control system

T
y=Ay+ Bu, Lyu:= / eT=DABuy(t)dt
0

Find controls by solving

inf L[ u()2dt
wadm. 2 fy MHNUeE

Usually, HUM consists in minimizing the following functional (dual
problem):

1T, .
Jaum(pr) = 2/0 HLTpT||2Udt + <yoa€TA pr) — (yr.pT) + €|lp7||

The optimal p} # 0 solves:

DJuum(pr) =0

The solution to the dual problem gives the control.
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The HUM method (J.-L. LIONS)

Control system

T
y=Ay+ Bu, Lpu:= / e T=DABu(t)dt
0

Find controls by solving

1T
inf 7/ u(t)|2.dt.
2 Jo

u adm.

Usually, HUM consists in minimizing the following functional (dual
problem):

1 (T -
Jaoni(pr) = 5 [ I1Liwrldt + (o,e™ pr) = (yrpr) + elor|

The optimal p7 # 0 solves:

0.3
yr — € Pr__ eT4yo + L Lrpr dt
——

1

close enough

HUM control
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A variation on HUM

Now we try to solve
) 1
inf S sup lu(t) 2
u adm. 2 [0,7)

The functional becomes:

2
1/ T .
Jaom(pr) = 5 (/o “LTPTHUdt) + (yo, " pr) — (yr,pr) + €lp7|

The optimal p7 # 0 solves:

DJgum(pr) = 0.
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A variation on HUM

Now we try to solve
2

1
inf 3 Sup w7

The functional becomes:

Jaum(pr) =

2
1T, . .
5 (/O HLTpTIIUdt> + (yo, " pr) — (yr, pr) +<llpr|

The optimal p7 # 0 solves:

p* T L p

yr el =Py Lo | ([ I2awiludt ) 0 e
Mol 0 1Ll

close enough HUM control
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A variation on HUM

Now we try to solve
2

1
inf 3 Sup w7

The functional becomes:

2
(T, .
Jaum(pr) = = </o HLTPTHUdt) + (yo, TV pr) — (yr, pr) + €llpr |

2

The optimal p7 # 0 solves:

p* L*p*
v el = Py v o | ([ IEpbla) (P | ar
Mol 1Ll
close enough HUM control

Change the functional: change the control you get. Geometrical
interpretation?
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The convex constrained case

General convex functional:

J(pr) = F*(Lpr) + (Y0, e

*

pr) — (yr,pr) + €llpr |-
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The convex constrained case

General convex functional:

J(pr) = F*(Lipr) + o, o (07).
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The convex constrained case

General convex functional:

J(pr) = F*(Lpr) + G*(pr).

In general, differential calculus not available!
But with convexity come other tools...
Subdifferential calculus:

DJ(p}) = 0 becomes 0 € 9.J (p7)
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The convex constrained case

General convex functional:

J(pr) = F*(Lpr) + G*(pr).

In general, differential calculus not available!
But with convexity come other tools...
Subdifferential calculus:

DJ(p7) = 0 becomes 0 € 9J (pr)

The computation of the optimal control is not as direct as
before...BUT we get the existence of a u*

u* € OF*(Lypy), Lru* € 0G*(—py)
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The convex constrained case

General convex functional:

J(pr) = F*(Lpr) + G*(pr).

In general, differential calculus not available!
But with convexity come other tools...
Subdifferential calculus:

DJ(p7) = 0 becomes 0 € 9J (pr)

The computation of the optimal control is not as direct as
before...BUT we get the existence of a u*

u* € OF*(Lypy), Lru* € 0G*(—pr)
IF we can say that

O(F* o Ly + G* o (=1d))(pr) = LrOF"(L1pr) — 0G™(—p7)
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Fenchel-Rockafellar duality

The real question: what does

J(pr) = F*(L1pr) + G"(p)
have to do with the optimal control problem

inf ~ C(u)?
u admissible
u(t, )€l
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Fenchel-Rockafellar duality

The real question: what does
J(pr) = F*(Lypr) + G*(pr)
have to do with the optimal control problem

ueiEQfLQ C(u) + (Sg{(u) + 536 (yf)(LTu)?
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Fenchel-Rockafellar duality

The real question: what does
J(pr) = F*(Lypr) + G*(pr)
have to do with the optimal control problem

inf /' G(Ltu)?
A )+ Gl
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Fenchel-Rockafellar duality

The real question: what does
J(pr) = F*(Lypr) + G*(pr)
have to do with the optimal control problem

inf F(u)+ G(Lru)?

u€L2L2
Conjugation:
f*(p) = sup(p,u) — f(u).
uelU
For convex functions:
f** — f
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Fenchel-Rockafellar duality

Let F and ~E be two Hilbert spaces, F' and G convex proper functions
on F and E resp., and L € L(E, E).

Primal optimization problem: (our optimal control problem)
= inf F Lu).
™= inf (u) + G(Lu)

Using convex conjugation, we can derive its associated dual problem:

d= sup (—F*(L7p) = G*(—p)) = —;ng (F*(L*p) + G*(—p)) .

Relationship between the values:

Theorem (Fenchel-Rockafellar)

Weak duality © > d always holds. Moreover, if there exists p € E such

that F* is continuous at L*p and G*(—p) < +oo, then strong duality
holds ie

m=d and w is attained if finite.
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Optimality conditions

Relationship between the solutions.
Link between the primal and dual problems: the Lagrangian

L(u,p) := (p, Lu) + F(u) — G*(p).

Proposition

If strong duality holds, the following are equivalent:
(i) (u*,p*) is a pair of solutions to the primal and dual problems.
(i) (u*, —p*) is a saddle point of L.

Saddle point:

u” € argmin, ¢ L(u, —p*)
Optimal control
* *
— P € argmax,c p L(u”, p),

Dual minimizer

To find shape controls, we need to find the right dual problem!
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Optimality conditions

Relationship between the solutions.
Link between the primal and dual problems: the Lagrangian

L(u,p) := (p, Lu) + F(u) — G*(p).

Proposition

If strong duality holds, the following are equivalent:
(i) (u*,p*) is a pair of solutions to the primal and dual problems.
(i) (u*, —p*) is a saddle point of L.

Saddle point:
* X (T K, K
U € OF*(L*p")
Optimal control
— P €dG(uY),
~~
Dual minimizer

To find shape controls, we need to find the right dual problem!
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Summary

e Finding shape controls




Choosing the dual problem

Dual problem
- p;TéEQ F*(Lrpr) + G*(—pr)
pt+Ap =0,
p=0 on 0, control u € F := L*(0,T; L?).
p(T,-) =pr € X := L7,
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Choosing the dual problem

Dual problem
- p;TéEQ F*(Lrpr) + G*(—pr)
pt+Ap =0,
p=0 on 0, control u € F := L*(0,T; L?).
p(T,-) =pr € X := L7,

e Strong duality: F* continuous in L7,0 = 0, G*(0) < +oo.
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Choosing the dual problem

Dual problem

— inf F*(Lppr)+ G*(~pr)
preL?

pe+Ap=0,
p=0 on 0, control u € F := L*(0,T; L?).
p(T, ) =pr € X := L2,

e Strong duality: F* continuous in L7,0 = 0, G*(0) < +oo.

o F*(L7) + (0B.(y,))"(—) has a minimum reached at p7.

(0B.(y)) (=p) = —(p1,y5) + €llprll L2 < +00.
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Choosing the dual problem

Dual problem

— inf F*(Lppr)+ G*(~pr)
preL?

pe+Ap=0,
p=0 on 01, control u € F := L*(0,T; L?).
p(T, ) =pr € X := L2,

e Strong duality: F* continuous in L7,0 = 0, G*(0) < +oo.

o F*(Ly+) + (B.(y;))"(—) has a minimum reached at p7.

(0B.(y)) (=p) = —(p1,y5) + €llprll L2 < +00.

e To find shapes: we know that there is at least one optimal control

u* € OF(Lyp}).
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The set of shape controls

Shapes: Uslhape ={Xw, lw|<mp}, mp<|Q|

Convex hull: Uy :={u e L? 0<u<1and / u<mr.}
Q
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The set of shape controls

Shapes: Uslhape ={xw, |w|<mr}, mp<|Q|
Convex hull: U, = {ueLZ, 0<wu<1and / u<mr.}
Q

Remember the support function:

veX, Ot ()= sug(u,w
u€Uf,
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The set of shape controls

Shapes: Uslhape ={Xw, lw|<mp}, mp<|Q|

Convex hull: Up, = {u € L?, 0<wu<1and / u<mr.}
Q
Remember the support function:

veX, oy ()— sup (u, v) = sup(u, v)—d7~(u)

UGE ueX
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The set of shape controls

Shapes: Uslhape ={xw, |w|<mr}, mp<|Q|
Convex hull: U, = {u€L2, 0<wu<1and / u<mr.}
Q

Remember the support function:

v E X, Oy (v):= su£<u,v) = sup (u,v}—ém(u) = 5Z*TL(U)
ueUr, ueX
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The set of shape controls

Shapes: Uslhape ={xw, |w|<mr}, mp<|Q|
Convex hull: U, = {ueLZ, 0<wu<1and / u<mr.}
Q

Remember the support function:

v E X, O (v):= su£<u,v) = sup (u,v}—ém(u) = 5Z*TL(U)
ueUr, ueX

o € K maximizer

(U,v) — 0k (@) = ok (v)

/ v € (), u€ dog(v)
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Scalar products and bathtubs

Lemma (relaxed bathtub principle)

Let v € L?. Consider the mazimisation problem

sup (u,v)r2, Uy = {u €L?(Q), 0<u<1 and / u < mL}.
uEL{_L J&)

Let r* = max(0, inﬂgﬂ{v >r} <mpg}). The mazimisers are given by
re

u = X{v>r*} + C(‘T>X{’U:”'*}’ (2)

where ¢ is any measurable function such that 0 < c <1 and

/ c=mp—[{v>r*} if >0
{v=r*}

/{ }cgmL—\{v>r*}| if =0

Christophe Zhang (INRIA) Shape control heat equation 16 June 2022



Bathtub principle

The maximisers of the bathtub principle can be characteristic
functions:

doy,, (v) = {U* = X{osry T C(x)X{v:r*}} :
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Back to the dual problem

From the static bathtub principle to our dynamic optimisation
problem: how do we choose F* : L*(0,T; L*(Q)) — R?

u* € OF*(Lypy)

F* = ou,,
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Back to the dual problem

From the static bathtub principle to our dynamic optimisation
problem: how do we choose F* : L*(0,T; L*(Q)) — R?

u* € OF*(Lypy)

)= [ ou, (ol
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Back to the dual problem

From the static bathtub principle to our dynamic optimisation
problem: how do we choose F* : L*(0,T; L*(Q)) — R?

u* € OF*(Lypy)

)= [ ou, (ol

Problem: linear growth of 07/, does not ensure that the dual problem
has a minimum:

F*(L3pr) — (pr,ys) +ellpr| 2-
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Back to the dual problem

From the static bathtub principle to our dynamic optimisation
problem: how do we choose F* : L?(0,T; L*(Q)) — R?

u* € OF*(Lyp})

2
Pl ( I auL<p<t>>dt)

Problem: linear growth of 0y4, does not ensure that the dual problem
has a minimum:

F*(Lippr) — (pr,ys) +ellprl 2

Quadratic growth does! (When y; > 0)
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The optimal control problem

Simply compute the conjugate of the F'* we have chosen: we get cost
and constraints!

1 Ol
Flu)= 5 sup max (Hu(t)uoo,”“()”l> T b
te[0,T] mr,

{

Relaxed constraints

Cost

The dual problem corresponds to an optimal control problem, and
both have solutions !
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The optimal control problem

Simply compute the conjugate of the F'* we have chosen: we get cost
and constraints!

1 Ol
Flu)= 5 sup max (Hu(t)uoo,”“()”l> T b
te[0,T] mr,

{

Relaxed constraints

Cost

The dual problem corresponds to an optimal control problem, and
both have solutions !

Do we have shapes?
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Getting shapes with the optimality conditions

The optimal control is characterized by the minimizer of the
dual problem

w*(t) € OF*(Lypr), vt €[0,T]

T
Technical computation of subdifferentials ( / and square):
0

u*(t) € OF*(Lpy).
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Getting shapes with the optimality conditions

The optimal control is characterized by the minimizer of the
dual problem

u*(t) € OF(Lypy), Vt€[0,T]

T
Technical computation of subdifferentials ( / and square):
0

T
w(t) € ( | o <p<r>>df) 00w, (0" (1)
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Getting shapes with the optimality conditions

The optimal control is characterized by the minimizer of the
dual problem

u*(t) € OF(Lypy), Vt€[0,T]

T
Technical computation of subdifferentials ( / and square):
0
T
w(t) € ( | o <p<¢>>df) 00, (1" (1)

2
)= ( [ <p<t>>dt)

Non-empty, contain characteristic functions!
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Shapes for the heat equation

T
u*(t) € ( /0 ouy, (p*(t))dt> douy, (p*(1))-

Bathtub principle:

doy,, (p*(t)) = {X{p*(t)>r*(t)} + C(x)X{p*(t):T*(t)}} :
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Shapes for the heat equation

T
uH(t) € ( /0 ou, (p*(t))dt) ou, (0*(1)).
Bathtub principle:
doy,, (p*(t)) = {X{p*(t)>r*(t)}}'

Heat equation: analytic-hypoelliptic operator! Level sets have zero
measure.
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Shapes for the heat equation

T
u*(t) € ( /0 ouy, (p*(t))dt> douy, (p*(1))-

Bathtub principle:

doy,, (p*(t)) = {X{p*(t)>7'*(t)}}'

Heat equation: analytic-hypoelliptic operator! Level sets have zero
measure.

Finally,
u*(t) € Ushape, [.a.et €[0,T].
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Bonus

o General result using convex analysis and FR, duality: Hilbert balls
are strictly convex — the optimal control is unique in both
cases.

e With another choice of F™*:

Fo) =3 [ o (ol0)

we get controls of the form
u*(t) € ouy, (p*(t))Jou, (p7(1))-

e For the heat equation: positive minimal control time appears if
one restricts the shapes to a subdomain w C €.
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Bonus bonus

For the first cost:

2
C(u) = 1 sup max <Hu(t)Hoo, Hu(t)Hl) )

2 icjo,1) mr,

amplitude of the optimal control does not depend on time, but on the
final time T": it solves the minimal norm problem

M*(T) := inf{C(u), wu€ L*L* u>0, |[Lru—ysll2 < ¢},
which turns out to be equivalent to the time optimal control problem:
T*(\) = inf{T >0, Ju € L*L? u >0, C(u) <\, ||[Lru —ys|2 < e},

for A > 0.
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Conclusion and remarks

e Approximate controllability of the heat equation from 0 to
nonnegative states, with shapes. In particular, this means any

nonnegative state is approx reachable with nonnegative controls!

@ General method: find the right dual problem to ensure some

properties of the optimal controls we find.

e Amplitude of the shapes

T
M(T,mp,yre) = / / p*(t, x)dzdt
0 Jp*(t,)>r*(t)

Focus on T': study of a minimal time problem.

e Adaptable to other equations, other constraints.
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