Asymptotic behaviour of an integro-differential selection-advection equation

Jules Guilberteau

June 15, 2022

PhD under the supervision of Nastassia Pouradier Duteil and Camille Pouchol

(1) Motivation
(2) Construction of the model
(3) Asymptotic behaviour of the advection equation and the selection equation

4 Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

Motivation

Definition

Cell differentiation: Process in which a cell changes its type.

Motivation

Definition

Cell differentiation: Process in which a cell changes its type.

Figure: Epithelial-Mesenchymal Transition

Figure: Stem cell differentiation

Motivation

Definition

Cell differentiation: Process in which a cell changes its type.

Figure: Epithelial-Mesenchymal Transition

Figure: Stem cell differentiation

- Cell types are characterised by phenotypic traits: size, shape, concentrations of molecules...

Motivation

Definition

Cell differentiation: Process in which a cell changes its type.

Figure: Epithelial-Mesenchymal Transition

Figure: Stem cell differentiation

- Cell types are characterised by phenotypic traits: size, shape, concentrations of molecules...
- Purpose: Developing a model for a population of cells undergoing differentiation, focusing on a phenotypic trait $x \in \mathbb{R}$.
(1) Motivation
(2) Construction of the model
(3) Asymptotic behaviour of the advection equation and the selection equation

4 Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

Advection equation

- Single cell undergoing differentiation: modelled by an ODE

$$
\left\{\begin{array}{l}
\dot{x}(t)=a(x(t)) \\
x(0)=x_{0}
\end{array}\right.
$$

- $x(t)$: phenotypic trait of the cell at time t.
- x_{0} : initial phenotypic trait.

For EMT: [Lu, Jolly et al., 2013] (Among many others)

Advection equation

- Single cell undergoing differentiation: modelled by an ODE

$$
\left\{\begin{array}{l}
\dot{x}(t)=a(x(t)) \\
x(0)=x_{0}
\end{array}\right.
$$

- $x(t)$: phenotypic trait of the cell at time t.
- x_{0} : initial phenotypic trait.

For EMT: [Lu, Jolly et al., 2013] (Among many others)

- Advection equation: A population of cells undergoing differentiation:

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)+\partial_{x}(a(x) n(t, x))=0 \tag{ADV}\\
n(0, x)=n^{0}(x)
\end{array}\right.
$$

- $n(t, x)$: size of the population with phenotypic trait x at time t.
- n^{0} : initial population distribution.

Integro-Differential Selection Equation

- Logistic model: Evolution of a uniform population of cells

$$
\left\{\begin{array}{l}
\dot{N}(t)=(R-N(t)) N(t) \\
N(0)=N^{0}
\end{array}\right.
$$

- $N(t)$: Size of the population at time t.
- $N^{0}>0$: Initial population size.

Integro-Differential Selection Equation

- Logistic model: Evolution of a uniform population of cells

$$
\left\{\begin{array}{l}
\dot{N}(t)=(R-N(t)) N(t) \\
N(0)=N^{0}
\end{array}\right.
$$

- $N(t)$: Size of the population at time t.
- $N^{0}>0$: Initial population size.
- Selection Equation: Evolution of a phenotype-structured population. [Transport equations in Biology, Perthame, 2006]

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)=(r(x)-\rho(t)) n(t, x) \tag{SEL}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \\
n(0, x)=n^{0}(x)
\end{array}\right.
$$

- $x \in \mathbb{R}$: a phenotypic trait.
- $n(t, x)$: size of the population with phenotypic trait x at time t.
- $\rho(t)$: total population size at time t.
- r : 'fitness' function.
- n^{0} : initial population distribution.

Selection-Advection Equation

$$
\left\{\begin{array} { l }
{ \partial _ { t } n (t , x) + \partial _ { x } (a (x) n (t , x)) = 0 } \\
{ n (0 , x) = n ^ { 0 } (x) }
\end{array} \quad \left\{\begin{array}{l}
\partial_{t} n(t, x)=(r(x)-\rho(t)) n(t, x) \tag{SEL}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \\
n(0, x)=n^{0}(x)
\end{array}\right.\right.
$$

Growth and selection

Selection-Advection Equation

$$
\begin{array}{r}
\left\{\begin{array} { l }
{ \partial _ { t } n (t , x) + \partial _ { x } (a (x) n (t , x)) = 0 } \\
{ n (0 , x) = n ^ { 0 } (x) }
\end{array} \quad \left\{\begin{array}{l}
\partial_{t} n(t, x)=(r(x)-\rho(t)) n(t, x) \\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \\
n(0, x)=n^{0}(x)
\end{array}\right.\right. \\
\text { Cell differentiation (ADV) }
\end{array}
$$

Cell differentiation

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)+\partial_{x}(a(x) n(t, x))=(r(x)-\rho(t)) n(t, x) \tag{SAE}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \\
n(0, x)=n^{0}(x)
\end{array}\right.
$$

Selection-Advection Equation

$$
\left\{\begin{array} { l }
{ \partial _ { t } n (t , x) + \partial _ { x } (a (x) n (t , x)) = 0 } \\
{ n (0 , x) = n ^ { 0 } (x) }
\end{array} \left\{\begin{array}{l}
\partial_{t} n(t, x)=(r(x)-\rho(t)) n(t, x) \tag{SEL}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \\
n(0, x)=n^{0}(x)
\end{array}\right.\right.
$$

Growth and selection

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)+\partial_{x}(a(x) n(t, x))=(r(x)-\rho(t)) n(t, x) \tag{SAE}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \\
n(0, x)=n^{0}(x)
\end{array}\right.
$$

What is the asymptotic behaviour of these models when t goes to $+\infty$?

Selection-Advection Equation

$$
\left\{\begin{array} { l }
{ \partial _ { t } n (t , x) + \partial _ { x } (a (x) n (t , x)) = 0 } \tag{SEL}\\
{ n (0 , x) = n ^ { 0 } (x) }
\end{array} \quad \left\{\begin{array}{l}
\partial_{t} n(t, x)=(r(x)-\rho(t)) n(t, x) \\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \\
n(0, x)=n^{0}(x)
\end{array}\right.\right.
$$

Cell differentiation
Growth and selection

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)+\partial_{x}(a(x) n(t, x))=(r(x)-\rho(t)) n(t, x) \tag{SAE}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \\
n(0, x)=n^{0}(x)
\end{array}\right.
$$

What is the asymptotic behaviour of these models when t goes to $+\infty$?

- Concentration ? (only a finite number of trait is preserved), i.e n converges to a sum of dirac masses.

Selection-Advection Equation

$$
\left\{\begin{array} { l }
{ \partial _ { t } n (t , x) + \partial _ { x } (a (x) n (t , x)) = 0 } \tag{SEL}\\
{ n (0 , x) = n ^ { 0 } (x) }
\end{array} \quad \left\{\begin{array}{l}
\partial_{t} n(t, x)=(r(x)-\rho(t)) n(t, x) \\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \\
n(0, x)=n^{0}(x)
\end{array}\right.\right.
$$

Cell differentiation
Growth and selection

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)+\partial_{x}(a(x) n(t, x))=(r(x)-\rho(t)) n(t, x) \tag{SAE}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \\
n(0, x)=n^{0}(x)
\end{array}\right.
$$

What is the asymptotic behaviour of these models when t goes to $+\infty$?

- Concentration ? (only a finite number of trait is preserved), i.e n converges to a sum of dirac masses.
- Preservation of a continuous set of traits ? i.e n converges to a continuous $/ L^{1}$ function.
(2) Construction of the model
(3) Asymptotic behaviour of the advection equation and the selection equation

4 Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

Asymptotic behaviour of the advection equation

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)+\partial_{x}(a(x) n(t, x))=0 \quad \forall x \in \mathbb{R} \tag{ADV}\\
n(0, x)=n^{0}(x) \quad \forall x \in \mathbb{R}
\end{array}\right.
$$

- $n^{0} \in \mathcal{C}_{c}(\mathbb{R}), n^{0} \geq 0, n^{0} \not \equiv 0$.
- $a \in \mathcal{C}^{1}(\mathbb{R})$ has a finite number of roots.

Asymptotic behaviour of the advection equation

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)+\partial_{x}(a(x) n(t, x))=0 \quad \forall x \in \mathbb{R} \tag{ADV}\\
n(0, x)=n^{0}(x) \quad \forall x \in \mathbb{R}
\end{array}\right.
$$

- $n^{0} \in \mathcal{C}_{c}(\mathbb{R}), n^{0} \geq 0, n^{0} \not \equiv 0$.
- $a \in \mathcal{C}^{1}(\mathbb{R})$ has a finite number of roots.
- Let us denote x_{1}, \ldots, x_{p} the roots of a which are asymptotically stable for the ODE $\dot{x}=a(x)$.
$n(t, \cdot)$ concentrates around $x_{1}, \ldots x_{p}$ when t goes to $+\infty$.

Example

- $X(t, y)$: Characteristic curves:

$$
\left\{\begin{array}{l}
\dot{X}(t, y)=a(X(t, y)) \\
X(0, y)=y
\end{array} \quad \forall t \geq 0, y \in \mathbb{R}\right.
$$

Example

- $X(t, y)$: Characteristic curves:

$$
\left\{\begin{array}{l}
\dot{X}(t, y)=a(X(t, y)) \\
X(0, y)=y
\end{array} \quad \forall t \geq 0, y \in \mathbb{R}\right.
$$

$$
\begin{gathered}
n(t, \cdot) \underset{t \rightarrow+\infty}{\longrightarrow} A_{1} \delta_{x_{s 1}}+A_{2} \delta_{x_{s 2}} \\
A_{1}=\int_{-\infty}^{x_{u 1}} n^{0}(x) d x, \quad A_{2}=\int_{x_{u_{1}}}^{x_{u 2}} n^{0}(x) d x .
\end{gathered}
$$

Asymptotic behaviour of the Selection Equation

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)=(r(x)-\rho(t)) n(t, x) \quad \forall t \geq 0, x \in \mathbb{R} \tag{SEL}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \quad \forall t \geq 0 \\
n(0, x)=n^{0}(x) \quad \forall x \in \mathbb{R}
\end{array}\right.
$$

- $n^{0} \in \mathcal{C}_{c}(\mathbb{R}), n^{0} \geq 0, n^{0} \not \equiv 0$.
- $r \in \mathcal{C}^{2}(\mathbb{R}), r^{M}:=\max _{\operatorname{supp}\left(n^{0}\right)} r>0, \underset{\operatorname{supp}\left(n^{0}\right)}{\operatorname{argmax}} r=\left\{x_{1}, \ldots, x_{p}\right\}$.

Asymptotic behaviour of the Selection Equation

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)=(r(x)-\rho(t)) n(t, x) \quad \forall t \geq 0, x \in \mathbb{R} \tag{SEL}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \quad \forall t \geq 0 \\
n(0, x)=n^{0}(x) \quad \forall x \in \mathbb{R}
\end{array}\right.
$$

- $n^{0} \in \mathcal{C}_{c}(\mathbb{R}), n^{0} \geq 0, n^{0} \not \equiv 0$.
- $r \in \mathcal{C}^{2}(\mathbb{R}), r^{M}:=\max _{\operatorname{supp}\left(n^{0}\right)} r>0, \underset{\operatorname{supp}\left(n^{0}\right)}{\operatorname{argmax}} r=\left\{x_{1}, \ldots, x_{p}\right\}$.

[Lorenzi, Pouchol 2019]

ρ converges to r^{M}, and $n(t, \cdot)$ concentrates around x_{1}, \ldots, x_{p} when t goes to $+\infty$.
Moreover, if $\forall i \in\{1, \ldots, p\}, f^{\prime \prime}\left(x_{i}\right)<0$, then $n(t, x) \underset{t \rightarrow+\infty}{\rightharpoonup} r^{M} \sum_{i=1}^{p} \alpha_{i} \delta_{x_{i}}$, with
$\alpha_{i}=A \frac{n^{0}\left(x_{i}\right)}{\left|f^{\prime \prime}\left(x_{i}\right)\right|}, A$ such that $\sum_{i=1}^{p} \alpha_{i}=1$.

Example

Example

$$
\begin{gathered}
n(t, \cdot) \underset{t \rightarrow+\infty}{\rightharpoonup} A_{1} \delta_{x_{1}}+A_{2} \delta_{x_{2}} \\
A_{1}+A_{2}=r^{M}
\end{gathered}
$$

(2) Construction of the model

(3) Asymptotic behaviour of the advection equation and the selection equation
(4) Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example
(1) Motivation
(2) Construction of the model
(3) Asymptotic behaviour of the advection equation and the selection equation

44 Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

Asymptotic behaviour of the Selection-Advection equation

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)+\partial_{x}(a(x) n(t, x))=(r(x)-\rho(t)) n(t, x) \quad \forall t \geq 0, \forall x \in \mathbb{R} \tag{SAE}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \quad \forall t \geq 0 \\
n(0, x)=n^{0}(x) \quad \forall x \in \mathbb{R}
\end{array}\right.
$$

- $n^{0} \in \mathcal{C}_{c}^{1}(\mathbb{R}), n^{0} \geq 0, n^{0} \not \equiv 0$.
- $a \in \mathcal{C}^{1}(\mathbb{R})$.
- $r \in \mathcal{C}(\mathbb{R}) \cap L^{1}(\mathbb{R}), \quad r \geq 0 \quad r(x) \underset{x \rightarrow \pm \infty}{\longrightarrow} 0$.

Asymptotic behaviour of the Selection-Advection equation

$$
\left\{\begin{array}{l}
\partial_{t} n(t, x)+\partial_{x}(a(x) n(t, x))=(r(x)-\rho(t)) n(t, x) \quad \forall t \geq 0, \forall x \in \mathbb{R} \tag{SAE}\\
\rho(t)=\int_{\mathbb{R}} n(t, x) d x \quad \forall t \geq 0 \\
n(0, x)=n^{0}(x) \quad \forall x \in \mathbb{R}
\end{array}\right.
$$

- $n^{0} \in \mathcal{C}_{c}^{1}(\mathbb{R}), n^{0} \geq 0, n^{0} \not \equiv 0$.
- $a \in \mathcal{C}^{1}(\mathbb{R})$.
- $r \in \mathcal{C}(\mathbb{R}) \cap L^{1}(\mathbb{R}), \quad r \geq 0 \quad r(x) \underset{x \rightarrow \pm \infty}{\longrightarrow} 0$.

Key idea:

Computing the limit of $R(t):=\frac{S^{\prime}(t)}{S(t)}$, where

$$
\begin{aligned}
& S(t):=\int_{\mathbb{R}} n^{0}(Y(t, x)) e^{\int_{0}^{t} r(Y(s, x))-a^{\prime}(Y(s, x)) d s} d x \\
& \left\{\begin{array}{l}
\dot{Y}(t, x)=-a(Y(t, x)) \\
Y(0, x)=x
\end{array}\right.
\end{aligned}
$$

Summary of the method

(1) First step: Compute the limit of R, i.e. the asymptotic behaviour of parameter-dependent integrals.

Summary of the method

(1) First step: Compute the limit of R, i.e. the asymptotic behaviour of parameter-dependent integrals.
(2) Second step: Deduce the limit of ρ.

ODE satisfied by ρ

$$
\dot{\rho}(t)=(R(t)-\rho(t)) \rho(t)
$$

ρ is the solution of a non-autonomous logistic equation

Summary of the method

(1) First step: Compute the limit of R, i.e. the asymptotic behaviour of parameter-dependent integrals.
(2) Second step: Deduce the limit of ρ.

ODE satisfied by ρ

$$
\dot{\rho}(t)=(R(t)-\rho(t)) \rho(t)
$$

ρ is the solution of a non-autonomous logistic equation

Lemma

If $R(t) \underset{t \rightarrow+\infty}{\longrightarrow} \bar{R}$, then $\rho(t) \underset{t \rightarrow+\infty}{\longrightarrow} \bar{R}$

Summary of the method

(1) First step: Compute the limit of R, i.e. the asymptotic behaviour of parameter-dependent integrals.
(2) Second step: Deduce the limit of ρ.

ODE satisfied by ρ

$$
\dot{\rho}(t)=(R(t)-\rho(t)) \rho(t)
$$

ρ is the solution of a non-autonomous logistic equation

Lemma

If $R(t) \underset{t \rightarrow+\infty}{\longrightarrow} \bar{R}$, then $\rho(t) \underset{t \rightarrow+\infty}{\longrightarrow} \bar{R}$
If there exist $C, \delta>0$ s.t $|R(t)-\bar{R}| \leq C e^{-\delta t}$, then there exist $C^{\prime}, \delta^{\prime}>0$ such that $|\rho(t)-\bar{R}| \leq C^{\prime} e^{-\delta^{\prime} t}$

Summary of the method

(1) First step: Compute the limit of R, i.e. the asymptotic behaviour of parameter-dependent integrals.
(2) Second step: Deduce the limit of ρ.

ODE satisfied by ρ

$$
\dot{\rho}(t)=(R(t)-\rho(t)) \rho(t)
$$

ρ is the solution of a non-autonomous logistic equation

Lemma

If $R(t) \underset{t \rightarrow+\infty}{\longrightarrow} \bar{R}$, then $\rho(t) \underset{t \rightarrow+\infty}{\longrightarrow} \bar{R}$
If there exist $C, \delta>0$ s.t $|R(t)-\bar{R}| \leq C e^{-\delta t}$, then there exist $C^{\prime}, \delta^{\prime}>0$ such that $|\rho(t)-\bar{R}| \leq C^{\prime} e^{-\delta^{\prime} t}$
(3) Third step: Determine the asymptotic behaviour of n.

Semi-explicit expression of n

$$
n(t, x)=n^{0}(Y(t, x)) e^{\int_{0}^{t} r(Y(s, x))-a^{\prime}(Y(s, x))-\rho(s) d s}
$$

(1) Motivation
(2) Construction of the model
(3) Asymptotic behaviour of the advection equation and the selection equation

44 Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

Unique asymptotically stable point

- a has a unique root, denoted x_{s}.
- $a^{\prime}\left(x_{s}\right)<0$.

Unique asymptotically stable point

Lemma

$R(t)$ converges to $r\left(x_{s}\right)$.

Unique asymptotically stable point

Lemma

$R(t)$ converges to $r\left(x_{s}\right)$.

$$
\dot{\rho}(t)=(R(t)-\rho(t)) \rho(t), \quad n(t, x)=n^{0}(Y(t, x)) e^{\int_{0}^{t} r(Y(s, x))-a^{\prime}(Y(s, x))-\rho(s) d s}
$$

- $\rho(t) \underset{t \rightarrow+\infty}{\longrightarrow} r\left(x_{s}\right)$
- $n(t, \cdot) \underset{t \rightarrow+\infty}{\stackrel{\infty}{r}} r\left(x_{s}\right) \delta_{x_{s}}$

Unique asymptotically unstable point

- a has a unique root, denoted x_{u}.
- $a^{\prime}\left(x_{u}\right)>0$.
- $\exists M, d>0: \quad|x| \geq M \Rightarrow|a(x)| \geq d$.
- $n^{0}\left(x_{u}\right)>0$

Unique asymptotically unstable point

- a has a unique root, denoted x_{u}.
- $a^{\prime}\left(x_{u}\right)>0$.
- $\exists M, d>0: \quad|x| \geq M \Rightarrow|a(x)| \geq d$.
- $n^{0}\left(x_{u}\right)>0$

Lemma

$$
R(t) \underset{t \rightarrow+\infty}{\longrightarrow}\left\{\begin{array}{cc}
0 & \text { if } r\left(x_{u}\right)<a^{\prime}\left(x_{u}\right) \\
r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right) & \text { if } r\left(x_{u}\right)>a^{\prime}\left(x_{u}\right)
\end{array}\right.
$$

Unique asymptotically unstable point

- a has a unique root, denoted x_{u}.
- $a^{\prime}\left(x_{u}\right)>0$.
- $\exists M, d>0:|x| \geq M \Rightarrow|a(x)| \geq d$.
- $n^{0}\left(x_{u}\right)>0$

Lemma

$$
R(t) \underset{t \rightarrow+\infty}{\longrightarrow}\left\{\begin{array}{cc}
0 & \text { if } r\left(x_{u}\right)<a^{\prime}\left(x_{u}\right) \\
r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right) & \text { if } r\left(x_{u}\right)>a^{\prime}\left(x_{u}\right)
\end{array}\right.
$$

If $r\left(x_{u}\right)<a^{\prime}\left(x_{u}\right)$:

- $\rho(t) \underset{t \rightarrow+\infty}{\longrightarrow} 0$
- $n(t, \cdot) \xrightarrow{L^{1}} 0$

Unique asymptotically unstable point

- a has a unique root, denoted x_{u}.
- $a^{\prime}\left(x_{u}\right)>0$.
- $\exists M, d>0: \quad|x| \geq M \Rightarrow|a(x)| \geq d$.
- $n^{0}\left(x_{u}\right)>0$.

Lemma

$$
R(t) \underset{t \rightarrow+\infty}{\longrightarrow}\left\{\begin{array}{cl}
0 & \text { if } r\left(x_{u}\right)<a^{\prime}\left(x_{u}\right) \\
r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right) & \text { if } r\left(x_{u}\right)>a^{\prime}\left(x_{u}\right)
\end{array}\right.
$$

Unique asymptotically unstable point

- a has a unique root, denoted x_{u}.
- $a^{\prime}\left(x_{u}\right)>0$.
- $\exists M, d>0: \quad|x| \geq M \Rightarrow|a(x)| \geq d$.
- $n^{0}\left(x_{u}\right)>0$.

Lemma

$$
R(t) \underset{t \rightarrow+\infty}{\longrightarrow}\left\{\begin{array}{cc}
0 & \text { if } r\left(x_{u}\right)<a^{\prime}\left(x_{u}\right) \\
r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right) & \text { if } r\left(x_{u}\right)>a^{\prime}\left(x_{u}\right)
\end{array} \quad\right. \text { (with an exponential speed) }
$$

If $r\left(x_{u}\right)>a^{\prime}\left(x_{u}\right)$:

- $\rho(t) \underset{t \rightarrow+\infty}{\longrightarrow} r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right)$ (with an exponential speed)
- $n(t, \cdot) \xrightarrow{L^{1}} \bar{n}, \quad \bar{n}(x)=A e^{\int_{X_{u}}^{x} \frac{r(s)-a^{\prime}(s)-\left(r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right)\right)}{a(s)} d s} \quad \int_{\mathbb{R}} \bar{n}(x) d x=r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right)$

A segment between two roots

- a has exactly two roots $x_{u}<x_{s}$.
- $a^{\prime}\left(x_{u}\right)>0, \quad a^{\prime}\left(x_{s}\right)<0$.
- $\operatorname{supp}\left(n^{0}\right) \subset\left[x_{u}, x_{s}\right]$.
- $n^{0}\left(x_{u}\right)>0$.

A segment between two roots

- a has exactly two roots $x_{u}<x_{s}$.
- $a^{\prime}\left(x_{u}\right)>0, \quad a^{\prime}\left(x_{s}\right)<0$.
- $\operatorname{supp}\left(n^{0}\right) \subset\left[x_{u}, x_{s}\right]$.
- $n^{0}\left(x_{u}\right)>0$.

Lemma

(with an exponential speed)

A segment between two roots

- a has exactly two roots $x_{u}<x_{s}$.
- $a^{\prime}\left(x_{u}\right)>0, \quad a^{\prime}\left(x_{s}\right)<0$.
- $\operatorname{supp}\left(n^{0}\right) \subset\left[x_{u}, x_{s}\right]$.
- $n^{0}\left(x_{u}\right)>0$.

Lemma

$$
R(t) \underset{t \rightarrow+\infty}{\longrightarrow}\left\{\begin{array}{c}
r\left(x_{s}\right) \quad \text { if } r\left(x_{s}\right)>r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right) \\
r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right) \text { if } r\left(x_{s}\right)<r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right)
\end{array}\right.
$$

$$
\text { If } r\left(x_{s}\right)>r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right)
$$

- $\rho(t) \underset{t \rightarrow+\infty}{\longrightarrow} r\left(x_{s}\right)$
- $n(t, \cdot) \underset{t \rightarrow+\infty}{\rightharpoonup} r\left(x_{s}\right) \delta x_{s}$

A segment between two roots

- a has exactly two roots $x_{u}<x_{s}$.
- $a^{\prime}\left(x_{u}\right)>0, \quad a^{\prime}\left(x_{s}\right)<0$.
- $\operatorname{supp}\left(n^{0}\right) \subset\left[x_{u}, x_{s}\right]$.
- $n^{0}\left(x_{u}\right)>0$.

Lemma

$$
R(t) \underset{t \rightarrow+\infty}{\longrightarrow}\left\{\begin{array}{c}
r\left(x_{s}\right) \quad \text { if } r\left(x_{s}\right)>r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right) \\
r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right) \text { if } r\left(x_{s}\right)<r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right)
\end{array}\right.
$$

A segment between two roots

- a has exactly two roots $x_{u}<x_{s}$.
- $a^{\prime}\left(x_{u}\right)>0, \quad a^{\prime}\left(x_{s}\right)<0$.
- $\operatorname{supp}\left(n^{0}\right) \subset\left[x_{u}, x_{s}\right]$.
- $n^{0}\left(x_{u}\right)>0$.

Lemma

$$
R(t) \underset{t \rightarrow+\infty}{\longrightarrow}\left\{\begin{array}{c}
r\left(x_{s}\right) \quad \text { if } r\left(x_{s}\right)>r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right) \\
r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right) \text { if } r\left(x_{s}\right)<r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right)
\end{array}\right.
$$

$$
\text { If } r\left(x_{s}\right)<r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right):
$$

- $\rho(t) \underset{t \rightarrow+\infty}{\longrightarrow} r\left(x_{u}\right)-a^{\prime}\left(x_{u}\right)$

(1) Motivation
(2) Construction of the model
(3) Asymptotic behaviour of the advection equation and the selection equation

44 Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

A more general example

Problem: The limit of R is difficult to determine in general.

A more general example
Problem: The limit of R is difficult to determine in general.

- $I_{1}, \ldots I_{\rho}$ denotes the intervals between the roots.
- One can apply the previous method on each interval.

A more general example
Problem: The limit of R is difficult to determine in general.

- $I_{1}, \ldots I_{p}$ denotes the intervals between the roots.
- One can apply the previous method on each interval.

Four possible behaviours (depending on the values of r, n^{0} and a^{\prime} at the equilibria):

- $n(t, \cdot) \underset{t \rightarrow+\infty}{\rightharpoonup} r\left(x_{s 1}\right) \delta_{x_{s 1}}$
- $n(t, \cdot) \xrightarrow{L^{1}} \bar{n}_{1}, \operatorname{supp}\left(\bar{n}_{1}\right) \subset\left[x_{s 1}, x_{s 2}\right]$
- $n(t, \cdot) \underset{t \rightarrow+\infty}{\rightharpoonup} r\left(x_{s 2}\right) \delta_{x_{s 2}}$
- $n(t, \cdot) \xrightarrow{L^{1}} \bar{n}_{2}, \operatorname{supp}\left(\bar{n}_{2}\right) \subset\left[x_{s 2},+\infty\right)$

Thank you for your attention

