Asymptotic behaviour of an integro-differential selection-advection equation

Jules Guilberteau

June 15, 2022

PhD under the supervision of Nastassia Pouradier Duteil and Camille Pouchol

Construction of the model

3 Asymptotic behaviour of the advection equation and the selection equation

Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

Definition

Cell differentiation: Process in which a cell changes its type.

Definition

Cell differentiation: Process in which a cell changes its type.

Figure: Stem cell differentiation

Figure: Epithelial-Mesenchymal Transition

Definition

Cell differentiation: Process in which a cell changes its type.

Figure: Stem cell differentiation

• Cell types are characterised by **phenotypic traits**: size, shape, concentrations of molecules...

Definition

Cell differentiation: Process in which a cell changes its type.

Figure: Stem cell differentiation

- Cell types are characterised by **phenotypic traits**: size, shape, concentrations of molecules...
- Purpose: Developing a model for a population of cells undergoing differentiation, focusing on a phenotypic trait x ∈ ℝ.

2 Construction of the model

3 Asymptotic behaviour of the advection equation and the selection equation

4 Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

Advection equation

• Single cell undergoing differentiation: modelled by an ODE

$$\begin{cases} \dot{x}(t) = a(x(t)) \\ x(0) = x_0 \end{cases}$$

- x(t): phenotypic trait of the cell at time t.
- x₀: initial phenotypic trait.

For EMT: [Lu, Jolly et al., 2013] (Among many others)

Advection equation

• Single cell undergoing differentiation: modelled by an ODE

$$\begin{cases} \dot{x}(t) = a(x(t)) \\ x(0) = x_0 \end{cases}$$

- x(t): phenotypic trait of the cell at time t.
- x₀: initial phenotypic trait.

For EMT: [Lu, Jolly et al., 2013] (Among many others)

• Advection equation: A population of cells undergoing differentiation:

$$\begin{cases} \partial_t n(t,x) + \partial_x \left(a(x)n(t,x) \right) = 0\\ n(0,x) = n^0(x) \end{cases}$$
(ADV)

n(t, x): size of the population with phenotypic trait x at time t.
 n⁰: initial population distribution.

Integro-Differential Selection Equation

• Logistic model: Evolution of a uniform population of cells

$$\left\{ egin{array}{l} \dot{N}(t) = (R-N(t))N(t) \ N(0) = N^0 \end{array}
ight.$$

- N(t): Size of the population at time t.
 N⁰ > 0: Initial population size.

Integro-Differential Selection Equation

• Logistic model: Evolution of a uniform population of cells

$$\left\{egin{array}{l} \dot{N}(t) = (R-N(t))N(t)\ N(0) = N^0 \end{array}
ight.$$

- N(t): Size of the population at time t.
- $N^{0} > 0$: Initial population size.
- **Selection Equation:** Evolution of a phenotype-structured population. [*Transport equations in Biology*, Perthame, 2006]

$$\begin{cases} \partial_t n(t,x) = (r(x) - \rho(t)) n(t,x) \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx \\ n(0,x) = n^0(x) \end{cases}$$
(SEL)

- $x \in \mathbb{R}$: a phenotypic trait.
- n(t, x): size of the population with phenotypic trait x at time t.
- $\rho(t)$: total population size at time t.
- r: 'fitness' function.
- n⁰: initial population distribution.

 $\begin{cases} \partial_t n(t, x) + \partial_x \left(a(x) n(t, x) \right) = 0\\ n(0, x) = n^0(x) \end{cases}$ (ADV)

Cell differentiation

 $\begin{cases} \partial_t n(t,x) = (r(x) - \rho(t)) n(t,x) \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx \\ n(0,x) = n^0(x) \end{cases}$ (SEL)

Growth and selection

 $\begin{cases} \partial_t n(t, x) + \partial_x \left(a(x) n(t, x) \right) = 0\\ n(0, x) = n^0(x) \end{cases}$ (ADV)
Cell differentiation

$$\begin{cases} \partial_t n(t,x) = (r(x) - \rho(t)) n(t,x) \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx \\ n(0,x) = n^0(x) \end{cases}$$
(SEL)

Growth and selection

$$\begin{aligned} \partial_t n(t,x) &+ \partial_x (a(x)n(t,x)) = (r(x) - \rho(t))n(t,x) \\ \rho(t) &= \int_{\mathbb{R}} n(t,x) dx \\ n(0,x) &= n^0(x) \end{aligned}$$
 (SAE)

$$\begin{cases} \partial_t n(t,x) + \partial_x (a(x)n(t,x)) = 0\\ n(0,x) = n^0(x) \end{cases}$$
(ADV)
$$\begin{cases} \partial_t n(t,x) = (r(x) - \rho(t)) n(t,x) \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx \\ n(0,x) = n^0(x) \end{cases}$$
Growth and selection

$$\begin{cases} \partial_t n(t,x) + \partial_x (a(x)n(t,x)) = (r(x) - \rho(t))n(t,x) \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx \\ n(0,x) = n^0(x) \end{cases}$$
(SAE)

What is the asymptotic behaviour of these models when t goes to $+\infty$?

(SEL)

$$\begin{cases} \partial_t n(t,x) + \partial_x (a(x)n(t,x)) = 0\\ n(0,x) = n^0(x) \end{cases}$$
(ADV)
$$\begin{cases} \partial_t n(t,x) = (r(x) - \rho(t)) n(t,x) \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx \\ n(0,x) = n^0(x) \end{cases}$$
(SEL
Growth and selection

$$\begin{cases} \partial_t n(t,x) + \partial_x (a(x)n(t,x)) = (r(x) - \rho(t))n(t,x) \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx \\ n(0,x) = n^0(x) \end{cases}$$
(SAE)

(2 (1) (1) (1) (1) (1) (1)

What is the asymptotic behaviour of these models when t goes to $+\infty$?

• Concentration ? (only a finite number of trait is preserved), *i.e n* converges to a sum of dirac masses.

$$\begin{cases} \partial_t n(t,x) + \partial_x (a(x)n(t,x)) = 0\\ n(0,x) = n^0(x) \end{cases}$$
(ADV)
$$\begin{cases} \partial_t n(t,x) = (r(x) - \rho(t)) n(t,x) \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx \\ n(0,x) = n^0(x) \end{cases}$$
(SEL)
Growth and selection

$$\begin{cases} \partial_t n(t,x) + \partial_x (a(x)n(t,x)) = (r(x) - \rho(t))n(t,x) \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx \\ n(0,x) = n^0(x) \end{cases}$$
(SAE)

What is the asymptotic behaviour of these models when t goes to $+\infty$?

- Concentration ? (only a finite number of trait is preserved), *i.e n* converges to a sum of dirac masses.
- Preservation of a continuous set of traits ? *i.e n* converges to a continuous/L¹ function.

Construction of the model

3 Asymptotic behaviour of the advection equation and the selection equation

4 Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

Asymptotic behaviour of the advection equation

$$\begin{cases} \partial_t n(t,x) + \partial_x \left(a(x)n(t,x) \right) = 0 \quad \forall x \in \mathbb{R} \\ n(0,x) = n^0(x) \quad \forall x \in \mathbb{R} \end{cases}$$

- $n^0 \in \mathcal{C}_c(\mathbb{R}), n^0 \geq 0, n^0 \not\equiv 0.$
- $a \in C^1(\mathbb{R})$ has a finite number of roots.

(ADV

Asymptotic behaviour of the advection equation

$$\begin{cases} \partial_t n(t,x) + \partial_x \left(a(x)n(t,x) \right) = 0 & \forall x \in \mathbb{R} \\ n(0,x) = n^0(x) & \forall x \in \mathbb{R} \end{cases}$$
(ADV)

- n⁰ ∈ C_c(ℝ), n⁰ ≥ 0, n⁰ ≠ 0.
 a ∈ C¹(ℝ) has a finite number of roots.
- Let us denote $x_1, ..., x_p$ the roots of *a* which are asymptotically stable for the ODE $\dot{x} = a(x)$.

 $n(t, \cdot)$ concentrates around $x_1, ..., x_p$ when t goes to $+\infty$.

Example

• X(t, y): Characteristic curves:

$$egin{cases} \dot{X}(t,y) = a\left(X(t,y)
ight) \ X(0,y) = y \ \forall t \geq 0, y \in \mathbb{R} \end{cases}$$

Example

• X(t, y): Characteristic curves:

$$egin{cases} \dot{X}(t,y) = a\left(X(t,y)
ight) \ X(0,y) = y \ \forall t \geq 0, y \in \mathbb{R} \end{cases}$$

$$\begin{split} n(t,\cdot) & \xrightarrow{}_{t \to +\infty} A_1 \delta_{x_{s1}} + A_2 \delta_{x_{s2}}, \\ A_1 &= \int_{-\infty}^{x_{u1}} n^0(x) dx, \quad A_2 = \int_{x_{u_1}}^{x_{u2}} n^0(x) dx. \end{split}$$

Jules Guilberteau (Laboratoire Jacques-Louis Lions)

Asymptotic behaviour of the Selection Equation

$$\begin{cases} \partial_t n(t,x) = (r(x) - \rho(t)) n(t,x) & \forall t \ge 0, x \in \mathbb{R} \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx & \forall t \ge 0 \\ n(0,x) = n^0(x) & \forall x \in \mathbb{R} \end{cases}$$
(SEL)

•
$$n^0 \in C_c(\mathbb{R}), n^0 \ge 0, n^0 \not\equiv 0.$$

• $r \in C^2(\mathbb{R}), r^M := \max_{\supp(n^0)} r > 0, \operatorname{argmax}_{supp(n^0)} r = \{x_1, ..., x_p\}.$

Asymptotic behaviour of the Selection Equation

$$\begin{cases} \partial_t n(t,x) = (r(x) - \rho(t)) n(t,x) & \forall t \ge 0, x \in \mathbb{R} \\ \rho(t) = \int_{\mathbb{R}} n(t,x) dx & \forall t \ge 0 \\ n(0,x) = n^0(x) & \forall x \in \mathbb{R} \end{cases}$$
(SEL)

•
$$n^0 \in C_c(\mathbb{R}), n^0 \ge 0, n^0 \not\equiv 0.$$

• $r \in C^2(\mathbb{R}), r^M := \max_{\supp(n^0)} r > 0, \operatorname{argmax}_{supp(n^0)} r = \{x_1, ..., x_p\}.$

[Lorenzi, Pouchol 2019]

 ρ converges to r^M , and $n(t, \cdot)$ concentrates around $x_1, ..., x_p$ when t goes to $+\infty$. Moreover, if $\forall i \in \{1, ..., p\}$, $f''(x_i) < 0$, then $n(t, x) \xrightarrow[t \to +\infty]{} r^M \sum_{i=1}^p \alpha_i \delta_{x_i}$, with $\alpha_i = A \frac{n^0(x_i)}{|f''(x_i)|}$, A such that $\sum_{i=1}^p \alpha_i = 1$.

2 Construction of the model

3 Asymptotic behaviour of the advection equation and the selection equation

4 Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

2 Construction of the model

3 Asymptotic behaviour of the advection equation and the selection equation

Asymptotic behaviour of the Selection-Advection equation Method

- Three key examples
- A more general example

Asymptotic behaviour of the Selection-Advection equation

$$\begin{cases} \partial_t n(t,x) + \partial_x (a(x)n(t,x)) = (r(x) - \rho(t))n(t,x) & \forall t \ge 0, \forall x \in \mathbb{R} \\ \rho(t) = \int_{\mathbb{R}} n(t,x)dx & \forall t \ge 0 \\ n(0,x) = n^0(x) & \forall x \in \mathbb{R} \end{cases}$$
(SAE)

•
$$n^0 \in C^1_c(\mathbb{R}), n^0 \ge 0, n^0 \not\equiv 0.$$

- $a \in C^1(\mathbb{R})$.
- $r \in \mathcal{C}(\mathbb{R}) \cap L^1(\mathbb{R}), \quad r \geq 0 \quad r(x) \underset{x \to \pm \infty}{\longrightarrow} 0.$

Asymptotic behaviour of the Selection-Advection equation

$$\begin{cases} \partial_t n(t,x) + \partial_x (a(x)n(t,x)) = (r(x) - \rho(t))n(t,x) & \forall t \ge 0, \forall x \in \mathbb{R} \\ \rho(t) = \int_{\mathbb{R}} n(t,x)dx & \forall t \ge 0 \\ n(0,x) = n^0(x) & \forall x \in \mathbb{R} \end{cases}$$
(SAE)

0.

•
$$n^0 \in C^1_c(\mathbb{R}), n^0 \ge 0, n^0 \not\equiv 0.$$

• $a \in C^1(\mathbb{R}).$
• $r \in C(\mathbb{R}) \cap L^1(\mathbb{R}), \quad r \ge 0 \quad r(x) \xrightarrow[x \to \pm \infty]{}$

Key idea:

Computing the limit of $R(t) := \frac{S'(t)}{S(t)}$, where

$$S(t) := \int_{\mathbb{R}} n^{0}(Y(t,x)) e^{\int_{0}^{t} r(Y(s,x)) - a'(Y(s,x)) ds} dx,$$

$$\begin{cases} \dot{Y}(t,x) = -a(Y(t,x)) \\ Y(0,x) = x \end{cases}$$

• **First step:** Compute the limit of *R*, *i.e.* the asymptotic behaviour of parameter-dependent integrals.

- First step: Compute the limit of *R*, *i.e.* the asymptotic behaviour of parameter-dependent integrals.
- **2** Second step: Deduce the limit of ρ .

ODE satisfied by ρ

$$\dot{\rho}(t) = (R(t) - \rho(t)) \rho(t)$$

 ρ is the solution of a non-autonomous logistic equation

- First step: Compute the limit of *R*, *i.e.* the asymptotic behaviour of parameter-dependent integrals.
- **2** Second step: Deduce the limit of ρ .

ODE satisfied by ρ

$$\dot{\rho}(t) = (R(t) - \rho(t)) \rho(t)$$

 ρ is the solution of a non-autonomous logistic equation

Lemma

If
$$R(t) \xrightarrow[t \to +\infty]{} \overline{R}$$
, then $ho(t) \xrightarrow[t \to +\infty]{} \overline{R}$

- First step: Compute the limit of *R*, *i.e.* the asymptotic behaviour of parameter-dependent integrals.
- **2** Second step: Deduce the limit of ρ .

ODE satisfied by ρ

$$\dot{\rho}(t) = (R(t) - \rho(t)) \rho(t)$$

 ρ is the solution of a non-autonomous logistic equation

Lemma

If
$$R(t) \underset{t \to +\infty}{\longrightarrow} \bar{R}$$
, then $\rho(t) \underset{t \to +\infty}{\longrightarrow} \bar{R}$

If there exist $C, \delta > 0$ s.t $|R(t) - \bar{R}| \le Ce^{-\delta t}$, then there exist $C', \delta' > 0$ such that $|\rho(t) - \bar{R}| \le C'e^{-\delta' t}$

- First step: Compute the limit of *R*, *i.e.* the asymptotic behaviour of parameter-dependent integrals.
- **2** Second step: Deduce the limit of ρ .

ODE satisfied by ρ

$$\dot{\rho}(t) = (R(t) - \rho(t)) \rho(t)$$

 ρ is the solution of a non-autonomous logistic equation

Lemma

If
$$R(t) \underset{t \to +\infty}{\longrightarrow} \bar{R}$$
, then $\rho(t) \underset{t \to +\infty}{\longrightarrow} \bar{R}$

If there exist $C, \delta > 0$ s.t $|R(t) - \overline{R}| \le Ce^{-\delta t}$, then there exist $C', \delta' > 0$ such that $|\rho(t) - \overline{R}| \le C'e^{-\delta' t}$

Solution Third step: Determine the asymptotic behaviour of *n*.

Semi-explicit expression of n

$$n(t,x) = n^{0} (Y(t,x)) e^{\int_{0}^{t} r(Y(s,x)) - a'(Y(s,x)) - \rho(s) ds}$$

2 Construction of the model

3 Asymptotic behaviour of the advection equation and the selection equation

Asymptotic behaviour of the Selection-Advection equation Method

- Three key examples
- A more general example

- a has a unique root, denoted x_s.
- $a'(x_s) < 0.$

• a has a unique root, denoted x_s .

•
$$a'(x_s) < 0.$$

Lemma

R(t) converges to $r(x_s)$.

• a has a unique root, denoted x_s .

•
$$a'(x_s) < 0.$$

Lemma

R(t) converges to $r(x_s)$.

$$\dot{\rho}(t) = (R(t) - \rho(t)) \,\rho(t), \quad n(t,x) = n^0 (Y(t,x)) e^{\int_0^t r(Y(s,x)) - a'(Y(s,x)) - \rho(s) ds}$$

•
$$\rho(t) \xrightarrow[t \to +\infty]{} r(x_s)$$

• $n(t, \cdot) \xrightarrow[t \to +\infty]{} r(x_s)\delta_{x_s}$

- a has a unique root, denoted x_u .
- $a'(x_u) > 0.$
- $\exists M, d > 0$: $|x| \ge M \Rightarrow |a(x)| \ge d$.
- $n^0(x_u) > 0$

Lemma

$$R(t) \underset{t \to +\infty}{\longrightarrow} \begin{cases} 0 \quad \text{if } r(x_u) < a'(x_u) \\ r(x_u) - a'(x_u) \quad \text{if } r(x_u) > a'(x_u) \end{cases} \quad \text{(with an exponential speed)}$$

Lemma

$$R(t) \xrightarrow[t \to +\infty]{} \begin{cases} 0 & \text{if } r(x_u) < a'(x_u) \\ r(x_u) - a'(x_u) & \text{if } r(x_u) > a'(x_u) \end{cases} \quad \text{(with an exponential speed)}$$

If
$$r(x_u) < a'(x_u)$$
:
• $\rho(t) \underset{t \to +\infty}{\longrightarrow} 0$
• $n(t, \cdot) \stackrel{L^1}{\longrightarrow} 0$

Lemma

$$R(t) \underset{t \to +\infty}{\longrightarrow} \begin{cases} 0 \quad \text{if } r(x_u) < a'(x_u) \\ r(x_u) - a'(x_u) \quad \text{if } r(x_u) > a'(x_u) \end{cases}$$

(with an exponential speed)

Lemma

$$R(t) \xrightarrow[t \to +\infty]{} \begin{cases} 0 & \text{if } r(x_u) < a'(x_u) \\ r(x_u) - a'(x_u) & \text{if } r(x_u) > a'(x_u) \end{cases} \quad \text{(with an exponential speed)}$$

If
$$r(x_u) > a'(x_u)$$
:
• $\rho(t) \xrightarrow[t \to +\infty]{t \to +\infty} r(x_u) - a'(x_u)$ (with an exponential speed)
• $n(t, \cdot) \xrightarrow{l^1} \bar{n}, \quad \bar{n}(x) = Ae^{\int_{x_u}^x \frac{r(s) - a'(s) - (r(x_u) - a'(x_u))}{a(s)} ds} \quad \int_{\mathbb{R}} \bar{n}(x) dx = r(x_u) - a'(x_u)$

- a has exactly two roots $x_u < x_s$.
- $a'(x_u) > 0$, $a'(x_s) < 0$.
- supp $(n^0) \subset [x_u, x_s]$.
- $n^0(x_u) > 0.$

• *a* has exactly two roots $x_u < x_s$.

•
$$a'(x_u) > 0$$
, $a'(x_s) < 0$.

• supp
$$(n^0) \subset [x_u, x_s].$$

•
$$n^0(x_u) > 0.$$

Lemma

$$R(t) \underset{t \to +\infty}{\longrightarrow} \begin{cases} r(x_s) & \text{if } r(x_s) > r(x_u) - a'(x_u) \\ r(x_u) - a'(x_u) & \text{if } r(x_s) < r(x_u) - a'(x_u) \end{cases}$$

(with an exponential speed)

If
$$r(x_s) < r(x_u) - a'(x_u)$$
:
• $\rho(t) \xrightarrow[t \to +\infty]{} r(x_u) - a'(x_u)$
• $n(t, \cdot) \stackrel{l^1}{\longrightarrow} \bar{n}, \quad \bar{n}(x) = Ae^{\int_{x_u}^x \frac{r(s) - a'(s) - (r(x_u) - a'(x_u))}{a(s)} ds} \mathbb{1}_{(x_u, x_s)}, \ \int_{\mathbb{R}} \bar{n}(x) dx = r(x_u) - a'(x_u)$

2 Construction of the model

3 Asymptotic behaviour of the advection equation and the selection equation

4 Asymptotic behaviour of the Selection-Advection equation

- Method
- Three key examples
- A more general example

A more general example

Problem: The limit of *R* is difficult to determine in general.

A more general example

Problem: The limit of *R* is difficult to determine in general.

- $I_1, ... I_p$ denotes the intervals between the roots.
- One can apply the previous method on each interval.

A more general example

Problem: The limit of *R* is difficult to determine in general.

- $I_1, ... I_p$ denotes the intervals between the roots.
- One can apply the previous method on each interval.

Four possible behaviours (depending on the values of r, n^0 and a' at the equilibria):

•
$$n(t, \cdot) \xrightarrow[t \to +\infty]{} r(x_{s1})\delta_{x_{s1}}$$

• $n(t, \cdot) \xrightarrow[t \to +\infty]{} r(x_{s2})\delta_{x_{s2}}$
• $n(t, \cdot) \xrightarrow[t \to +\infty]{} \bar{n}_1, \operatorname{supp}(\bar{n}_1) \subset [x_{s1}, x_{s2}]$
• $n(t, \cdot) \xrightarrow{L^1} \bar{n}_2, \operatorname{supp}(\bar{n}_2) \subset [x_{s2}, +\infty)$

Thank you for your attention