Linear elliptic homogenization with non-periodic highly oscillating potentials

Rémi Goudey

Joint work with Claude Le Bris

Ecole des ponts ParisTech and MATHERIALS Team, INRIA Paris

CANUM 2020+2

École des Ponts ParisTech

Purpose : To address an homogenization problem for stationary Schrödinger equation with highly oscillating potential :

$$\begin{cases} -\Delta u^{\varepsilon} + \frac{1}{\varepsilon} V(./\varepsilon) u^{\varepsilon} = f \quad \text{on } \Omega \\ u_{\varepsilon} = 0 \qquad \text{on } \partial \Omega. \end{cases}$$

Where :

- $\Omega \subset \mathbb{R}^d$ is a bounded domain $(d \ge 1)$.
- $f \in L^2(\Omega)$.
- $\varepsilon > 0$ is a small scale parameter.
- V ∈ L[∞](ℝ^d) is a non-periodic potential that models a perturbed periodic geometry.
- $\lim_{\varepsilon \to 0} V(./\varepsilon) = 0$ in $L^{\infty}(\mathbb{R}^d) \star$. \leftarrow necessary assumption due to the exploding term $\frac{1}{\varepsilon}V(./\varepsilon)$

(1)

Purpose : To address an homogenization problem for stationary Schrödinger equation with highly oscillating potential :

$$\begin{cases} -\Delta u^{\varepsilon} + \frac{1}{\varepsilon} V(./\varepsilon) u^{\varepsilon} = f \quad \text{on } \Omega \\ u_{\varepsilon} = 0 \qquad \text{on } \partial \Omega. \end{cases}$$
(1)

Main questions :

Can we identify the limit of u^{ε} when the scale parameter $\varepsilon \to 0$ and study the convergence for several topologies $(L^2(\Omega), H^1(\Omega),...)$?

$$\longrightarrow \exists u^* \text{ s.t. } u^{\varepsilon} \xrightarrow{\varepsilon \to 0} u^* ?$$

$$\longrightarrow \exists V^* \text{ s.t. } -\Delta u^* + V^* u^* = f ?$$

The periodic case

The periodic problem, when $V = V_{per}$ and $\langle V_{per} \rangle = \int_Q V_{per} = 0$, is well known ¹:

 \longrightarrow If u^{ε} converges, a formal approach shows that its limit u^* is a solution to the *homogenized* equation :

$$\begin{cases} -\Delta u^* + \langle w_{per} V_{per} \rangle u^* = f & \text{on } \Omega \\ u^* = 0 & \text{on } \partial \Omega. \end{cases}$$

and w_{per} is a periodic corrector solution to corrector equation :

$$\Delta w_{per} = V_{per} \quad \text{on } \mathbb{R}^d \tag{3}$$

 \longrightarrow When $\varepsilon \rightarrow 0$, we expect

$$u^{\varepsilon} \sim u^* + \varepsilon u^* w_{per}(./\varepsilon).$$

¹[Bensoussan, Lions, Papanicolaou '1978]

(2)

Periodic case

Results in the periodic case :

1. Existence of a corrector ?

 $\langle V_{per} \rangle = 0 \Rightarrow \exists w_{per} \text{ periodic solution to } \Delta w_{per} = V_{per}.$ **Remark** : $\Delta w_{per} = V_{per} \xrightarrow{\text{Green formula}} \langle w_{per} V_{per} \rangle = - \langle |\nabla w_{per}|^2 \rangle.$

2. Well-posedness of $-\Delta u^{\varepsilon} + \frac{1}{\varepsilon}V(./\varepsilon)u^{\varepsilon} = f$?

Let μ_1 and λ_1^{ε} be respectively the first eigenvalue of $-\Delta$ and the first eigenvalue of $-\Delta + \frac{1}{\varepsilon}V(./\varepsilon)$ with homogeneous Dirichlet b.c. on Ω . Then :

$$\lambda_1^{\varepsilon} \xrightarrow{\varepsilon \to 0} \mu_1 - \left\langle |\nabla w_{per}|^2 \right\rangle.$$

Consequence: $\mu_1 - \langle |\nabla w_{per}|^2 \rangle > 0$ and ε small \Rightarrow Existence and uniqueness of u^{ε} in $H_0^1(\Omega)$.

Results in the periodic case :

- 3. Assume $\mu_1 \langle |\nabla w_{per}|^2 \rangle > 0$, then $\lim_{\varepsilon \to 0} u^{\varepsilon} = u^*$ strongly in $L^2(\Omega)$, weakly in $H^1(\Omega)$.
- 4. Define $R^{\varepsilon} = u^{\varepsilon} u^* \varepsilon u^* w_{per}(./\varepsilon)$, then $\lim_{\varepsilon \to 0} R^{\varepsilon} = 0$ strongly in $H^1(\Omega)$.

Results in the periodic case :

3. Assume $\mu_1 - \langle |\nabla w_{per}|^2 \rangle > 0$, then $\lim_{\varepsilon \to 0} u^{\varepsilon} = u^*$ strongly in $L^2(\Omega)$, weakly in $H^1(\Omega)$.

4. Define
$$R^{\varepsilon} = u^{\varepsilon} - u^* - \varepsilon u^* w_{per}(./\varepsilon)$$
, then $\lim_{\varepsilon \to 0} R^{\varepsilon} = 0$ strongly in $H^1(\Omega)$.

Essential properties of w_{per} for the proofs :

• Strict sublinearity at infinity : $\varepsilon w_{per}(./\varepsilon) \xrightarrow{\varepsilon \to 0} 0$ in $L^{\infty}(\Omega)$.

• Average of
$$|\nabla \mathbf{w}_{per}|^2$$
: $|\nabla w_{per}(./\varepsilon)|^2 \xrightarrow{\varepsilon \to 0} \langle |\nabla w_{per}|^2 \rangle$ in $L^{\infty}(\mathbb{R}^d) - \star$

The perturbed problem

• Our purpose is to extend these results to the setting of a perturbed periodic problem when

$$V = g_{per} + \sum_{k \in \mathbb{Z}^d} \varphi(.-k - Z_k),$$

where

- g_{per} is a regular periodic function,
- $arphi \in \mathcal{D}(\mathbb{R}^d)$,

-
$$Z \coloneqq (Z_k)_{k \in \mathbb{Z}^d} \in (I^{\infty}(\mathbb{Z}^d))^d$$

$$\longrightarrow V$$
 is a perturbation of $V_{per} = g_{per} + \sum_{k \in \mathbb{Z}^d} \varphi(.-k)$.

 \rightarrow Setting inspired by a work related to minimization of the energy of an infinite non-periodic system of particles ^{*a*}.

^a[Blanc, Lions, Le Bris, 2003]

The perturbed problem

• Our purpose is to extend these results to the setting of a perturbed periodic problem when

$$V = g_{per} + \sum_{k \in \mathbb{Z}^d} \varphi(.-k - Z_k),$$

where

- g_{per} is a regular periodic function,

-
$$\varphi \in \mathcal{D}(\mathbb{R}^d)$$
,

-
$$Z \coloneqq (Z_k)_{k \in \mathbb{Z}^d} \in (I^\infty(\mathbb{Z}^d))^d$$

 \longrightarrow Follows up on some previous works addressing perturbed elliptic homogenization problems for **local defects**.

 \rightarrow Here Z_k does not necessarily vanish at infinity \rightarrow **non-local defects**.

^a[Blanc, Le Bris, Lions, 2012, 2018] & [Blanc, Josien, Le Bris, 2020]

Examples of Z_k (d = 2)

Figure: Illustration of $X_k = k + Z_k$ for several examples of sequence Z_k .

Left. Reference periodic case : $Z_k = 0$.

Center. Local perturbation : $\lim_{|k|\to\infty} Z_k = 0.$

Right. Non-local perturbations.

Corrector equation

Aim : To prove the existence of a solution w to the corrector equation :

$$\Delta w = V, \tag{4}$$

such that :

$$\lim_{\varepsilon \to 0} \varepsilon w(./\varepsilon) = 0 \text{ on } L^{\infty}(\Omega),$$
(5)

weak
$$\lim_{\varepsilon \to 0} |\nabla w(./\varepsilon)|^2$$
 exists on Ω . (6)

Remark : weak $\lim_{\varepsilon \to 0} \nabla w(./\varepsilon) = 0 \Rightarrow (5)$

 \implies Properties of weak convergence satisfied by ∇w are sufficient.

Questions :

- Can we use the structure of V to prove the existence of a corrector ?
- Which distribution of Z_k in the space ensures (5) and (6) ?

Main difficulties :

- We have to establish some bounds satisfied by ∇w , at least on $\Omega/\varepsilon = \{x/\varepsilon, x \in \Omega\}.$
- *V* is *non-periodic* : the corrector equation cannot be reduced to an equation posed on a fixed bounded domain.
 - \rightarrow Prevents to use classical techniques (Lax-Milgram Lemma).

Main difficulties :

- We have to establish some bounds satisfied by ∇w , at least on $\Omega/\varepsilon = \{x/\varepsilon, x \in \Omega\}.$
- *V* is *non-periodic* : the corrector equation cannot be reduced to an equation posed on a fixed bounded domain.

 \rightarrow Prevents to use classical techniques (Lax-Milgram Lemma).

Idea $(d \ge 2)$: V has a particular structure.

 $V = \left[\text{periodic potential } V_{per}\right] + \left[\text{perturbation } \tilde{V} \coloneqq \sum_{k \in \mathbb{Z}^d} \varphi(.-k-Z_k) - \varphi(.-k)\right].$

→ We want to find $w = w_{per} + \tilde{w}$ where $\Delta w_{per} = V_{per}$ and $\nabla \tilde{w}$ is expected to formally read as

$$\nabla \tilde{w} = \sum_{k \in \mathbb{Z}^d} \nabla G * (\varphi(.-k-Z_k) - \varphi(.-k)).$$

→ $G(x) = C(d) \frac{1}{|x|^{d-2}}$ ($d \ge 3$) is the Green function associated with Δ (ie. $\Delta G = \delta$).

Well definition of
$$\nabla \tilde{w} = \sum_{k \in \mathbb{Z}^d} \nabla G * (\varphi(.-k) - \varphi(.-k - Z_k)) ?$$

Remark : $\nabla G(x-k) \underset{k \to \infty}{\sim} \frac{C(d)}{|x-k|^{d-1}}$

 \rightarrow obtaining a series that normally converges requires to increase by more than one the exponent in the rate of decay $(\frac{1}{|k|^d}$ is the critical decay in ambient dimension d).

Approach : Taylor expansion of $\varphi(x - k - Z_k)$ with respect to Z_k :

$$\varphi(x-k-Z_k) - \varphi(x-k) = -Z_k \cdot \nabla \varphi(x-k) + \int_0^1 (1-t) Z_k^T D^2 \varphi(x-k-tZ_k) Z_k dt$$

 \Rightarrow Two different contributions in the series : $\nabla \tilde{w} = \nabla \tilde{w}_1 + \nabla \tilde{w}_2$?

Well definition of
$$\nabla \tilde{w} = \sum_{k \in \mathbb{Z}^d} \nabla G * (\varphi(.-k) - \varphi(.-k - Z_k)) ?$$

Remark : $\nabla G(x-k) \underset{k \to \infty}{\sim} \frac{C(d)}{|x-k|^{d-1}}$

 \rightarrow obtaining a series that normally converges requires to increase by more than one the exponent in the rate of decay $\left(\frac{1}{|k|^d}\right)$ is the critical decay in ambient dimension d.

Approach : Taylor expansion of $\varphi(x - k - Z_k)$ with respect to Z_k :

$$\varphi(x-k-Z_k)-\varphi(x-k)=-Z_k.\nabla\varphi(x-k) \quad \longleftarrow \quad \frac{1^{st}\text{-order} \text{ derivatives of } \varphi}{\text{linear w.r. to } Z}$$

 $\frac{2^{nd} \text{-order}}{\text{non-linear}} \text{ w.r. to } Z \rightarrow + \int_0^1 (1-t) Z_k^T D^2 \varphi(x-k-tZ_k) Z_k dt$

 \Rightarrow Two different contributions in the series : $\nabla \tilde{w} = \nabla \tilde{w}_1 + \nabla \tilde{w}_2$?

1) Convergence of
$$\nabla \tilde{w}_1 = \sum_{k \in \mathbb{Z}^d} \nabla G * (-Z_k \cdot \nabla \varphi(x-k))$$

= $\sum_{k \in \mathbb{Z}^d} \nabla^2 G * (-Z_k \varphi(x-k))$?

•
$$\nabla^2 G(x-k) \sim \frac{1}{|x-k|^d} \rightarrow \text{Critical rate of convergence }!$$

Two parameters may ensure the convergence of the sum in L^{∞}_{loc} :

1. Properties of
$$\varphi$$
. Ex : $\int_{\mathbb{R}^d} \varphi = 0 \Rightarrow |\nabla^2 G * \varphi(x)| \le \frac{1}{|x|^{d+1}}$

2. Properties of Z_k . Ex : Z_k rapidly decreases at infinity.

 \longrightarrow Very specific assumptions... What if $\int_{\mathbb{R}^d} \varphi \neq 0$ and $\lim_{|k| \to \infty} Z_k \neq 0$?

→ Convergence of
$$\sum_{k \in \mathbb{Z}^d} \nabla^2 G * (Z_k \varphi(. - k))$$
 ?
• $\nabla^2 G(x - k) \sim \frac{1}{|x - k|^d}$ → Critical rate of convergence !

In general : Convergence of the sum only in a weak sense, in $BMO(\mathbb{R}^d)$

 $\longrightarrow \text{ Related to the continuity of } T : f \mapsto \nabla^2 G * f \text{ from } L^{\infty}(\mathbb{R}^d) \text{ to } BMO(\mathbb{R}^d)$ (theory of Calderón-Zygmund operators)

BMO ? "Bounded Mean Oscillations" :

$$BMO(\mathbb{R}^d) = \left\{ f \in L^1_{loc}(\mathbb{R}^d) \mid \sup_{R > 0, x_0 \in \mathbb{R}^d} \oint_{B_R(x_0)} \left| f - \oint_{B_R(x_0)} f(y) dy \right| < +\infty \right\}.$$

 $\underline{ex}: x \mapsto log(|x|) \in BMO(\mathbb{R}^d) \Rightarrow BMO(\mathbb{R}^d) \notin L^{\infty}(\mathbb{R}^d)$

2) Convergence of $\nabla \tilde{w}_2 = \sum_{k \in \mathbb{Z}^d} \nabla G * \left(\int_0^1 (1-t) Z_k^T D^2 \varphi(x-k-tZ_k) Z_k dt \right)$? 2nd-order derivatives of $\varphi \longrightarrow D^3 G(x)$ decays like $\frac{1}{|x|^{d+1}}$

 \Rightarrow yields an absolutely converging contribution and $\nabla \tilde{w}_2 \in L^{\infty}(\mathbb{R}^d)^d$.

Conclusions : We have the existence of \tilde{w}_1 and \tilde{w}_2 such that :

• $\nabla \tilde{w}_1 \in BMO(\mathbb{R}^d)^d \notin L^{\infty}(\mathbb{R}^d)^d$, \leftarrow generates some technicalities

← generates some technicalities to establish the homogenization results

• $\nabla \tilde{w}_2 \in L^{\infty}(\mathbb{R}^d)^d$.

2) Convergence of $\nabla \tilde{w}_2 = \sum_{k \in \mathbb{Z}^d} \nabla G * \left(\int_0^1 (1-t) Z_k^T D^2 \varphi(x-k-tZ_k) Z_k dt \right)$? 2nd-order derivatives of $\varphi \longrightarrow D^3 G(x)$ decays like $\frac{1}{|x|^{d+1}}$

 \Rightarrow yields an absolutely converging contribution and $\nabla \tilde{w}_2 \in L^{\infty}(\mathbb{R}^d)^d$.

Conclusions : We have the existence of \tilde{w}_1 and \tilde{w}_2 such that :

- $\nabla \tilde{w}_1 \in BMO(\mathbb{R}^d)^d \notin L^{\infty}(\mathbb{R}^d)^d$, \leftarrow generates some technicalities to establish the homogenization results
- $\nabla \tilde{w}_2 \in L^{\infty}(\mathbb{R}^d)^d$.
- Which bounds satisfied by the corrector on Ω/ε ? Properties of *BMO* show the existence of $C_{\varepsilon,\Omega} \in \mathbb{R}^d$ s.t., $\forall p \in [1, +\infty[$:

 $\nabla W_{\varepsilon,\Omega}(./\varepsilon) = \nabla w_{per}(./\varepsilon) + \nabla \tilde{w}_1(./\varepsilon) - C_{\varepsilon,\Omega} + \nabla \tilde{w}_2(./\varepsilon) \text{ is bounded in } (L^p(\Omega))^d$

 $\rightarrow \varepsilon$ -dependent sequence of correctors

If the existence of $W_{\varepsilon,\Omega}$ is established, can we obtain the weak convergence of $\nabla W_{\varepsilon,\Omega}(./\varepsilon)$ and $|\nabla W_{\varepsilon,\Omega}(./\varepsilon)|^2$?

 \rightarrow requires a specific distribution of Z_k .

Assumptions :

1) Convergence of $\nabla W_{\varepsilon,\Omega}(./\varepsilon)$?

 \rightarrow Assumption regarding the average of Z :

•
$$\exists \langle Z \rangle \in \mathbb{R}^d, \ \forall R > 0, \ \forall x_0 \in \mathbb{R}^d, \quad \lim_{\varepsilon \to 0} \frac{\varepsilon^d}{|B_R|} \sum_{\substack{k \in \frac{B_R(x_0)}{\varepsilon}}} Z_k = \langle Z \rangle.$$
 (A1)

Corrector equation : Properties of weak-convergence ?

Assumptions :

2) Convergence of
$$|\nabla \tilde{w}_1(./\varepsilon)|^2 = \left|\sum_{k \in \mathbb{Z}^d} \nabla^2 G * (-Z_k \varphi(x-k))\right|^2$$

 \rightarrow Assumptions regarding the auto-correlations of Z :

•
$$\begin{cases} \forall i, j, \ \forall l \in \mathbb{Z}^{d}, \ \exists C_{l,i,j} \in \mathbb{R}^{d}, \quad \lim_{\varepsilon \to 0} \frac{\varepsilon^{d}}{|B_{R}|} \sum_{k \in \frac{B_{R}(x_{0})}{\varepsilon}} (Z_{k} - \langle Z \rangle)_{i} (Z_{k+l} - \langle Z \rangle)_{j} = C_{l,i,j}. \\ + \text{ Logarithmic convergence rates.} \end{cases}$$
(A2.a)

•
$$x \mapsto \sum_{|I| \leq L} C_{I,i,j} (\partial_i \partial_j G * \varphi) (x-I)$$
 converges in $L^1_{loc}(\mathbb{R}^d)$ when $L \to +\infty$. (A2.b)

Assumptions :

3) Convergence of $|\nabla \tilde{w}_2(./\varepsilon)|^2 = \left|\sum_{k \in \mathbb{Z}^d} \nabla G * \left(\int_0^1 (1-t) Z_k^T D^2 \varphi(x-k-tZ_k) Z_k dt\right)\right|^2$

 \rightarrow Assumption regarding the 2^{*nd*}-order correlations of Z :

•
$$\forall F \in \mathcal{C}^0(\mathbb{R}^d \times \mathbb{R}^d), \ \forall I \in \mathbb{Z}^d, \ \exists C_{F,I} \in \mathbb{R},$$

$$\lim_{\varepsilon \to 0} \frac{\varepsilon^d}{|B_R|} \sum_{k \in \frac{B_R(x_0)}{\varepsilon}} F(Z_k, Z_{k+1}) = C_{F,I}.$$
(A3)

Example of non-periodic admissible sequences

• Local perturbations : $\lim_{|k| \to \infty} Z_k = 0$

1. Some sequences such that Z_k "slowly" converges to 0 when $|k| \to \infty$. (Typically $Z_k = O(\ln(|k|)^{-\alpha})$ for $\alpha > \frac{1}{2}$);

- <u>Non-local perturbations</u> : $\lim_{|k| \to \infty} Z_k \neq 0$
- 2. Some deterministic approximations of random variables

 \rightarrow Deterministic sequences Z that share the properties of i.i.d sequences of random variables (used to simulate random processes).

→ Example for d = 1: $Z_k = k \theta^p \mod 1$, for $p \ge 2$ and almost all irrational number $\theta \in \mathbb{R}$ (Approximation of uniform distribution on [0,1]).

3. Many other non-periodic sequences.

Example for d = 2: $Z_{(k_1,k_2)} := (\cos(\sqrt{2}k_1), \sin(\sqrt{2}k_2))$

Theorem 1 : Existence of the corrector

Assume (A1) to (A3). Then, for every R > 0 and every $\varepsilon > 0$, there exists $W_{\varepsilon,R} \in L^1_{loc}(\mathbb{R}^d)$ solution to

$$\Delta W_{\varepsilon,R} = V \quad \text{ on } B_{R/\varepsilon},$$

such that

•
$$\varepsilon W_{\varepsilon,R}(./\varepsilon) \xrightarrow{\varepsilon \to 0} 0$$
 strongly in $L^{\infty}(B_R)$,
• $\exists \mathcal{M} \in \mathbb{R}, \quad |\nabla W_{\varepsilon,R}|^2(./\varepsilon) \xrightarrow{\varepsilon \to 0} \mathcal{M}$ weakly in $L^p(B_R), \quad \forall p \in [1, +\infty)$

• **Remark** : $W_{\varepsilon,R} = w_{per} + \tilde{w}_1 - x$. $\int_{B_R} \nabla \tilde{w}_1(y/\varepsilon) dy + \tilde{w}_2$, \rightarrow Contrary to the periodic case, the corrector depends on ε and R.

Well-posedness of $-\Delta u^{\varepsilon} + \frac{1}{\varepsilon}V(./\varepsilon)u^{\varepsilon} = f$

- Assume (A1) to (A3).
- Denote $W_{\varepsilon,\Omega} := W_{\varepsilon,R}$ where $R = Diam(\Omega)$ and $\mathcal{M} = \underset{\varepsilon \to 0}{\text{weaklim}} |\nabla W_{\varepsilon,\Omega}(./\varepsilon)|^2$.

Idea : The first eigenvalue of $-\Delta + \frac{1}{\varepsilon}V(./\varepsilon)$ converges to the first eigenvalue of $-\Delta - \mathcal{M}$.

Proposition

Denote by λ_1^{ε} the first eigenvalue of $-\Delta + \frac{1}{\varepsilon}V(./\varepsilon)$ on Ω with homogeneous Dirichlet b.c. Then,

$$|\lambda_1^{\varepsilon} - \mu_1 + \mathcal{M}| \xrightarrow{\varepsilon \to 0} 0.$$

Proof : Asymptotic expansion of λ_1^{ε} using the properties of the corrector **Consequence** : We obtain a sufficient condition for the well-posedness

$$\mu_1 - \mathcal{M} > 0 + \varepsilon$$
 small $\Rightarrow -\Delta u^{\varepsilon} + \frac{1}{\varepsilon} V(./\varepsilon) u^{\varepsilon} = f$ is well-posed in $H_0^1(\Omega)$.

Application to homogenization

Homogenization of
$$-\Delta u^{\varepsilon} + \frac{1}{\varepsilon}V(./\varepsilon)u^{\varepsilon} = f$$
 when $\varepsilon \to 0$?

Theorem 2 : Homogenization result

- Assume (A1) to (A3).
- Denote $W_{\varepsilon,\Omega} := W_{\varepsilon,R}$ where $R = Diam(\Omega)$ and $\mathcal{M} = \underset{\varepsilon \to 0}{\text{weaklim}} |\nabla W_{\varepsilon,\Omega}(./\varepsilon)|^2$.

• Assume $\mu_1 - M > 0$, where μ_1 is the first eigenvalue of $-\Delta$ with homogeneous Dirichlet boundary condition on Ω .

Then the sequence u^{ε} is well defined in $H_0^1(\Omega)$ for ε small and converges, **strongly** in $L^2(\Omega)$ and **weakly** in $H^1(\Omega)$, to u^* solution to

$$\begin{cases} -\Delta u^* - \mathcal{M} u^* = f & \text{on } \Omega, \\ u^* = 0 & \text{on } \partial \Omega. \end{cases}$$
(7)

In addition, the sequence of remainders $R^{\varepsilon} \coloneqq u^{\varepsilon} - u^{*} - \varepsilon u^{*} W_{\varepsilon,\Omega}(./\varepsilon)$ converges to 0 strongly in $H^{1}(\Omega)$.

Extensions

- Generalization of Theorem 2 : homogenization when μ_I M ≠ 0 ∀I ∈ N*, where μ_I is the Ith eigenvalue of -Δ.
 <u>Main idea</u> : Convergence of all the eigenvalues of -Δ + ¹/_εV(./ε) to the eigenvalues of -Δ - M.
- Extension for more general potentials. 2 complementary approaches :
 - 1) Extension by density in $L^{\infty}(\mathbb{R}^d)$:

$$V = \sum_{k \in \mathbb{Z}^d} g(.-k-Z_k) \text{ where } |g(x)| \leq \frac{1}{|x|^{d+\alpha}} \text{ for } \alpha > 0.$$

2) Extension by algebraic operations :

$$V = \sum_{k_1,...,k_n \in \mathbb{Z}^d} \varphi_1(.-k_1 - Z_{k_1})\varphi_2(.-k_2 - Z_{k_2})...\varphi_n(.-k_n - Z_{k_n})$$

 \rightarrow Assumptions up to the 2*n*-order correlations of Z are required.

Thank you for your attention !