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Introduction

Purpose : To address an homogenization problem for stationary
Schrodinger equation with highly oscillating potential :

{ —Au5+1V(./5)u5 =f onQ
€

u:=0 on 09.
Where :
e QcR%is a bounded domain (d > 1).
o fel?(Q).

@ £> 0 is a small scale parameter.

o Ve L°°(]Rd) is a non-periodic potential that models a perturbed
periodic geometry.

° |in?) V(./Je)=0in L°°(Rd) — %. < necessary assumption due to the
E—>

1
exploding term - V(./e)
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Introduction

Purpose : To address an homogenization problem for stationary
Schrodinger equation with highly oscillating potential :

—Au€+lV(./€)u5=f on Q
€
u-=0 on 0.

Main questions :

Can we identify the limit of u® when the scale parameter € — 0 and
study the convergence for several topologies (L%(Q), H*(Q),...) ?

-0
— At st vt S ut?

— IVFst. -Aut+Vut=f7
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The periodic case

The periodic problem, when V = V,¢, and (Vi) :][ Vper =0, is well
Q
known 1 :

— If u® converges, a formal approach shows that its limit u* is a solution
to the homogenized equation :

-Au* + (WpEr Vper)UX- =f on Q (2)
u*=0 on 0f2.

and wpe is a periodic corrector solution to corrector equation :

AWper = Vper  on RY (3)

—> When ¢ — 0, we expect

U ~ U™+ eu wpe(.[€).

![Bensoussan, Lions, Papanicolaou '1978]
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Periodic case

Results in the periodic case :

1. Existence of a corrector 7

(Vper) = 0 = Jwpe, periodic solution to Awper = Viper.

Green formul
Remark : Awper = Vper ree T (Wper Viper) = — (|VWper|2).
1
2. Well-posedness of —Au® + =V/(./e)u® =f?
€
Let p1 and A be respectively the first eigenvalue of —A and the first

1
eigenvalue of —A + =V/(./e) with homogeneous Dirichlet b.c. on Q.

€
Then : o

e—
Xi: —> M1 - <|vaer’2> .

Consequence: (1 — <|pre,|2) > 0 and ¢ small = Existence and
uniqueness of v in H3(Q).
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Periodic case

Results in the periodic case :

3. Assume p11 — ([VWper[?) > 0, then Iirr(1) u® = u* strongly in [2(Q),
E—
weakly in H}(Q).

4. Define R® = u° — u* — eu" wper(./€), then Iir'r(]) R® =0 strongly in
£—
HY(Q).
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Periodic case

Results in the periodic case :

3. Assume p11 — ([VWper[?) > 0, then Iin(1) u® = u* strongly in [2(Q),
E—
weakly in H}(Q).

4. Define R® = u° — u* — eu" wper(./€), then Iir’r(]) R® =0 strongly in
£—
HY(Q).

Essential properties of wye, for the proofs :
. . . P -0 .
@ Strict sublinearity at infinity : ewpe(./€) 5 0in L=(Q).

-0 .
o Average of |[VWper|? : |[VWper(./€)[? = (IVWper[?) in L®(RY) - %
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The perturbed problem

@ Our purpose is to extend these results to the setting of a perturbed
periodic problem when

V = gper + Z o(.—k-2Zy),

kezd
where
- 8per Is a regular periodic function,
- ¢ e D(RY),

d
- Z = (Zk)kege € (1°(Z2))
— V is a perturbation of Vjer = gper + Z o(. — k).
keZd

— Setting inspired by a work related to minimization of the energy of an
infinite non-periodic system of particles °.

?[Blanc, Lions, Le Bris, 2003]
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The perturbed problem

@ Our purpose is to extend these results to the setting of a perturbed
periodic problem when

V = gper + Z o(.—k-2Zy),

kezd
where
- 8per Is a regular periodic function,
- ¢ e D(RY),

_ 7= (Zk)keZd € (/M(Zd))d

— Follows up on some previous works? addressing perturbed elliptic
homogenization problems for local defects.

—> Here Z, does not necessarily vanish at infinity — non-local defects.

“[Blanc, Le Bris, Lions, 2012, 2018] & [Blanc, Josien, Le Bris, 2020]
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Examples of Zx (d = 2)
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Figure: Illustration of X, = k + Z for several examples of sequence Z.

Left. Reference periodic case : Zx = 0.

Center. Local perturbation : lim Z, =0.

[ k|0

Right. Non-local perturbations.
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Corrector equation

Aim : To prove the existence of a solution w to the corrector equation :

Aw =V, (4)

such that :
Iin?) ew(./e) =0on L*(Q), (5)
weak Iirrg) IVw(./e)[? exists on Q. (6)

Remark :  weak Iing) vw(./e) =0 = (5)
E—>
== Properties of weak convergence satisfied by Vw are sufficient.

Questions :

@ Can we use the structure of V to prove the existence of a corrector 7
e Which distribution of Zy in the space ensures (5) and (6) 7
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Corrector equation : Existence ?

Main difficulties :

@ We have to establish some bounds satisfied by Vw, at least on
Qfe ={x/e, xeQ}.

@ V is non-periodic : the corrector equation cannot be reduced to an equation
posed on a fixed bounded domain.
— Prevents to use classical techniques (Lax-Milgram Lemma).
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Corrector equation : Existence ?

Main difficulties :

@ We have to establish some bounds satisfied by Vw, at least on
Qfe ={x/e, xeQ}.
@ V is non-periodic : the corrector equation cannot be reduced to an equation

posed on a fixed bounded domain.
— Prevents to use classical techniques (Lax-Milgram Lemma).

Idea (d > 2) : V has a particular structure.

V= [periodic potential Vper] + [perturbation V= Yoo(.—k=-Z)-o(.- k)]
kezd

— We want to find w = wpe, + W where Awpe, = Ve and VW is expected to

formally read as

VW= ) VG (p(.—k=Zk) —p(.~ k).
kezd

1

x|9-2

- G(x)=C(d)
(ie. AG =9).

(d > 3) is the Green function associated with A
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Corrector equation : Existence ?

Well definition of V= ) VG x* (¢(.—k)—p(.—k-2Z))?
kezd

¢(d)

Remark . VG(X—k)k"‘ m

— obtaining a series that normally converges requires to increase by more than

one the exponent in the rate of decay (W is the critical decay in ambient

dimension d).

Approach : Taylor expansion of o(x — k — Zi) with respect to Zx :
o(x—k=2Z) = p(x - k) == Z.Vo(x - k)
1
‘ f (1-6)ZT D?p(x - k - tZ) Zudt
0

= Two different contributions in the series : VW = Vg + Viin ?
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Corrector equation : Existence ?

Well definition of V= ) VG x* (¢(.—k)—p(.—k-2Z))?
kezd

¢(d)

Remark . VG(X—k)kN m

— obtaining a series that normally converges requires to increase by more than
one the exponent in the rate of decay (W is the critical decay in ambient
dimension d).

Approach : Taylor expansion of o(x — k — Zi) with respect to Zx :

1°*-order derivatives of ¢,
linear w.r. to Z

o(x—k-2Zk) —p(x—k) == Z.Vo(x - k)

nd_ : : 1
2"%-order derivatives, N . / (1- t)ZkTD2<,9(X k= tZ) Zedt
0

non-linear w.r. to Z

= Two different contributions in the series : VW = Vwy + Viin ?
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Corrector equation : Existence ?

1) Convergence of Vg = Y VG * (-Z.V(x - k))
keZd

= Y VG * (~Zkp(x - k) ?
kezd

® V2G(x—k)~ — Critical rate of convergence !

x = k|

oo

Two parameters may ensure the convergence of the sum in L5, :

1
- _ _ 2
1. Properties of ¢. Ex: .A;d p=0=|V°G*p(x)| < X[

2. Properties of Zx. Ex : Zy rapidly decreases at infinity.

— Very specific assumptions... What if fd p#0and lim Z,#07?
R
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Corrector equation : Existence ?

— Convergence of ) V26 * (Zkp(. - k) ?
kezd

@ V2G(x—k)~ — Critical rate of convergence !

[x = K|

In general : Convergence of the sum only in a weak sense, in BMO(R?)

— Related to the continuity of T : f ~ V2G * f from L= (RY) to BMO(R?)
(theory of Calderén-Zygmund operators)

BMO 7?7 "Bounded Mean Oscillations” :

sup ][ f —][ f(y)dy
R>0,x0€R? J Br(x0) Br(x0)

ex: x ~ log(|x|) e BMO(RY) = BMO(RR?) ¢ L>(RY)

loc

BMO(R?) = {f e Ll (RY)

<+OO}.
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Corrector equation : Existence ?

1
2) Convergence of Vito = ) VG * (f (1-1)Z D*p(x - k - tZk)det) ?
keZ? 0

2"-order derivatives of ¢ — D3G(x) decays like [x|9+T

= yields an absolutely converging contribution and Vi, € L>(R9)¢.
Conclusions : We have the existence of w; and w» such that :

@ Viy € BMO(R?)Y ¢ L= (R?)9, < generates some technicalities

to establish the homogenization results
o VW2 € Lw(Rd)d
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Corrector equation : Existence ?

1
2) Convergence of Vito = ) VG * (f (1-1)Z D*p(x - k - tZk)det) ?
keZ? 0

2"_order derivatives of o —> D3G(x) decays like P
= yields an absolutely converging contribution and Vi, € L>(R9)¢.

Conclusions : We have the existence of w; and w» such that :

@ Vity e BMO(RY)? ¢ L=(R9)?, < generates some technicalities
to establish the homogenization results

o VW2 € LM(Rd)d
e Which bounds satisfied by the corrector on Q/e ?
Properties of BMO show the existence of C. o € R? s.t., Vp e[, +oo[ :

VW: a(./e) = Vwper(./e) + Vi (./e) = Co g + VWa(./e) is bounded in (LP(2))¢

— e-dependent sequence of correctors
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Corrector equation : Properties of weak-convergence ?

If the existence of W, q is established, can we obtain the weak
convergence of VW, o(./e) and [VW. q(./e)]? ?

— requires a specific distribution of Zj.

Assumptions :

1) Convergence of VW, o(./¢) ?

— Assumption regarding the average of Z :

e J(Z)eR? VR>0, VxoeR?, lim— Y Z.=(2). (Al)
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Corrector equation : Properties of weak-convergence ?

Assumptions :

2

2) Convergence of [V (./e)? = | . VG * (= Zkyp(x - k))
kezd

— Assumptions regarding the auto-correlations of Z :

d
.. . 3
VI,_/, V/EZd7 HC/’;’jERd, lim — Z (Zk—(Z)),-(ZH,—(Z))j:C,’,-,j.

€0 |BR| ke Br(x0)
€

+ Logarithmic convergence rates.
(A2.3)

o x> 3 C;j(0:9;G ) (x-1) converges in Lj,.(R?) when L - +oo. (A2.b)
[N<L
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Corrector equation : Properties of weak-convergence ?

Assumptions :

2

S VG (/01(1 02! D?p(x - k - tZk)det)

kezd

3) Convergence of [Vita(./e)]? =

— Assumption regarding the 2"“-order correlations of Z :

o VFeCO(RY xRY), VIeZ9, ICr, ¢R,
. e A3
lim — > F(Zk,Zks1) = Cr,. (A3)

<Br (xp)
€
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Example of non-periodic admissible sequences

e Local perturbations : lim Z, =0

|k|— o0

1. Some sequences such that Zx "slowly” converges to 0 when |k| - .
1
(Typically Zx = O (In(|k|)™*) for o> 5)

e Non-local perturbations : |lim Z, #0
k|—o0

2. Some deterministic approximations of random variables

— Deterministic sequences Z that share the properties of i.i.d
sequences of random variables (used to simulate random processes).

— Example for d =1 : Z; = k6P mod 1, for p >2 and almost all
irrational number 6 € R (Approximation of uniform distribution on

[0,1]).
3. Many other non-periodic sequences.

Example for d =2 : Z, 4,) = (cos(\/ikl),sin(\/ﬁkg))
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Existence result for the corrector equation

Theorem 1 : Existence of the corrector

Assume (A1) to (A3). Then, for every R >0 and every ¢ > 0, there exists
W. g € LL _(R?) solution to

loc
AW&R =V on BR/E?
such that

ecW.r(./e) =8 0 strongly in L*°(Bg),

e IMeR, |VW.g[(.[e) =M weakly in LP(Bg), Vpe[l,+oo].

v

o Remark : W, g = wper + W1 — x. 7[ Vi (y/e)dy + vn,
JBg
— Contrary to the periodic case, the corrector depends on € and R.
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1
Well-posedness of —Aus + — V(./¢e)

e Assume (Al) to (A3).
e Denote W, g := W, gr where R = Diam(2) and M = Weak(l)im|V We.a(./e)[
E—

o 1 L
Idea : The first eigenvalue of —A + =V/(./e) converges to the first eigenvalue of
€

-A-M.

Proposition

1
Denote by Aj the first eigenvalue of —A + = V/(./¢) on Q with homogeneous
€
Dirichlet b.c. Then,
1A - 1+ M| 0,

Proof : Asymptotic expansion of A\] using the properties of the corrector

Consequence : We obtain a sufficient condition for the well-posedness

1
p1—M>0 + e small = -Auf + = V(.[e)u® = f is well-posed in H}(R).
€
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Application to homogenization

1
Homogenization of —Au® + =V/(./e)u® = f whene -0 7?
€

Theorem 2 : Homogenization result

e Assume (A1) to (A3).

e Denote W. q := W. g where R = Diam(2) and M = Weak(l)im|v W a(./e).
E—>

e Assume 111 — M >0, where py is the first eigenvalue of —A with homogeneous
Dirichlet boundary condition on €.

Then the sequence u° is well defined in H3(S2) for € small and converges,
strongly in L?(Q) and weakly in H(f), to u* solution to

-Au* - Mu*=f on €,
{ u*=0 on 0f. (7)

In addition, the sequence of remainders R° := u® — u”™ —cu” W, o(./e) converges
to 0 strongly in H'(Q).
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Extensions

@ Generalization of Theorem 2 : homogenization when p; — M # 0
VI e N*, where p is the /™ eigenvalue of —A.

1
Main idea : Convergence of all the eigenvalues of —A + =V/(./¢) to
5
the eigenvalues of —A — M.

@ Extension for more general potentials. 2 complementary approaches :

1) Extension by density in L°°(RY) :

1
V=3 g(.- k-2Z) where |g(x)| < —— for a> 0.

o |X|d+a

2) Extension by algebraic operations :

V=3 ok -Z)ea(. — ke = Zi)..oon(. — kn = Zk,)
ki,...kneZd

— Assumptions up to the 2n-order correlations of Z are required.
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Thank you for your attention |



