Early prediction of spray characteristics from curvature distribution analysis and other problems ...

universite Df **rouen** F.X. Demoulin, B. Duret, J. Reveillon

PhDs:

P.A. Beau R. Lebas G. Luret Y. Meslem

B. Duret	R. Canu
N. Hecht	A. Ahmed
S. Puggelli	A. Remigi
F. Dabonneville	L. Palenti
J. Anez	D. Ferrado

DNS and ICM -> Amazing results

To perform simulation of atomization the best known approach rely on:

- Navier-Stokes equations
- Directly resolved by numerical simulation (DNS)
- Appropriate numerical method : interface capturing method (ICM) *CORIA Berlemont A., Ménard T. et al.*

But ... DNS-ICM : Accurate and Computationally expensive Can we go beyond ?

DNS Simplex Swirl Atomizer

(limited to primary break up)

Ambient Temperature

High Temperature

Verdier. PhD Thesis, 2017
 Marrero. PhD Thesis, 2018
 Ferrando, D. PhDThesis, 2022

Curvature analysis → drop size distribution

CO

Beyond : Computation \Leftrightarrow Model

ELSA : Eulerian Lagrangian Spray Atomization

Principles of the approach

A. Vallet and R. Borghi, *Modélisation Eulerienne de L'atomisation d'un Jet Liquide. C. R. Acad. Sci., Paris, Sér. II b,* **327: p. 1015–1020, 1999**

First application to Co-axial injector

A. Vallet, A.A. Burluka, and R. Borghi, *Development of a Eulerian model for the "Atomization" of a liquid jet. Atomization and Sprays*, **11(6): p. 619-642, 2001**

First transition to Lagrangian → name ELSA

G. Blokkeel, R. Borghi, and B. Barbeau, A 3d Eulerian model to improve the primary breakup of atomizing jet. SAE Technical Papers, **2003-01-0005, 2003**

Turbulent liquid flux: Drift/Diffusion

Liquid-Gas Surface Density : $\Sigma = \frac{area}{volume} [m^{-1}]$

Material surface carried by turbulence [D. Drew, SIAM J. Appl. Math., 1990; S.B. Pope, Int.J.Eng.Sc., 1988; C. Morel, IJMF, 2007]:

 δ_s : Dirac generalized function at the interface

$$\Sigma = \frac{\iiint_V \delta_s d\nu}{V}$$
$$\Sigma \,\overline{\varphi}\Big|_{\Sigma} = \iiint_V \delta_s \varphi \, d\nu$$

$$\mathbf{D} = \frac{6\alpha}{\Sigma} \twoheadrightarrow L_{32} = D_{32} = \frac{6\alpha(1-\alpha)}{\Sigma}$$

The Sauter mean diameter

Surface density equation ?

$$\frac{\partial \Sigma}{\partial t} + \nabla . \, \overline{u} \Sigma = \nabla . \underbrace{\left(\overline{u} \Sigma - \overline{u} \delta_{S}\right)}_{\overline{R_{\Sigma}}} + source \ terms = \nabla . \, \Sigma (\overline{u} - \overline{u}|_{\Sigma}) + source \ terms$$

Overall DNS Validation: postulated equation for \Sigma

Meand liquid-gas surface density (m-1)

LES and ICM

• DNS and ICM → Amazing results

CORIA Berlemont A., Ménard T. et al.

• RANS: $\overline{\alpha}$ is mean, average

• LES:
$$\overline{\alpha} = \iiint \alpha(x,t)K_{\Delta}(x-x_0,t)dv$$

DE ROUEN

Experimental validations:

X-Ray: PMD, ECN spray A

CMT, U-Mass

• Mass formulation : \widetilde{Y} , $\widetilde{R_Y}$

4 5 6 Axial Position [mm]

Axial Position [mm]

(c) 3D baseline CFD simulation

(b) 2D baseline CFD simulation

- $C_{\varepsilon 1} = 1.44 \rightarrow 1.60$
- $Sc_t = 0.9$

0.5

-0.5

0.5

-0.5

0.5

-0.5

9 CORIA • Vol. formulation : $\overline{\alpha}, \overline{R_{\alpha}}$ • $C_{\varepsilon 1} = 1.44 \rightarrow 1.60$ • $Sc_t = 1.0$ • $C_{\varepsilon 2}$

Axial Position Imn

Axial Position [mm]

Avial Position Imn

Argonne, Convergent Science, U-Mass

•
$$C_{\varepsilon 1} = 1.44 \Rightarrow 1.60$$

•
$$Sc_t = 0.9$$

Q. Xue et al., IJMF, 2015

LES

- CMT- Mass formulation (J.M. Desantes et al., ILASS 2017)
- CORIA Volume formulation (J. Anez et al., ILASS 2017)

10 0.5

10

0.0

Ray FCN

Transfering Eulerian α , Σ to Lagrangian approach (WBE + Monte Carlo)

Acknowledgments:

CPU's resource center: GENCI, TGCC, CINES, IDRIS, CRIHAN

Industrial support: Renault, PSA Peugeot Citroën, CONTINENTAL, Safran, AVL, Vinci Technologies, INERIS, ...

Region Normandie European MARIE CURIE ITN "HAoS"

Some dust under the carpet ...

or

Opportunities/needs to establish more firmly the different approaches

1) ICM: So many approaches : properties, rules

	?	
Method	Separated Diffused	
ARCHER	Separated	Land
interFoam	Diffused at Δ_x	
CEDRE	Diffused	5
Elsa	Diffused phy-model	1
IcmElsa	Separated/diffused	S
		(

Dynamic well reproduced by all the models. Differences mainly in the small features.

CO

PhD A. Remiggi, 2021, P. Cordesse et al., Flow Turbulence Combust, 2020

Global agreement, but noticeable differences : mean $\overline{\alpha}$

DE ROUEN PhD A. Remiggi, 2021, P. Cordesse et al., Flow Turbulence Combust, 2020

CO

3) Subgrid turbulent liquid flux $\overline{R_{\alpha}}$

Mass formulation :

$$\frac{\partial \overline{\rho} \widetilde{Y}}{\partial t} + \nabla \cdot \overline{\rho} \widetilde{u} \widetilde{Y} = \nabla \cdot \overline{\rho} \underbrace{\left(\widetilde{u} \widetilde{Y} - \widetilde{u} \widetilde{Y} \right)}_{\widetilde{R}_{\widetilde{Y}}} = \nabla \cdot \overline{\rho} \widetilde{Y} (\widetilde{u} - \overline{u}|_{l}) = \nabla \cdot \overline{\rho} \widetilde{Y} (1 - \widetilde{Y}) \left(\overline{u}|_{l} - \overline{u}|_{g} \right)$$

Volume formulation :

$$\frac{\partial \overline{\alpha}}{\partial t} + \nabla . \, \overline{u} \overline{\alpha} = \nabla . \underbrace{(\overline{u} \, \overline{\alpha} - \overline{u} \overline{\alpha})}_{\overline{R_{\alpha}}} = \nabla . \, \overline{\alpha} (\overline{u} - \overline{u}|_{l}) = \nabla . \, \overline{\alpha} (1 - \overline{\alpha}) (\overline{u}|_{l} - \overline{u}|_{g})$$

 $\widetilde{R_Y}$ and $\overline{R_\alpha}$ are the turbulent liquid flux

- 1. Correlation: Turbulent velocity/concentration
- 2. Slip motion between phase

Single phase flows:

- → Turbulent diffusion (1)
- + Slip motion (2)

Mass formulation :
$$\widetilde{R_Y} \approx \frac{\widetilde{v_t}}{Sc_t} \nabla \widetilde{Y}$$

Volume formulation $\overline{R_{\alpha}} \approx \frac{\overline{v_t}}{Sc_t} \nabla \overline{\alpha}$

Multi phase flows:

- → Slip motion (2)
- + Drift motion (1)

P. Février and O. Simonin, VKI, 2000

UNIVERSITE DF ROUEN

[1]K. E. Wardle et H. G. Weller, *International Journal of Chemical*, 2013.
[2]R. Canu et al., *Atomization and Sprays*, 2020.
[3]Anez, J. *et al.*. *International Journal of Multiphase Flow* (2018)

→ To switch between ICM and DI (diffused interface) based on IRQs

LES – Multi-Scale :

- LES-DI ⇔LES-ICM
- IRQ: Interface Resolution Quality

$$\frac{\partial \bar{\alpha}}{\partial t} + \frac{\partial \bar{u}_j \bar{\alpha}}{\partial x_j} + \underbrace{\frac{\partial \mathbf{C}_{\alpha} u_{Cj} \bar{\alpha} (1 - \bar{\alpha})}{\partial x_j}}_{\text{ICM}} = \underbrace{(1 - \mathbf{C}_{\alpha}) \frac{\partial \overline{R_{\alpha j}}}{\partial x_j}}_{\text{DI}}$$

Air-blast: Mean/Instantaneous LVF

Air-blast: Axial LVF profiles

6) From Euler to Lagrange (MC)

Direct switch at a dynamic boundary

Euler Only

Drawbacks:

Eulerian net flux Lagrangian total flux The boundary location is moving Eulerian equation on the whole domain Discard Lagrangian droplet in Euler Zone Lagrangian statistic convergence

UNIVERSITE

OF ROUEN

To be continued

7) Curvature Analysis to drop size distribution

- a) Compute surface and curvature
- b) Discard negative curvatures
- c) cancel small positive curvature to march L_{32}

[1] L. Palanti *et al.*, International Journal of Multiphase Flow, 2022. ^{24/26}

Curvature analysis -> drop size distribution

	Num.	Exp.
D ₃₂	161	161.9
D ₁₀	56.80	58.35
D ₃₀	97.55	97.49

Many open issues 1,2,3,4,5,6,7 ...

Open for discussion, suggestion, help ...

demoulin@coria.fr

