A new semi-algebraic two-grid method for Oseen problems

P.-L. Bacq*, Y. Notay, A. Napov

Service de Métrologie Nucléaire, Université Libre de Bruxelles

pierre-loic.bacq at ulb.be

June 13, 2022

* Research Fellow of the Fonds de la Recherche Scientifique – FNRS, Belgium

Overview

- Proposed approach
- 3 Theoretical analysis
- 4 Numerical Results

P.-L. Bacq^{*}, Y. Notay, A. Napov (EPB)

三日 のへの

Introduction

- 2 Proposed approach
- 3 Theoretical analysis
- 4 Numerical Results

5 Conclusions

三日 のへの

Oseen problems

The Oseen problem appears in

- viscous incompressible flows with convection
- Picard linearisation of Navier-Stokes equations

and can be written as:

$$\nu \Delta \vec{u} + \vec{v} \cdot \nabla \vec{u} + \nabla p = \vec{f},$$
$$\nabla \cdot \vec{u} = 0,$$

in Ω with the boundary conditions on $\partial \Omega = \partial \Omega_D \cup \partial \Omega_N$:

$$\vec{u} = \vec{w} \text{ on } \partial\Omega_D,$$

 $\frac{\partial \vec{u}}{\partial n} - \vec{n}p = \vec{s} \text{ on } \partial\Omega_N.$

EL SQA

State-of-the-art

Discretizations lead to the saddle-point system:

$$\begin{pmatrix} F & B^T \\ B & -C \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}$$

- F: convection-diffusion block (non symmetric)
- B and B^{T} : discrete divergence and gradient
- C: stabilization block (0 for naturally stable methods)
- Variable convective flow: no linear-time solver robust wrt both the mesh size and the viscosity ν (*i.e.* Reynolds number)
- AMG methods: struggle with the *C* pressure block: 0 or small elements.

AMG methods

Multigrid methods are efficient solvers for elliptic PDEs.

Two main components: the **smoother** and the **coarse-grid correction**

- **smoother**: simple iterative scheme (Jacobi, GS) corrects high frequency part of the error
 - \Rightarrow the error well approximated on a coarser grid
- coarse-grid construction: prolongation operator $P(v = Pv_c)$ \Rightarrow coarse matrix $A_c = P^T A P$
- **coarse-grid correction**: amounts to solve system with A_c as system matrix.

Multigrid (MG): recursive application. Algebraic multigrid (AMG): uses only the system matrix A

 \Rightarrow **black-box** approach.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Aggregation

- Classic AMG: *P* interpolation operator \Rightarrow often leads to denser A_c
- Aggregation: keep P as simple as possible and then A_c as sparse as possible
- In practice: definition of small subsets of the unknowns (= aggregates)
- Coarse unknowns are identified as aggregates
- Prolongation defined as constant by aggregate $\Rightarrow P$ logical matrix and P_{ij} indicates whether the i^{th} (fine) unknown belongs to the j^{th} aggregate.
- A_c keeps the same sparsity pattern as A.

(日本)

Introduction

Proposed approach

- 3 Theoretical analysis
- 4 Numerical Results

5 Conclusions

-

E1= 990

Transform-then-solve approach

Algebraic transformation of the system to give it a more "suitable" structure:

- Sign of the pressure equation is changed
- Change of variables:

$$\begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} I & -D_{\mathbf{u}}^{-1}B^{T} \\ I \end{pmatrix} \begin{pmatrix} \hat{\mathbf{u}} \\ \hat{\mathbf{p}} \end{pmatrix} ,$$

where D_u is typically the diagonal of the *F* block. The matrix system becomes:

$$A = \begin{pmatrix} F & B^{T} \\ -B & C \end{pmatrix} \begin{pmatrix} I & -D_{u}^{-1}B^{T} \\ I \end{pmatrix} = \begin{pmatrix} F & (I - FD_{u}^{-1})B^{T} \\ -B & C + BD_{u}^{-1}B^{T} \end{pmatrix}$$

Transform-then-solve approach

$$A = \begin{pmatrix} F & (I - FD_{u}^{-1})B^{T} \\ -B & C + BD_{u}^{-1}B^{T} \end{pmatrix}$$

Diagonal blocks: structure compatible with AMG methods:

- F: convection-diffusion matrix
- $\widehat{C} = C + BD_u^{-1}B^T$: similar to discrete Laplacian.

Stokes problems: approach robust and efficient when combined with aggregation-based algebraic multigrid.

Aggregation: unknown-based coarsening:

- Velocity: based on F
- Pressure: based on \widehat{C} .

From unknown-based to point-based coarsening

What about Navier-Stokes problems?

- Theory (to follow): NS problems require point-based coarsening instead of unknown-based coarsening
- Point-based coarsening: coarsening of the grid points and not of the unknowns
- The coarsening of each type of unknown is deduced from the one of the grid points
- \Rightarrow same coarsening for each type of unknown.

Introduction

2 Proposed approach

3 Theoretical analysis

4 Numerical Results

5 Conclusions

P.-L. Bacq^{*}, Y. Notay, A. Napov (EPB)

三日 のへの

Convergence theory: context

Theoretical framework:

- Two-grid method
- Jacobi-type smoother $\omega^{-1}D = \omega^{-1} \begin{pmatrix} D_u \\ D_r \end{pmatrix}$
- Prolongation of the form $P = \begin{pmatrix} P_u \\ P_n \end{pmatrix}$
- Galerkin coarse grid correction $A_c = P^T A P$
- One (pre)-smoothing step only.

Theorem 1

• For SPD G, $c_{ap}(G, P, D) = \sup_{v \neq 0} \frac{v^H D (I - P (P^T D P)^{-1} P^T D) v}{v^H G v}$ (characterize the convergence of the two-grid method for G)

•
$$A_S = \frac{1}{2} (A + A^T)$$
 and $(A^{-1})_S = \frac{1}{2} (A^{-1} + A^{-T})$

• K: right-preconditioned matrix (with two-grid preconditioner)

For any
$$\alpha$$
, β such that
 $c_{\mathrm{ap}}(A_{S}, P, D) \leq \alpha^{-1}$ and $c_{\mathrm{ap}}(D(A^{-1})_{S}D, P, D) \leq \beta^{-1}$,
there holds
 $\min_{\tau} \|I - \tau K\|_{P^{\perp}} \leq \|I - \frac{\beta}{\omega} K\|_{P^{\perp}} \leq \sqrt{1 - \alpha\beta}$
where $\|M\|_{\mathcal{V}} = \max_{z \in \mathcal{V} \setminus \{0\}} \frac{\|Mz\|}{\|z\|}$.

Theorem 2

Let the above assumptions hold. There holds,

$$\begin{aligned} c_{\rm ap} \big(A_{\mathcal{S}} \,,\, P \,,\, D \big) \; &\leq \; \frac{ \max \left(c_{\rm ap} \big(F_{\mathcal{S}} \,,\, P_{\sf u} \,,\, D_{\sf u} \big) \,,\, c_{\rm ap} \big(\widehat{C} \,,\, P_{p} \,,\, D_{p} \big) \right) }{ 1 - \frac{\sqrt{\gamma_{\sf u}}}{2}} \,, \\ c_{\rm ap} \big(D(A^{-1})_{\mathcal{S}} D \,,\, P \,,\, D \big) \; &\leq \; \zeta \; = \; \frac{ \gamma_{p} + 1 + \sqrt{(\gamma_{p} - 1)^{2} + \gamma_{\sf u} \, \gamma_{p}} }{ 2 \, \big(1 - \frac{\gamma_{\sf u}}{4} \big) } \,, \end{aligned}$$

where γ_{u} and γ_{p} are such that

$$\lambda_{\max} \left(D_{\mathsf{u}}^{-1/2} \left(\frac{1}{2} (F^{-1} + F^{-T}) \right)^{-1} D_{\mathsf{u}}^{-1/2} \right) \leq \gamma_{\mathsf{u}}$$

and

$$\lambda_{\max} \left(D_p^{-1/2} C D_p^{-1/2} + \Pi D_p^{-1/2} B F_s^{-1} B^T D_p^{-1/2} \Pi \right) \leq \gamma_p ,$$

with $\Pi = \left(I - D_p^{1/2} P_p (P_p^T D_p P_p)^{-1} P_p^T D_p^{1/2} \right) .$

P.-L. Bacq^{*}, Y. Notay, A. Napov (EPB)

June 13, 2022 12 / 23

1= 990

Discussion of Theorem 2

Bounds depend on 4 constants:

•
$$c_{\rm ap}(F_S, P_u, D_u)$$

• $c_{\rm ap}(\widehat{C}, P_p, D_p)$
• $\gamma_u = \lambda_{\rm max} \left(D_u^{-1/2} \left(\frac{1}{2} (F^{-1} + F^{-T}) \right)^{-1} D_u^{-1/2} \right)$
• $\gamma_p = \lambda_{\rm max} \left(D_p^{-1/2} C D_p^{-1/2} + \prod D_p^{-1/2} B F_S^{-1} B^T D_p^{-1/2} \Pi \right).$

Keep constants bounded:

- γ_{u} : nicely bounded if $D_{u} = \text{diag}(F)$
- $c_{\rm ap}$ constants: nicely bounded if prolongation such that the two-grid method (with *D*) is good for *F* and \widehat{C}
- γ_p : depends on the coarsening of the pressure unknowns via Π .

Evaluation of the constants

- Numerical evaluation for model problem: staggered grid, constant convection flow, finite differences,
- Results for aggregation type prolongation:

		Linewise	Boxwise	Linewise	Boxwise
		$c_{ m ap}(\widehat{C})$	$c_{ m ap}(\widehat{C})$	γ_{p}	γ_{p}
	$ u = 10^{-2}$	9.1	5.7	3.5	17.0
$\theta = 0$	$ u = 10^{-4}$	9.1	5.7	6.0	192.8
	$ u = 10^{-6}$	9.1	5.7	6.1	219.6
	$ u = 10^{-2} $	9.1	5.7	1.3	1.3
$\theta = \pi/4$	$ u = 10^{-4}$	9.1	5.7	1.3	1.3
	$\nu = 10^{-6}$	9.1	5.7	1.3	1.3

Table: Evaluation of the constants related to the convergence analysis (mesh size h = 1/16).

Local Fourier Analysis (LFA)

- Cheap tool to compute exact quantities related to two-grid methods (asymptotic convergence factor)
- Several (constraining) hypotheses (constant coefficient, uniform (Cartesian) grid, periodic boundary conditions)
- Heuristic in nature but recognized as reliable
- Each operator can be associated to its eigenvalue (= symbol)

<<p>A 目 > A 目 > A 目 > 目 = のQQ

LFA for constant convection problem

Constant convection problem: LFA to confirm numerical results.

- Parameters of the problem:
 - Convection wind $\vec{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$,
 - Viscosity ν .
 - Mesh size h.
- Analytical bound $(v_x > v_y)$:
 - $\gamma_{p} \leq \frac{13}{2} \left(1 + \frac{2\nu + v_{y}h}{2\nu + v_{x}h} \right) < 13$ if linewise coarsening along main component of \vec{v} . • $\gamma_{p} \propto \left(1 + \frac{2\nu + v_{x}h}{2\nu + v_{y}h}\right)$ if boxwise coarsening.

向 ト イヨト イヨト ヨヨ のくら

LFA computation

Proof of uniform convergence for constant convection flow if coarsening in the direction of the flow.

Figure: γ_p and its analytical bound for linewise and boxwise coarsening.

EL SQA

Image: A Image: A

Proposed two-grid method: aggregation

Coarsening of velocity: driven by convection (bound c_{ap}) \Rightarrow algebraic aggregation based on FCoarsening of pressure: driven by convection (bound γ_p) \Rightarrow algebraic aggregation **NOT** based on $\hat{C} = C + BD_{\mu}^{-1}B^{T}$

We need coarsening of pressure unknowns driven by convection \Rightarrow Point-based coarsening

Use of a geometric artifice:

- Build auxilary convection-diffusion matrix X on pressure points
- Algebraically aggregate the points based on auxilary matrix X.

 \Rightarrow Similar aggregation pattern to velocity

(4回) (三) (三) (三) (三) (○) (○)

Introduction

2 Proposed approach

3 Theoretical analysis

4 Numerical Results

5 Conclusions

P.-L. Bacq^{*}, Y. Notay, A. Napov (EPB)

三日 のへの

Numerical experiments: settings

- Convection-diffusion problems on staggered grid (FD): constant and recirculating flows
- Smoother: 1 SOR iteration for pre- and post-smoothing with $\omega=2/3$
- Point-based aggregation defined by applying AGMG software to auxilary matrix X: quality-aware aggregation:
 ⇒ aligns aggregates along the main component of the flow
- Galerkin coarse grid matrix
- Two-grid method used as a preconditioner for GCR (mathematically equivalent to GMRES).

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Numerical experiments: constant convection flow

Table: Constant convection flow: number of iterations until $||\mathbf{r}_{rel}|| \le 10^{-6}$.

Numerical experiments: recirculating flows

2D1:
$$\vec{v} = \begin{pmatrix} x(1-x)(2y-1) \\ -(2x-1)y(1-y) \end{pmatrix}$$

2D2: $\vec{v} = \begin{pmatrix} \cos(\pi x)\sin(\pi y) \\ -\sin(\pi x)\cos(\pi y) \end{pmatrix}$
ESW¹: $\vec{v} = \begin{pmatrix} 2y(1-x^2) \\ -2x(1-y^2) \end{pmatrix}$

Recirculating Flow ESW

¹ESW: Elman, Silvester, Wathen, 2005.

P.-L. Bacq^{*}, Y. Notay, A. Napov (EPB)

Two-grid method for Oseen problems

June 13, 2022 21 / 23

Numerical experiments: recirculating flow (cont'd)

	h = 1/128				h = 1/256			
ν Flow	10^{-2}	10 ⁻⁴	10 ⁻⁶	10 ⁻⁸	10 ⁻²	10 ⁻⁴	10^{-6}	10 ⁻⁸
2D1	15	36	48	49	14	30	49	51
2D2	14	39	47	49	15	37	46	53
ESW	14	40	42	42	13	38	44	44

Table: Recirculating flows: number of iterations until $||\mathbf{r}_{rel}|| \le 10^{-6}$.

Introduction

2 Proposed approach

3 Theoretical analysis

4) Numerical Results

5 Conclusions

P.-L. Bacq^{*}, Y. Notay, A. Napov (EPB)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

三日 のへの

Conclusions and perspectives

Conclusions:

- Convergence theory in norm for Oseen problems
 - Proof of uniform bound on the convergence for constant convection flow if point-based coarsening driven by the convection flow
- Setting-up the two-grid method
- Numerical results suggest uniform bound on the convergence also for recirculating flows.

Perspectives:

- Transition from two- to multigrid
- Full algebraization of the method
- Application to Navier-Stokes equations (Picard linearization).

Conclusions and perspectives

Conclusions:

- Convergence theory in norm for Oseen problems
 - Proof of uniform bound on the convergence for constant convection flow if point-based coarsening driven by the convection flow
- Setting-up the two-grid method
- Numerical results suggest uniform bound on the convergence also for recirculating flows.

Perspectives:

- Transition from two- to multigrid
- Full algebraization of the method
- Application to Navier-Stokes equations (Picard linearization).

Questions?								
		田岡(山)(山)(山)(山)	୭ବ					
-L. Bacg [*] , Y. Notav, A. Napov (EPB)	Two-grid method for Oseen problems	June 13, 2022	23/2					

Technical difficulty: staggered grid

- Staggered grid: often used for Oseen problems because C = 0 but point-based coarsening uneasy.
- Solution: gathering of neighboring unknowns into points as on the figure.
- Points located on the pressure unknowns.

P.-L. Bacq^{*}, Y. Notay, A. Napov (EPB)

Technical difficulty: staggered grid

- Staggered grid: often used for Oseen problems because C = 0 but point-based coarsening uneasy.
- Solution: gathering of neighboring unknowns into points as on the figure.
- Points located on the pressure unknowns.

