An unfitted discretization of the Stokes problem robust to a pressure jump

Daniele Corti, Guillaume Delay, Miguel Fernández, Fabien Vergnet,
Marina Vidrascu

Laboratoire Jacques-Louis Lions, Sorbonne Université, Paris, France

Congrès d'Analyse NUMérique (CANUM) 2022 16^{th} June 2022

Outline

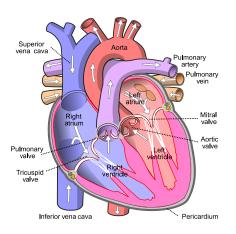
A cardiology problem

• An unfitted numerical method

• Some numerical analysis elements

• Numerical simulations

A cardiology problem



Goal: run simulations involving left atrium, left ventricle, mitral valves

Several difficulties from Fluid-Structure Interaction (FSI) problems

• two systems : fluid and structure

• contact between several deformable solids

- deformation of the fluid domain over time
- high pressure jumps through the valves

Several difficulties from Fluid-Structure Interaction (FSI) problems

- two systems: fluid and structure → splitting scheme (separate resolution for fluid and solid)
- contact between several deformable solids

- deformation of the fluid domain over time
- high pressure jumps through the valves

Several difficulties from Fluid-Structure Interaction (FSI) problems

- two systems: fluid and structure → splitting scheme (separate resolution for fluid and solid)
- ullet contact between several deformable solids o contact algorithm has to be considered
- deformation of the fluid domain over time
- high pressure jumps through the valves

two systems : fluid and structure \rightarrow **splitting scheme** (separate resolution for fluid and solid), case of **thin-walled structures**

- [Kamensky, Hsu, Schillinger, Evans, Aggarwal, Bazilevs, Sacks, Hughes 15]
- [Boilevin-Kayl, Fernández, Gerbeau 19]
- [Boilevin-Kayl, Fernández, Gerbeau 19]
- [Fernández, Landajuela 20]
- [Annese, Fernández, Gastaldi 22]

contact between several deformable solids

- [Kamensky, Xu, Lee, Yan, Bazilevs, Hsu 19]
- [Mlika, Renard, Chouly 17]
- [Burman, Fernández, Frei 20]
- [Burman, Fernández, Frei, Gerosa 22]

Deformation of the fluid domain:

- standard method : Arbitrary Lagrangian Eulerian (ALE)
 [Hu, Patankar, Zhu 01]
 - enables to account for the domain deformation
 - but ...: we need to fully remesh when large deformations are applied
 not adapted when contact occurs

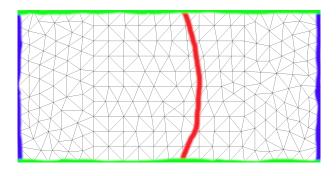
Deformation of the fluid domain:

- standard method : Arbitrary Lagrangian Eulerian (ALE)
 [Hu, Patankar, Zhu 01]
 - enables to account for the domain deformation
 - but ...: we need to fully remesh when large deformations are applied
 not adapted when contact occurs
- a more recent approach : **extended finite elements** (XFEM) [Groß, Reusken 07]
 - the mesh does not need to fit the boundary / interface
 - optimal convergence rates are established
 - but ...: needs to double the degrees of freedom for the cut cells →
 matrix size depends on the position of the interface + needs to
 handle small cuts

Deformation of the fluid domain:

- standard method : Arbitrary Lagrangian Eulerian (ALE)
 [Hu, Patankar, Zhu 01]
 - enables to account for the domain deformation
 - but ...: we need to fully remesh when large deformations are applied
 not adapted when contact occurs
- a more recent approach : **extended finite elements** (XFEM) [Groß, Reusken 07]
 - the mesh does not need to fit the boundary / interface
 - optimal convergence rates are established
 - but ...: needs to double the degrees of freedom for the cut cells → matrix size depends on the position of the interface + needs to handle small cuts
- another try: fictitious domain:
 - similar to XFEM, but we do not double the degrees of freedom in the cut cells
 - gain: the matrix size is fixed along the whole simulation
 - main drawbacks: we do not have optimal convergence rates + the velocity is more sensitive to the pressure

The domain and its triangulation



- $\Omega = \Omega_1 \cup \Sigma \cup \Omega_2 \subset \mathbb{R}^d$ bounded polygonal, $d \in \{2,3\}$
- ullet Σ : immersed interface
- Γ_D : Dirichlet boundary (top, bottom)
- Γ_N : Neumann boundary (left, right)
- \mathcal{T}_h a triangulation of Ω (not fitted to Σ)
- S_h : a discretization of Σ

The Stokes problem

• We want to find (\mathbf{u}, p) solution to

$$\begin{aligned} -\mathrm{div}\; \sigma(\mathbf{u},p) &= \mathbf{f} \; \mathrm{in} \; \Omega_1 \cup \Omega_2 \\ \mathrm{div}\; \mathbf{u} &= 0 \; \mathrm{in} \; \Omega_1 \cup \Omega_2 \\ \mathbf{u} &= \mathbf{v}_s \; \mathrm{on} \; \Sigma \\ \mathbf{u} &= 0 \; \mathrm{on} \; \Gamma_D \\ \sigma(\mathbf{u},p)\mathbf{n} &= \mathbf{g}_N \; \mathrm{on} \; \Gamma_N \end{aligned}$$
 with $\sigma(\mathbf{u},p) := \nu \nabla u - pI$.

• We want a good approximation of $[\![\sigma(\mathbf{u},p)\mathbf{n}]\!]$ through the interface.

A fictitious domain method

We consider the following FE spaces (\mathbb{P}^1 - \mathbb{P}^1 - \mathbb{P}^1 FE method)

$$\mathbf{V}_h := \{ \mathbf{v}_h \in H^1(\Omega; \mathbb{R}^d) \mid \mathbf{v}_h = 0 \text{ on } \Gamma_D \text{ and } \mathbf{v}_h|_T \in \mathbb{P}^1(T; \mathbb{R}^d) \quad \forall T \in \mathcal{T}_h \}$$

$$Q_h := \{ q_h \in H^1(\Omega) \mid q_h|_T \in \mathbb{P}^1(T) \quad \forall T \in \mathcal{T}_h \}$$

$$\mathbf{\Lambda}_h := \{ \boldsymbol{\mu}_h \in H^1(\Sigma; \mathbb{R}^d) \mid \boldsymbol{\mu}_h|_S \in \mathbb{P}^1(S; \mathbb{R}^d) \quad \forall S \in \mathcal{S}_h \}$$

Find $(\mathbf{u}_h, p_h, \boldsymbol{\lambda}_h) \in \mathbf{V}_h \times Q_h \times \boldsymbol{\Lambda}_h$ s.t.

$$a_h(\mathbf{u}_h, \mathbf{v}_h) - b_h(\mathbf{v}_h, p_h) + c_h(\mathbf{v}_h, \boldsymbol{\lambda}_h) = \ell_h(\mathbf{v}_h) \qquad \forall \mathbf{v}_h \in \mathbf{V}_h$$

$$b_h(\mathbf{u}_h, q_h) + s_h^{BP}(p_h, q_h) = 0 \qquad \forall q_h \in Q_h$$

$$-c_h(\mathbf{u}_h, \boldsymbol{\mu}_h) + s_h^{BH}(\boldsymbol{\lambda}_h, \boldsymbol{\mu}_h) = -c_h(\mathbf{v}_s, \boldsymbol{\mu}_h) \quad \forall \boldsymbol{\mu}_h \in \boldsymbol{\Lambda}_h$$

with

$$a_h(\mathbf{w}_h, \mathbf{v}_h) := \nu(\nabla \mathbf{w}_h, \nabla \mathbf{v}_h)_{\Omega}$$

$$b_h(\mathbf{w}_h, q_h) := (\operatorname{div} \mathbf{w}_h, q_h)_{\Omega}$$

$$c_h(\mathbf{w}_h, \boldsymbol{\mu}_h) := (\mathbf{w}_h, \boldsymbol{\mu}_h)_{\Sigma}$$

$$\ell_h(\mathbf{w}_h) := (\mathbf{f}, \mathbf{v}_h)_{\Omega} + (\mathbf{g}_N, \mathbf{v}_h)_{\Gamma_N}$$

Stabilization terms

We need the following stabilization terms:

 Brezzi-Pitkäranta stabilization for the pressure [Brezzi, Pitkäranta 84]

$$s_h^{BP}(p_h, q_h) := \frac{\gamma_p h^2}{\nu} (\nabla p_h, \nabla q_h)_{\Omega}$$

with $\gamma_p = 0.1$ in the sequel

 Barbosa-Hughes stabilization for the multiplier [Barbosa, Hughes 91]

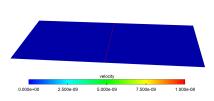
$$s_h^{BH}(oldsymbol{\lambda}_h,oldsymbol{\mu}_h) := rac{\gamma_\lambda h}{
u}(oldsymbol{\lambda}_h,oldsymbol{\mu}_h)_\Sigma$$

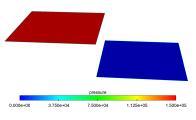
with $\gamma_{\lambda} = 0.01$ in the sequel

• inf-sup condition for the bilinear form

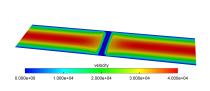
First results

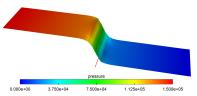
Test case:





Results:





Similar results for:

- P1–P0
- P2-P0
- Crouzeix-Raviart, ...

An interpretation of the problem

• We expect the approximation

$$\|\nabla(\mathbf{u} - \mathbf{u}_h)\|_{\Omega} + \|p - p_h\|_{\Omega} \le C(\inf_{\mathbf{v}_h \in \mathbf{V}_h} \|\nabla(\mathbf{u} - \mathbf{v}_h)\|_{\Omega} + \inf_{q_h \in Q_h} \|p - q_h\|_{\Omega})$$

$$\le C(|\mathbf{u}|_{H^{1+\gamma}(\Omega)} + |p|_{H^{\gamma}(\Omega)})h^{\gamma}$$

with $\gamma < \frac{1}{2}$ because of jumps through the interface

We need to represent the pressure jump in the discrete space

Main idea

Enrich the pressure FE space with an Heavyside function

$$\begin{split} \chi_1(\mathbf{x}) &:= \left\{ \begin{array}{ll} 1, & \mathbf{x} \in \Omega_1 \\ 0, & \mathbf{x} \in \Omega_2 \end{array} \right. \\ \widetilde{Q}_h &:= Q_h \oplus \mathsf{Span}(\chi_1) \end{split}$$

The new formulation is : Find $(\mathbf{u}_h, p_h, \boldsymbol{\lambda}_h) \in \mathbf{V}_h \times \widetilde{Q}_h \times \boldsymbol{\Lambda}_h$ s.t.

$$a_{h}(\mathbf{u}_{h}, \mathbf{v}_{h}) - b_{h}(\mathbf{v}_{h}, p_{h}) + c_{h}(\mathbf{v}_{h}, \boldsymbol{\lambda}_{h}) = \ell_{h}(\mathbf{v}_{h}) \qquad \forall \mathbf{v}_{h} \in \mathbf{V}_{h}$$

$$b_{h}(\mathbf{u}_{h}, q_{h}) + s_{h}^{BP}(p_{h}, q_{h}) + \widetilde{s}_{h}^{BH}((\boldsymbol{\lambda}_{h}, p_{h}), (0, q_{h})) = 0 \qquad \forall q_{h} \in \widetilde{Q}_{h}$$

$$-c_{h}(\mathbf{u}_{h}, \boldsymbol{\mu}_{h}) + \widetilde{s}_{h}^{BH}((\boldsymbol{\lambda}_{h}, p_{h}), (\boldsymbol{\mu}_{h}, 0)) = -c_{h}(\mathbf{v}_{s}, \boldsymbol{\mu}_{h}) \qquad \forall \boldsymbol{\mu}_{h} \in \boldsymbol{\Lambda}_{h}$$

where

$$\widetilde{s}_h^{BH}((\boldsymbol{\lambda}_h, p_h), (\boldsymbol{\mu}_h, q_h)) := \frac{\gamma_{\lambda} h}{\nu} (\boldsymbol{\lambda}_h - [\![p_h]\!] \mathbf{n}, \boldsymbol{\mu}_h - [\![q_h]\!] \mathbf{n})_{\Sigma}$$

Another formulation

This problem can be rewritten under the form : Find $(\mathbf{u}_h,\widetilde{p}_h,\widehat{p}_h,\boldsymbol{\lambda}_h)\in \mathbf{V}_h\times Q_h\times \mathbb{R}\times \boldsymbol{\Lambda}_h$ s.t.

$$a_{h}(\mathbf{u}_{h}, \mathbf{v}_{h}) - b_{h}(\mathbf{v}_{h}, \widetilde{p}_{h}) + c_{h}(\mathbf{v}_{h}, \boldsymbol{\lambda}_{h}) - d_{h}(\mathbf{v}_{h}, \widehat{p}_{h}) = \ell_{h}(\mathbf{v}_{h}) \qquad \forall \mathbf{v}_{h} \in \mathbf{V}_{h}$$

$$b_{h}(\mathbf{u}_{h}, \widetilde{q}_{h}) + s_{h}^{BP}(\widetilde{p}_{h}, \widetilde{q}_{h}) = 0 \qquad \forall \widetilde{q}_{h} \in Q_{h}$$

$$-c_{h}(\mathbf{u}_{h}, \boldsymbol{\mu}_{h}) + \widetilde{s}_{h}^{BH}((\boldsymbol{\lambda}_{h}, \widehat{p}_{h}\chi_{1}), (\boldsymbol{\mu}_{h}, 0)) = -c_{h}(\mathbf{v}_{s}, \boldsymbol{\mu}_{h}) \qquad \forall \boldsymbol{\mu}_{h} \in \boldsymbol{\Lambda}_{h}$$

$$d_{h}(\mathbf{u}_{h}, \widehat{q}_{h}) + \widetilde{s}_{h}^{BH}((\boldsymbol{\lambda}_{h}, \widehat{p}_{h}\chi_{1}), (0, \widehat{q}_{h}\chi_{1})) = d_{h}(\mathbf{v}_{s}, \widehat{q}_{h}) \qquad \forall \widehat{q}_{h} \in \mathbb{R}$$

where

$$d_h(\mathbf{u}_h, \widehat{q}_h) := \widehat{q}_h \int_{\partial \Omega_*} \mathbf{u}_h \cdot \mathbf{n}$$

This enrichment can be seen as globally imposing mass conservation in Ω_1

Similar idea in [Hisada , Washio 16] (in japanese)

Inf-sup condition

We define

$$\begin{split} \mathcal{A}_h((\mathbf{w}_h, r_h, \boldsymbol{\zeta}_h), (\mathbf{v}_h, q_h, \boldsymbol{\mu}_h)) \\ &:= a_h(\mathbf{w}_h, \mathbf{v}_h) - b_h(\mathbf{v}_h, r_h) + c_h(\mathbf{v}_h, \boldsymbol{\zeta}_h) + b_h(\mathbf{w}_h, q_h) - c_h(\mathbf{w}_h, \boldsymbol{\mu}_h) \\ &+ s_h^{BP}(r_h, q_h) + \widetilde{s}_h^{BH}((\boldsymbol{\zeta}_h, r_h), (\boldsymbol{\mu}_h, q_h)) \end{split}$$

The solution fulfills

$$\mathcal{A}_h((\mathbf{u}_h,p_h,\boldsymbol{\lambda}_h),(\mathbf{v}_h,q_h,\boldsymbol{\mu}_h)) = \ell_h(\mathbf{v}_h) - c_h(\mathbf{v}_s,\boldsymbol{\mu}_h)$$

$$\|\mathbf{w}_h, r_h, \zeta_h\|^2 := \|\nabla \mathbf{w}_h\|_{\Omega}^2 + \|r_h\|_{\Omega}^2 + h\|\zeta_h\|_{\Sigma}^2$$

Inf-sup condition

There exists a constant $\beta>0$ independent from h such that for all $(\mathbf{w}_h,r_h,\boldsymbol{\zeta}_h)\in \mathbf{U}_h\times \widetilde{Q}_h\times \boldsymbol{\Lambda}_h$

$$\beta |\!|\!| \mathbf{w}_h, r_h, \boldsymbol{\zeta}_h |\!|\!| \leq \sup_{(\mathbf{v}_h, q_h, \boldsymbol{\mu}_h) \in \mathbf{U}_h \times \tilde{Q}_h \times \boldsymbol{\Lambda}_h \setminus \{(0, 0, 0)\}} \frac{\mathcal{A}_h((\mathbf{w}_h, r_h, \boldsymbol{\zeta}_h), (\mathbf{v}_h, q_h, \boldsymbol{\mu}_h))}{\|\mathbf{v}_h, q_h, \boldsymbol{\mu}_h\|}$$

proof : similar arguments as the ones in [Fournié, Lozinski 18]

Main steps of the proof (1/2)

$$\begin{split} \bullet \ \, \mathsf{Denote} \\ S := \sup_{(\mathbf{v}_h, q_h, \boldsymbol{\mu}_h) \in \mathbf{U}_h \times \widetilde{Q}_h \times \boldsymbol{\Lambda}_h \setminus \{(0, 0, \overline{0})\} } & \underbrace{\mathcal{A}_h((\mathbf{w}_h, r_h, \boldsymbol{\zeta}_h), (\mathbf{v}_h, q_h, \boldsymbol{\mu}_h))}_{\|\mathbf{v}_h, q_h, \boldsymbol{\mu}_h\|\|} \end{split}$$

• Step 1 : velocity and stabilization terms

$$\nu \|\nabla \mathbf{w}_h\|_{\Omega}^2 + \frac{\gamma_p h^2}{\nu} \|\nabla r_h\|_{\Omega}^2 + \frac{\gamma_{\lambda} h}{\nu} \|\boldsymbol{\zeta}_h - [\![r_h]\!] \mathbf{n}\|_{\Sigma}^2$$

$$= a_h(\mathbf{w}_h, \mathbf{w}_h) + s_h^{BP}(r_h, r_h) + \widetilde{s}_h^{BH}((\boldsymbol{\zeta}_h, r_h), (\boldsymbol{\zeta}_h, r_h))$$

$$= \mathcal{A}_h((\mathbf{w}_h, r_h, \boldsymbol{\zeta}_h), (\mathbf{w}_h, r_h, \boldsymbol{\zeta}_h)) \leq S \|\mathbf{w}_h, r_h, \boldsymbol{\zeta}_h\|$$

• Step 2 : pressure There exists $\mathbf{v}_n \in H^1_0(\Omega_1 \cup \Omega_2)$ s

There exists $\mathbf{v}_p \in H^1_0(\Omega_1 \cup \Omega_2)$ such that and $\mathrm{div}\ \mathbf{v}_p = r_h - \overline{r_h}$ in Ω and $\|\mathbf{v}_p\|_{H^1(\Omega)} \leq C \|r_h - \overline{r_h}\|_{\Omega}$

$$||r_h - \overline{r_h}||_{\Omega}^2 = (r_h - \overline{r_h}, \operatorname{div} \mathbf{v}_p)_{\Omega}$$

= $(r_h - \overline{r_h}, \operatorname{div} (\mathbf{v}_p - \mathbf{I}_h(\mathbf{v}_p)))_{\Omega} + (r_h - \overline{r_h}, \operatorname{div} \mathbf{I}_h(\mathbf{v}_p))_{\Omega}$

$$|(r_h - \overline{r_h}, \operatorname{div}(\mathbf{v}_p - \mathbf{I}_h(\mathbf{v}_p)))_{\Omega}| = |(\nabla(r_h - \overline{r_h}), \mathbf{v}_p - \mathbf{I}_h(\mathbf{v}_p))_{\Omega}|$$

$$\leq Ch \|\nabla r_h\|_{\Omega} \|r_h - \overline{r_h}\|_{\Omega}$$

Main steps of the proof (2/2)

This gives

$$||r_h - \overline{r_h}||_{\Omega}^2 \le CS |||\mathbf{w}_h, r_h, \boldsymbol{\zeta}_h|||$$

ullet The mean pressure $\overline{r_h}$ can be estimated separately :

$$\|\overline{r_h}\|_{\Omega}^2 \leq CS \|\mathbf{w}_h, r_h, \boldsymbol{\zeta}_h\|$$

Combining both $||r_h||_{\Omega}^2 \leq CS |||\mathbf{w}_h, r_h, \boldsymbol{\zeta}_h|||$

• Step 3 : Lagrange multiplier

$$\begin{split} h^{\frac{1}{2}} \| \boldsymbol{\zeta}_h \|_{\Sigma} & \leq h^{\frac{1}{2}} \| \boldsymbol{\zeta}_h - [\![r_h]\!] \mathbf{n} \|_{\Sigma} + h^{\frac{1}{2}} \| [\![r_h]\!] \mathbf{n} \|_{\Sigma} \\ & \leq h^{\frac{1}{2}} \| \boldsymbol{\zeta}_h - [\![r_h]\!] \mathbf{n} \|_{\Sigma} + C \| r_h \|_{\Omega} \\ & \leq CS \| \mathbf{w}_h, r_h, \boldsymbol{\zeta}_h \| \end{split}$$

• Step 4: We conclude with Young's inequality

A priori bounds

Expected convergence rates

There exists C>0 independent from h such that

$$||u - u_h, p - p_h, \lambda - \lambda_h|| \le Ch^{\gamma}(||\mathbf{u}||_{H^{1+\gamma}(\Omega)} + ||p - \widehat{J}_h(p)||_{H^{\gamma}(\Omega)})$$

for every $\gamma < \frac{1}{2}$

proof: We define interpolation operators:

- ullet velocity : $\mathbf{I}_h(\mathbf{u}) \in \mathbf{V}_h$
- ullet pressure : $J_h(p):=\widetilde{J}_h(p)+\widehat{J}_h(p)\in Q_h\oplus \operatorname{\mathsf{Span}}(\chi_1)$
- ullet Lagrange multiplier : $\mathbf{L}_h(oldsymbol{\lambda}) \in oldsymbol{\Lambda}_h$

with $\widehat{J}_h(p):=\overline{[\![p]\!]}\chi_1:=([\![p]\!],1)_\Sigma\chi_1$ and $\widetilde{J}_h(p)$ a standard interpolation of $p-\widehat{J}_h(p)$

A priori bounds

We compute

$$\begin{split} &\mathcal{A}_{h}((\mathbf{I}_{h}(\mathbf{u}) - \mathbf{u}_{h}, J_{h}(p) - p_{h}, \mathbf{L}_{h}(\boldsymbol{\lambda}) - \boldsymbol{\lambda}_{h}), (\mathbf{v}_{h}, q_{h}, \boldsymbol{\mu}_{h})) \\ &= \mathcal{A}_{h}((\mathbf{I}_{h}(\mathbf{u}), J_{h}(p), \mathbf{L}_{h}(\boldsymbol{\lambda})), (\mathbf{v}_{h}, q_{h}, \boldsymbol{\mu}_{h})) - \ell_{h}(\mathbf{v}_{h}) + c_{h}(\mathbf{v}_{s}, \boldsymbol{\mu}_{h}) \\ &= \nu(\nabla(\mathbf{I}_{h}(\mathbf{u}) - \mathbf{u}), \nabla \mathbf{v}_{h})_{\Omega} - (J_{h}(p) - p, \operatorname{div} \mathbf{v}_{h})_{\Omega} \\ &+ (\operatorname{div} (\mathbf{I}_{h}(\mathbf{u}) - \mathbf{u}), q_{h})_{\Omega} + (\mathbf{L}_{h}(\boldsymbol{\lambda}) - \boldsymbol{\lambda}, \mathbf{v}_{h})_{\Sigma} - (\mathbf{I}_{h}(\mathbf{u}) - \mathbf{u}, \boldsymbol{\mu}_{h})_{\Sigma} \\ &+ \frac{\gamma_{p}h^{2}}{\nu}(\nabla \widetilde{J}_{h}(p), \nabla \widetilde{q}_{h})_{\Omega} + \frac{\gamma_{\lambda}h}{\nu}(\mathbf{L}_{h}(\boldsymbol{\lambda}) - \widehat{J}_{h}(p)\mathbf{n}, \boldsymbol{\mu}_{h} - \widehat{q}_{h}\mathbf{n})_{\Sigma} \end{split}$$

We have

$$(J_h(p) - p, \operatorname{div} \mathbf{v}_h)_{\Omega} = (\widetilde{J}_h(p) - (p - \widehat{J}_h(p)), \operatorname{div} \mathbf{v}_h)_{\Omega}$$
$$(\mathbf{L}_h(\lambda) - \lambda, \mathbf{v}_h)_{\Sigma} = (\mathbf{L}_h(\lambda - \widehat{J}_h(p)\mathbf{n}) - (\lambda - \widehat{J}_h(p)\mathbf{n}), \mathbf{v}_h)_{\Sigma}$$

A priori bounds

Then

$$\begin{aligned} |\mathcal{A}_{h}((\mathbf{I}_{h}(\mathbf{u}) - \mathbf{u}_{h}, J_{h}(p) - p_{h}, \mathbf{L}_{h}(\boldsymbol{\lambda}) - \boldsymbol{\lambda}_{h}), (\mathbf{v}_{h}, q_{h}, \boldsymbol{\mu}_{h}))| \\ &\leq Ch^{\gamma}(\|\mathbf{u}\|_{H^{1+\gamma}(\Omega)} + \|p - \widehat{J}_{h}(p)\|_{H^{\gamma}(\Omega)} + h^{\frac{1}{2}-\gamma}\|\boldsymbol{\lambda} - \widehat{J}_{h}(p)\mathbf{n}\|_{\Sigma}) \\ &\times \|\mathbf{v}_{h}, q_{h}, \boldsymbol{\mu}_{h}\| \end{aligned}$$

• With the inf-sup condition

$$\beta \| \mathbf{I}_h(\mathbf{u}) - \mathbf{u}_h, J_h(p) - p_h, \mathbf{L}_h(\lambda) - \lambda_h \|$$

$$\leq Ch^{\gamma} (\|\mathbf{u}\|_{H^{1+\gamma}(\Omega)} + \|p - \widehat{J}_h(p)\|_{H^{\gamma}(\Omega)} + h^{\frac{1}{2}-\gamma} \|\lambda - \widehat{J}_h(p)\mathbf{n}\|_{\Sigma})$$

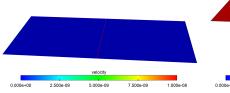
 \bullet We conclude with $\pmb{\lambda}:=[\![\sigma(\mathbf{u},p)]\!]\mathbf{n}:=[\![\nu\nabla\mathbf{u}-pI]\!]\mathbf{n}$ so

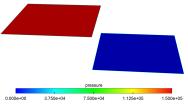
$$\|\boldsymbol{\lambda} - \widehat{J}_h(p)\mathbf{n}\|_{\Sigma} \le \nu \|[\![\nabla \mathbf{u}]\!]\|_{\Sigma} + \|[\![p - \widehat{J}_h(p)]\!]\|_{\Sigma}$$

and approximation properties of the interpolations

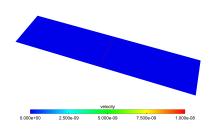
Numerical simulations (1/4)

Test case:





Results:



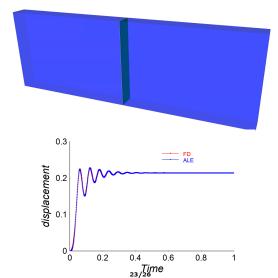


pressure jump : $[\![p_h]\!] = 1.5 \times 10^5$

Numerical simulations (2/4)

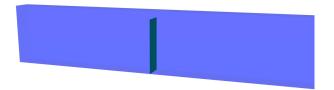
From now on : Navier–Stokes with symmetric stress tensor $\sigma(\mathbf{u},p):=\frac{1}{2}(\nabla\mathbf{u}+\nabla\mathbf{u}^T)-pI$

Application to FSI: closed valve in a 3d setting



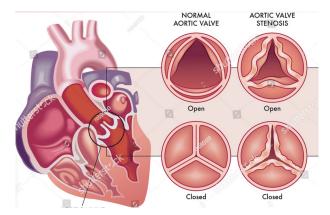
Numerical simulations (3/4)

Application to FSI: open valve in a 3d setting



Numerical simulations (4/4)

Application to FSI: simulation of the aortic valve



Wrap up

Achievements

- a scheme robust to high pressure jumps
- simulations involving Fluid-Structure Interaction
- results similar to ALE

Perspectives

- contact
- more realistic geometries
- mitral valves + atrium + ventricle

Thank you for your attention!