Transport optimal dynamique, surfaces minimales et variables de Clebsch

Emmanuel Maitre

involved: Morgane Henry, Valérie Perrier, Romain Hug,
Nicolas Papadakis, Damiano Lombardi ...

Laboratoire Jean Kuntzmann,
Grenoble INP Institut d'Ingénierie et de Management
Université Grenoble-Alpes
CANUM - Evian 2022

How to measure a distance between two images ?

Applications:

- Compare two images

Applications to: image assimilation in weather prediction or other sciences

- Find interpolation between images, or extrapolating

Application to: movie creation from image sequences, extrapolation of tumor growth images ...

- Not so simple than in our Euclidean space ...

Images do not fit well in Euclidean space

Consider those two images (imagine biological cells for instance):

Proceeding as in Euclidean space to find a middle between two elements gives:

Spaces of images are not Euclidean

If it were, the middle image I would be obtained by averaging pixelwise the two images:

Is it a good notion of middle image?
As well, L^{p} distance between two non-overlapping characteristic functions does not depend on the distance of their support.

Where Physics comes into play ...

How to compute that image ?

Let's think about a sand pile ...

Optimal transport

Introduced by Gaspard Monge (1781)
... studied by many authors Kantorovich, ... , Brenier, McCann, Villani, ...

How to formalize this idea as an optimisation problem?

Quick intro to (static) L^{2}-optimal transport

Ω open bounded domain. μ, ν probability measures, absolutely continuous with respect to the Lebesgue measure, of densities ρ_{0} and ρ_{1}, nonnegative on Ω.

- Monge problem: pushing μ to ν, through a transportation map which minimizes some cost. In the L^{2} case,

$$
\underset{T \in \Gamma\left(\rho_{0}, \rho_{1}\right)}{\operatorname{argmin}} \int \frac{1}{2}|T(x)-x|^{2} \rho_{0}(x) d x
$$

where $\Gamma\left(\rho_{0}, \rho_{1}\right)=\left\{T: X \rightarrow Y, T \# \rho_{0} d x=\rho_{1} d x\right\}$. This infimum value defines $d_{2}\left(\rho_{0}, \rho_{1}\right)$, the L^{2}-KW distance between ρ_{0} and ρ_{1}.

- Recent methods to solve efficiently this problem rely on the alternative Kantorovich form: Mérigot et al and Léger et al.
- The problem admits an unique solution $T(x)$ [Brenier, McCann], which is the gradient of a convex fonctional $\Psi: \Omega \rightarrow \mathbb{R}$, solution of the Monge-Ampère equation:

$$
\operatorname{det}\left(D^{2} \Psi\right) \rho_{1}(\nabla \Psi(x))=\rho_{0}(x)
$$

Numerical methods to solve this Monge-Ampère equation have been investigated in [Loeper-Rapetti '05, Dean-Glowinski '06, Benamou-Froese-Oberman '14]. This approach as well as other (Angenent-Haker-Tannenbaum '04, Iollo-Lombardi '11) strongly relies on the particular energy involved.

Dynamics formulation of optimal transport

- Let ρ_{0}, ρ_{1} be two (positive) densities of unit mass on a domain $\Omega \subset \mathbb{R}^{n}$.
- Benamou-Brenier: Consider all functions $\rho(t, x) \geq 0$ and vector fields $v(t, x) \in \mathbb{R}^{n}$ solution of the continuity conditions with prescribed initial and final densities:

$$
\begin{equation*}
\partial_{t} \rho+\operatorname{div}(\rho v)=0, \quad \rho(0, x)=\rho_{0}(x), \quad \rho(1, x)=\rho_{1}(x), \quad v \cdot n=0 \text { on } \partial \Omega \tag{1}
\end{equation*}
$$

Theorem (Benamou-Brenier)

The following (non-convex) optimisation problem on ρ, v

$$
d_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf \int_{0}^{1} \int_{\Omega} \frac{1}{2} \rho(t, x)|v(t, x)|^{2} d x d t
$$

where the inf is taken on (ρ, v) verifying the (non-convex) constraint (1), defines a distance on the space of densities of unit mass coinciding with KW distance.

- From now on, we are looking for this continuous sequence of densities $t \rightarrow \rho(t, \cdot)$ which links optimally ρ_{0} to ρ_{1} thus our problem is a space-time problem.

Convex formulation

Following Benamou \& Brenier, set $m=\rho v$. The problem becomes

$$
\inf _{(\rho, m) \in C_{\rho_{\mathbf{0}}, \rho_{\mathbf{1}}}} \int_{0}^{1} \int_{\Omega} J(\rho(t, x), m(t, x)) d x d t
$$

where J is the (non strictly) convex proper l.s.c. function defined by

$$
\forall(\rho, m) \in \mathbb{R} \times \mathbb{R}^{n}, J(\rho, m)= \begin{cases}\frac{|m|^{2}}{2 \rho}, & \text { if } \rho>0 \tag{2}\\ 0, & \text { if }(\rho, m)=(0,0) \\ +\infty, & \text { otherwise }\end{cases}
$$

and the affine set of constraints is

$$
C_{\rho_{\mathbf{0}}, \rho_{\mathbf{1}}}=\left\{(\rho, m), \partial_{t} \rho+\operatorname{div} m=0, \quad \rho(0, \cdot)=\rho_{0}, \rho(1, \cdot)=\rho_{1}, m \cdot n=0 \text { on } \partial \Omega\right\}
$$

NB: 0 is an eigenvalue of the Hessian of J at $(\rho>0, m)$, with (ρ, m) as eigenvector.

Numerical approximation

- This formulation is numerically solved by Benamou-Brenier (Numerische Math. '01) using an augmented Lagrangian method [Fortin-Glowinski] on an unstaggered discretization. We proved rigorously convergence of this algorithm under weaker assumptions (Hug-M.-Papadakis, JMAA '19) and extended it to more general energies (Hug-M.-Papadakis, 15').
Requires one Poisson equation to solve in \mathbb{R}^{n+1} per iteration.
- Oudet, Papadakis \& Peyré adapted the primal dual algorithm of Chambolle-Pock '10 (CP) on a staggered discretization (SIAM Imaging '14).
Faster (less iterations), but still requires one Poisson equation to solve in \mathbb{R}^{n+1} per iteration.
- A fast algorithm for entropy regularization of the energy was introduced by Cuturi in 2013.
- In Henry, M. \& Perrier we enhanced this algorithm using the CP algorithm on an Helmholtz decomposition of (ρ, m) in \mathbb{R}^{n+1} (ICIP '15).
Faster, a single Poisson equation to solve in \mathbb{R}^{n+1} at initialization.
- Presently, this algorithm is further considered in a new setting which links it with minimal surfaces equation. Even faster, due to the simpler structure of the convex functional.

Roadmap

- Quick intro to Chambolle-Pock primal-dual algorithm
- Application to dynamic optimal transportation
- Helmholtz version of primal-dual for DOT
- Some numerical results and comparisons
- Link with minimal surfaces

Chambolle-Pock (CP) algorithm

- It applies to problems which could be written as

$$
\min _{x \in X} F(K x)+G(x)
$$

where X, Y are Hilbert spaces, $F: Y \rightarrow \mathbb{R}$ and $G: X \rightarrow \mathbb{R}$ are convex proper I.s.c. functionals, and K a linear continuous operator from X to Y.

- The min-max form is

$$
\min _{x \in X} \max _{y \in Y}\langle K x, y\rangle-F^{*}(y)+G(x)
$$

where $F^{*}(y)=\sup _{x \in X}\langle x, y\rangle-F(x)$ is the convex conjugate of F, which verifies $F^{* *}=F$.

- Roughly speaking, the CP algorithm alternates gradient ascents of the concave functional $y \rightarrow\langle K x, y\rangle-F^{*}(y)$ and gradient descents of the convex functional $x \rightarrow\langle K x, y\rangle+G(x)=\left\langle x, K^{*} y\right\rangle+G(x)$.
- Its power lies in the ability to perform seemingless implicit iterations whenever F^{*} and G are easily proximable.

Chambolle-Pock (CP) algorithm

$$
\min _{x \in X} \max _{y \in Y}\langle K x, y\rangle-F^{*}(y)+G(x)=\min _{x \in X} \max _{y \in Y}\left\langle x, K^{*} y\right\rangle+G(x)-F^{*}(y)
$$

In its simplest form (without θ parameter)

- Implicit ascent: $y^{k+1}=y^{k}+\sigma\left(K x^{k}-\partial F^{*}\left(y^{k+1}\right)\right)$ which corresponds to

$$
y^{k+1}=\left(i d+\sigma \partial F^{*}\right)^{-1}\left(y^{k}+\sigma K x^{k}\right)
$$

- Implicit descent: $x^{k+1}=x^{k}-\tau\left(K^{*} y^{k+1}+\partial G\left(x^{k+1}\right)\right.$ which corresponds to

$$
x^{k+1}=(i d+\tau \partial G)^{-1}\left(x^{k}-\tau K^{*} y^{k+1}\right)
$$

- Chambolle-Pock'10 (and numbers of following results by Peyré, Condat, ...) proved under assumption on $\sigma, \tau>0$ such that $\sigma \tau\|K\|^{2}<1$ that this algorithm converges linearly to a solution of the min-max problem.
- Works well if the inverse maps can be easily computed. This is what we referred as easily proximable, since for a convex l.s.c. functional $H: Z \rightarrow \mathbb{R}$:

$$
(i d+\sigma \partial H)^{-1}(z)=\underset{u \in Z}{\arg \min } \frac{1}{2}\|u-z\|^{2}+\sigma H(u)=\operatorname{prox}_{\sigma H}(z)
$$

Chambolle-Pock (CP) algorithm

Examples of easily proximable functionals:

- Indicator of a closed convex set $C\left(\chi_{c}=0\right.$ inside $C,+\infty$ outside $)$:

$$
\operatorname{prox}_{\chi_{C}}(z)=\underset{u \in Z}{\arg \min } \frac{1}{2}\|u-z\|^{2}+\chi_{C}(u)=\underset{u \in C}{\arg \min } \frac{1}{2}\|u-z\|^{2}=\operatorname{proj}_{C}(z)
$$

- ℓ_{1}-norm in \mathbb{R}^{N},

$$
\operatorname{prox}_{\lambda\|\cdot\|_{1}}(z)=\underset{u \in \mathbb{R}^{N}}{\arg \min } \frac{1}{2}\|u-z\|^{2}+\lambda\|u\|_{1}=\left(\left[\left|z_{i}\right|-\lambda\right]_{+} \operatorname{sgn}\left(z_{i}\right)\right)_{1 \leq i \leq N}
$$

It turns out that:

- J^{*} is the indicator function of a paraboloid set:

$$
K=\left\{(a, b) \in \mathbb{R}^{n+1}, a+\frac{|b|^{2}}{2} \leq 0\right\}
$$

and projection on a paraboloid set reduces to find roots of a polynomial of degree 3 .

- Projection on the affine set of divergence-free vector fields $C_{\rho_{0}, \rho_{1}}$ with given normal boundary values, amounts to solve a Poisson equation with corresponding Neumann boundary condition.

Papadakis / Peyré / Oudet algorithm

Alternates projection on the paraboloid and projection on divergence-free velocity fields. Here K, in the continuous setting, is the identity ${ }^{1} \mathbb{I}$.

Algorithm (Available on authors's GitHub)

- Initialization : $\tau>0, \sigma>0, \theta \in[0,1], \mu^{0}=\left(\rho^{0}, m^{0}\right), z^{0}=\mathbb{I} \mu^{0}$ given
- Iterations :

$$
\begin{aligned}
& z^{k+1}=\operatorname{proj}_{k}\left(z^{k}+\sigma \mathbb{I} \tilde{\mu}^{k}\right) \quad \text { Paraboloid projection } \\
& \mu^{k+1}=\operatorname{proj}_{\left(\rho_{0}, \rho_{\mathbf{1}}\right)}\left(\mu^{k}-\tau \mathbb{I}^{*} z^{k+1}\right) \quad \text { Poisson equation } \\
& \tilde{\mu}^{k+1}=\mu^{k+1}+\theta\left(\mu^{k+1}-\mu^{k}\right) \quad \text { Acceleration }
\end{aligned}
$$

Cost per iteration for an image size $d \times d$ pixels: d^{3} projections on $K+$ one Poisson equation on a grid d^{3}.

[^0]
Helmholtz decomposition

Idea: to avoid this Poisson equation, perform the minimization in the constraint set (which forbids also to go in the flat direction).
To work in $C_{\rho_{0}, \rho_{1}}$, we use the orthogonal decomposition of $L^{2}(Q)^{1+n}$, with $Q=(0,1) \times \Omega$,

$$
(\rho, m)=\nabla \times \phi+\nabla h,
$$

where unless otherwise stated we denote $\nabla=\nabla_{t, x}$. We have $\phi \in\left(H_{0}^{1}(Q)\right)^{3}$, and $h \in H^{1}(Q) / \mathbb{R}$. Because (ρ, m) is divergence-free we obtain

$$
\begin{cases}\Delta_{t, x} h=0 & \text { in } Q \tag{3}\\ \frac{\partial h}{\partial \nu_{Q}}=(\rho, m) \cdot \nu_{Q} & \text { on } \partial Q\end{cases}
$$

Then, knowing h, we can find the minimum of the energy expressed in the new unknown:

$$
\begin{equation*}
\mathcal{J}_{h}(\nabla \times \phi)=\int_{0}^{1} \int_{\Omega} J_{h}(\nabla \times \phi(t, x)) d x d t \tag{4}
\end{equation*}
$$

where $J_{h}=J(\cdot+\nabla h)$ pointwise.

Our primal-Dual algorithm

The primal-dual algorithm described by Chambolle and Pock applies on (4):

$$
\min _{\phi} \max _{z}\langle K \phi, z\rangle+\chi_{0}(\phi)-\mathcal{J}_{h}^{*}(z)
$$

- $K=\nabla \times$ is the curl operator.
- $F^{*}(z):=J_{h}^{*}(z)=J^{*}(z)-\langle z, \nabla h\rangle$ thus $\operatorname{prox}_{\sigma J_{h}^{*}}(x)=\operatorname{prox}_{\sigma J^{*}}(x+\sigma \nabla h)$.
- $G:=\chi_{0}: X \rightarrow[0,+\infty)$ is the indicator function of $C_{0}:=\{\phi, \phi=0$ on $\partial Q\}$.

Algorithm (GitHub MATLAB codes + Python notebook)

- Initialization : $\tau, \sigma, \theta \in[0,1],\left(\phi^{0}, z^{0}=K \phi^{0}, \tilde{\phi}^{0}=\phi^{0}\right)$.
- Iterations :

$$
\begin{aligned}
& z^{k+1}=\operatorname{prox}_{\sigma \mathcal{J}_{h}^{*}}\left(z^{k}+\sigma K \tilde{\phi}^{k}\right)=\operatorname{proj}_{K}\left(z^{k}+\sigma\left(\nabla \times \tilde{\phi}^{k}+\nabla h\right)\right) \\
& \phi^{k+1}=\operatorname{prox}_{\chi_{0}}\left(\phi^{k}-\tau K^{*} z^{k+1}\right)=\operatorname{proj}_{c_{0}}\left(\phi^{k}-\tau \nabla^{*} \times z^{k+1}\right) \\
& \tilde{\phi}^{k+1}=\phi^{k+1}+\theta\left(\phi^{k+1}-\phi^{k}\right)
\end{aligned}
$$

Cost per iteration for an image size $d \times d$ pixels: d^{3} projections on K.

A word on discretization: 1D+t case

- Centered grid. The evaluation of the dual variable $z(t, x)$ is done on a regular grid $G^{c 1}$, whereas the one of the primal variable $\phi(t, x)$ is done on a regular grid $G^{c 2}$, defined by

$$
G^{c 1}=\left\{t_{i}, x_{j}\right\}_{1 \leq i \leq M,} 1 \leq j \leq N, \quad G^{c 2}=\left\{t_{i-1 / 2}, x_{j-1 / 2}\right\}_{1 \leq i \leq M+1,} 1 \leq j \leq N+1,
$$

with $t_{i}=\frac{i}{M+1}, x_{j}=\frac{j}{N+1}$ the discrete locations in the domain $Q=(0,1)^{2}$.

- Staggered grid. We now introduce the grid $G^{s 1}$, which provides a discretization coherent with the divergence of (ρ, m) and which is defined by:

$$
G_{t}^{s 1}=\left\{t_{i-1 / 2}, x_{j}\right\}_{1 \leq i \leq M+1,1 \leq j \leq N}, \quad G_{x}^{s 1}=\left\{t_{i}, x_{j-1 / 2}\right\}_{1 \leq i \leq M, 1 \leq j \leq N+1}
$$

A word on discretization: $2 \mathrm{D}+\mathrm{t}$ case

A grid $G^{s_{1}}$ to evaluate $\left(\rho, m_{1}, m_{2}\right)=\nabla \times \phi+\nabla h$.

A grid $G^{s_{2}}$ to define ($\phi_{1}, \phi_{2}, \phi_{3}$) whose curl lives on the staggered grid $G^{s_{1}}$.

Figure: Staggered grids for 2D+t images

Numerical tests

Output of (full centered) python code: time slices views

Linear interpolation between initial and final densities

Output of (full centered) python code: spatio-temporal views

Figure: Left: initial state. Right: final state

Case with obstacles ${ }^{2}$ (python notebook available)

- Solve the minimization problem written in the space of constraint using Helmholtz decomposition, for a weighted functional with some weight A larger on the obstacles than outside. This amounts to look for a minimum of

$$
\min _{(\rho, m) \in C_{\rho_{\mathbf{0}}, \rho_{\mathbf{1}}}} \int_{0}^{1} \int_{\Omega} J_{\alpha}(\rho, m) d x d t, \quad J_{\alpha}(\rho, m)=\frac{m^{T} A(t, x) m}{2 \rho}
$$

- Typical examples are isotropic stationnary or unstationary:

${ }^{2}$ For theory and more general constraints see (Hug, Papadakis, Maitre, M2AN '15)

Link with minimal surfaces equation: dimension 1 case

- Let us consider the case $n=1$. Then the Helmholtz decomposition in $L^{2}(Q)^{2}$ reads:

$$
(\rho, m)=\nabla \times \phi+\nabla h
$$

with $\phi \in H_{0}^{1}(Q)$ and $h \in H^{1}(Q) / \mathbb{R}$. Here $\nabla \times \phi=\left(\partial_{x} \phi,-\partial_{t} \phi\right)$.

- Since (ρ, m) is divergence-free, h is harmonic, thus $\nabla h=\nabla \times \psi$ and $(\rho, m)=\nabla \times \Phi$.
- The Hessian matrices of $J\left(X_{1}, X_{2}\right)=\frac{X_{2}^{2}}{2 X_{1}}$ and of $\bar{J}\left(X_{1}, X_{2}\right)=\sqrt{X_{1}^{2}+X_{2}^{2}}$ are proportional:

$$
\nabla^{2} J=\frac{1}{X_{1}^{3}}\left(\begin{array}{cc}
X_{2}^{2} & -X_{1} X_{2} \\
-X_{1} X_{2} & X_{1}^{2}
\end{array}\right) \quad \nabla^{2} \bar{J}=\frac{1}{\left(X_{1}^{2}+X_{2}^{2}\right)^{\frac{3}{2}}}\left(\begin{array}{cc}
X_{2}^{2} & -X_{1} X_{2} \\
-X_{1} X_{2} & X_{1}^{2}
\end{array}\right)
$$

- Thus the OT problem is formally equivalent to

$$
\min _{\Phi} \int_{0}^{1} \int_{\Omega}\|\nabla \times \Phi\| d x d t=\min _{\Phi} \int_{0}^{1} \int_{\Omega}\|\nabla \Phi\| d x d t=\min _{(\rho, m) \in C_{\rho_{0}, \rho_{\mathbf{1}}}} \int_{0}^{1} \int_{\Omega} \sqrt{\rho^{2}+m^{2}} d x d t
$$

whose Euler-Lagrange equation is

$$
\operatorname{div}_{t, x} \frac{\nabla \Phi}{\|\nabla \Phi\|}=0
$$

Link with minimal surfaces equation: dimension 1 case

- Application with Primal-dual method:

Algorithm

- Initialization : $\tau, \sigma, \theta \in[0,1],\left(\Phi^{0}, z^{0}=\nabla \Phi^{0}, \tilde{\Phi}^{0}=\Phi^{0}\right)$.
- Iterations :

$$
\begin{aligned}
& z^{k+1}=\operatorname{prox}_{\sigma\|\cdot\|_{1}^{*}}\left(z^{k}+\sigma K \tilde{\Phi}^{k}\right)=\operatorname{proj}_{B}\left(z^{k}+\sigma \nabla \tilde{\Phi}^{k}\right), \quad \operatorname{proj}_{B}(z)=\frac{z}{\max (\|z\|, 1)} \\
& \Phi^{k+1}=\operatorname{prox}_{\chi_{0}}\left(\Phi^{k}-\tau \operatorname{div} z^{k+1}\right)=\operatorname{proj}_{C_{0}}\left(\Phi^{k}-\tau \operatorname{div} z^{k+1}\right) \\
& \tilde{\Phi}^{k+1}=\Phi^{k+1}+\theta\left(\Phi^{k+1}-\Phi^{k}\right)
\end{aligned}
$$

- Cost per iteration for an "image" size d pixels: d^{2} projections on the unit Ball.
- Solving the Euler-Lagrange equation by a fixed point iteration in FreeFEM++:

Link with minimal surfaces equation: dimension 2 case

- Not so simple: the hessian property does not hold anymore. Actually in $1 D$ any convex cost gives the same transport, but this is not the case in higher dimensions.
- Let us consider the following energy:

$$
\begin{equation*}
\mathcal{E}(\rho, m)=\int_{0}^{1} \int_{\Omega} \sqrt{\rho^{2}+m^{2}} d x d t \tag{5}
\end{equation*}
$$

still minimized on the constraint set

$$
C_{\rho_{\mathbf{0}}, \rho_{\mathbf{1}}}=\left\{(\rho, m), \partial_{t} \rho+\operatorname{div} m=0, \quad \rho(0, \cdot)=\rho_{0}, \rho(1, \cdot)=\rho_{1}, m \cdot n=0 \text { on } \partial \Omega\right\} .
$$

- Since $\sqrt{\rho^{2}+m^{2}}=\rho \sqrt{1+v^{2}}$, the associated cost is (verifies Ma-Trudinger-Wang property):

$$
d_{m}(x, y)=\sqrt{1+|x-y|^{2}}-1
$$

- For this cost, the Helmholtz decomposition leads to a vectorial minimal surface problem with no Poisson equation and a projection on a Euclidean ball:

$$
\begin{equation*}
\inf _{\phi \in\left(H_{0}^{1}(Q)\right)^{3}} \int_{0}^{1} \int_{\Omega}|\nabla \times \phi+\nabla h|_{2} d x d t \tag{6}
\end{equation*}
$$

where the infimum is taken on $\phi \in\left(H_{0}^{1}(Q)\right)^{3}$.

Link with minimal surfaces equation: dimension 2 case

- $d_{m}(x, y)=\sqrt{1+|x-y|^{2}}-1$ is intermediate between L^{1} and L^{2}.
- Indeed, $d_{m} \approx|x-y|$ for $|x-y| \gg 1$ while $d_{m}(x, y) \approx \frac{1}{2}|x-y|^{2}$ when $x \approx y$.
- Brenier ${ }^{3}$ pointed out the the relativistic cost $d_{r}(x, y)=c^{2}\left(1-\sqrt{1-\frac{|x-y|^{2}}{c^{2}}}\right)$ $(+\infty$ if $|x-y|>c)$, whose dual is $d_{m}(x, y)=c^{2}\left(\sqrt{1+\frac{|x-y|^{2}}{c^{2}}}-1\right)$ which interpolates L^{1} and L^{2} distances while c goes from 0 to $+\infty$.

[^1]
Link with minimal surfaces equation: dimension 2 case

- The associated Lagrangian for the minimization of \mathcal{E} on $C_{\rho_{0}, \rho_{1}}$ is:
$\mathcal{L}_{m s}(\rho, m, \psi)=\int_{0}^{1} \int_{\Omega} \sqrt{\rho^{2}+m^{2}}-\rho \partial_{t} \psi-m \cdot \nabla_{x} \psi d x d t-\int_{\Omega} \rho_{0} \psi(0, x)-\rho_{1} \psi(1, x) d x$
A saddle point (ρ, m, ψ) of $\mathcal{L}_{m s}$ is characterized by

$$
\frac{\rho}{\sqrt{\rho^{2}+m^{2}}}=\partial_{t} \psi, \quad \frac{m}{\sqrt{\rho^{2}+m^{2}}}=\nabla_{x} \psi, \quad \partial_{t} \rho+\operatorname{div} m=0
$$

which leads to the Hamilton-Jacobi equation

$$
\left|\nabla_{t, x} \psi\right|=1
$$

- The counterpart of the Euler equation of L^{2} OT is the stationary Euler equation in the (t, x) space,

$$
\begin{equation*}
\left(\nabla_{t, x} \psi \cdot \nabla_{t, x}\right) \nabla_{t, x} \psi=0 . \tag{7}
\end{equation*}
$$

In terms of (ρ, m) our saddle point verifies:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}_{x} m=0 \tag{8}\\
\binom{\rho}{m} \cdot \nabla_{t, x}\left(\frac{\frac{\rho}{\sqrt{\rho^{2}+m^{2}}}}{\sqrt{\rho^{2}+m^{2}}}\right)=0_{\mathbb{R}^{3}}
\end{array}\right.
$$

Euler and Clebsch variables in hydrodynamics

- Euler showed that any continuously differentiable vector field u of free divergence may be represented locally as

$$
u=\nabla \phi_{1} \times \nabla \phi_{2} \quad \text { (Euler form) }
$$

where ϕ_{1} and ϕ_{2} are scalar functions are called the Clebsch potentials (or Euler, Darboux and Pfaff ${ }^{4}$).

- Remark 1: this is a valuable although nonlinear and only local, generalization of the $1 D+t$ situation, since $\nabla \times \phi \approx \nabla \phi \times(0,0,1)^{T}=\nabla \phi \times \nabla x_{2}$.
- Remark 2: Since for any vector field $v, \nabla \times v$ is divergence free, it can be written as

$$
\nabla \times v=\nabla \phi_{1} \times \nabla \phi_{2} \quad \text { (Euler form) }
$$

then $\nabla \times\left(v-\phi_{1} \nabla \phi_{2}\right)=0$ so that any smooth vector field v can be written as

$$
v=\phi_{1} \nabla \phi_{2}+\nabla h .
$$

In that context, ϕ_{1}, ϕ_{2}, h are called Monge (!) potentials.

- Remark 3: used by e.g. Tom Hou to study singularity in Euler equations and Flavien Léger to link regularize optimal transport with Schrödinger Bridge problems.
${ }^{4}$ C. Truesdell, The Kinematics of Vorticity, K. Ohkitani, Nonlinearity 2018 and ref. therein

Link with minimal surfaces equation: dimension 2 case

- Our OT problem therefore boils down to minimize on ϕ_{1}, ϕ_{2} the energy

$$
\int_{0}^{1} \int_{\Omega}\left\|\nabla_{t, x} \phi_{1} \times \nabla_{t, x} \phi_{2}\right\| d x d t
$$

whose Euler-Lagrange equations are

$$
\begin{equation*}
\operatorname{div}_{t, x}\left(\frac{\nabla_{t, x} \phi_{1} \times \nabla_{t, x} \phi_{2}}{\left\|\nabla_{t, x} \phi_{1} \times \nabla_{t, x} \phi_{2}\right\|} \times \nabla \phi_{i}\right)=0, \quad i=1,2 \tag{9}
\end{equation*}
$$

these equations are equivalent to a kind of minimal codim 2 surface equation:

$$
\begin{equation*}
\operatorname{div}_{t, x}\left(\left\|\nabla_{t, x} \phi_{i}\right\| \frac{P_{\nabla_{t, x} \phi_{i}^{\perp}}\left(\nabla_{t, x} \phi_{j}\right)}{\left\|P_{\nabla_{t, x} \phi_{i}^{\perp}}\left(\nabla_{t, x} \phi_{j}\right)\right\|}\right)=0, \quad(i, j) \in\{(1,2),(2,1)\} . \tag{10}
\end{equation*}
$$

- This formulation appears in the Level Set method to model a co-dimension 2 interface ${ }^{5}$ as intersection of two hypersurfaces described by level functions ϕ_{1} and ϕ_{2}.

Summary

- We proposed a method to solve the dynamic OT problem which relies on a parametrization of the constraint space, saving computational costs.
- This approach can cope with a large class of energies which could account for obstacles or physical priors in images.
- A parametrization in terms of Clebsch variables gives some insight on the geometry of the minimizers.

[^0]: ${ }^{1}$ In the discrete implementation it is the interpolation operator between unstaggered and staggered grids.

[^1]: ${ }^{3}$ Brenier, Y. (2003). Extended Monge-Kantorovich theory. In Optimal transportation and applications (pp. 91-121). Springer, Berlin, Heidelberg.

