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How to measure a distance between two images ?
Applications:

Compare two images
Applications to: image assimilation in weather prediction or other sciences

Find interpolation between images, or extrapolating
Application to: movie creation from image sequences, extrapolation of tumor growth
images ...

Not so simple than in our Euclidean space ...
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Images do not fit well in Euclidean space

Consider those two images (imagine biological cells for instance):

Proceeding as in Euclidean space to find a middle between two elements gives:
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Spaces of images are not Euclidean

If it were, the middle image I would be obtained by averaging pixelwise the two
images:

Is it a good notion of middle image ?
As well, Lp distance between two non-overlapping characteristic functions does
not depend on the distance of their support.
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Where Physics comes into play ...

How to compute that image ?

Let’s think about a sand pile ...

PDE team (LJK) Dynamical optimal transport 14/06/2022 5 / 31



Optimal transport

Introduced by Gaspard Monge (1781) ...
... studied by many authors Kantorovich, ... , Brenier, McCann, Villani, ...

How to formalize this idea as an optimisation problem?
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Quick intro to (static) L2-optimal transport
Ω open bounded domain. µ, ν probability measures, absolutely continuous with respect
to the Lebesgue measure, of densities ρ0 and ρ1, nonnegative on Ω.

Monge problem: pushing µ to ν, through a transportation map which minimizes
some cost. In the L2 case,

argmin
T∈Γ(ρ0,ρ1)

∫
1
2
|T (x)− x |2ρ0(x)dx

where Γ(ρ0, ρ1) = {T : X → Y , T#ρ0dx = ρ1dx}. This infimum value defines
d2(ρ0, ρ1), the L2-KW distance between ρ0 and ρ1.

Recent methods to solve efficiently this problem rely on the alternative Kantorovich
form: Mérigot et al and Léger et al.

The problem admits an unique solution T (x) [Brenier, McCann], which is the
gradient of a convex fonctional Ψ : Ω→ R, solution of the Monge-Ampère
equation:

det(D2Ψ)ρ1(∇Ψ(x)) = ρ0(x).

Numerical methods to solve this Monge-Ampère equation have been investigated in
[Loeper-Rapetti ’05, Dean-Glowinski ’06, Benamou-Froese-Oberman ’14]. This
approach as well as other (Angenent-Haker-Tannenbaum ’04, Iollo-Lombardi ’11)
strongly relies on the particular energy involved.
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Dynamics formulation of optimal transport

Let ρ0, ρ1 be two (positive) densities of unit mass on a domain Ω ⊂ Rn.

Benamou-Brenier: Consider all functions ρ(t, x) ≥ 0 and vector fields v(t, x) ∈ Rn

solution of the continuity conditions with prescribed initial and final densities:

∂tρ+ div(ρv) = 0, ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x), v · n = 0 on ∂Ω (1)

Theorem (Benamou-Brenier)

The following (non-convex) optimisation problem on ρ, v

d2(ρ0, ρ1)2 = inf

∫ 1

0

∫
Ω

1
2
ρ(t, x)|v(t, x)|2dxdt

where the inf is taken on (ρ, v) verifying the (non-convex) constraint (1), defines a
distance on the space of densities of unit mass coinciding with KW distance.

From now on, we are looking for this continuous sequence of densities t → ρ(t, ·)
which links optimally ρ0 to ρ1 thus our problem is a space-time problem.
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Convex formulation

Following Benamou & Brenier, set m = ρv . The problem becomes

inf
(ρ,m)∈Cρ0,ρ1

∫ 1

0

∫
Ω

J(ρ(t, x),m(t, x))dxdt

where J is the (non strictly) convex proper l.s.c. function defined by

∀(ρ,m) ∈ R× Rn, J(ρ,m) =


|m|2
2ρ , if ρ > 0,
0, if (ρ,m) = (0, 0),

+∞, otherwise,

(2)

and the affine set of constraints is

Cρ0,ρ1 = {(ρ,m), ∂tρ+ divm = 0, ρ(0, ·) = ρ0, ρ(1, ·) = ρ1, m · n = 0 on ∂Ω}

NB: 0 is an eigenvalue of the Hessian of J at (ρ > 0,m), with (ρ,m) as eigenvector.
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Numerical approximation
This formulation is numerically solved by Benamou-Brenier (Numerische Math. ’01)
using an augmented Lagrangian method [Fortin-Glowinski] on an unstaggered
discretization. We proved rigorously convergence of this algorithm under weaker
assumptions (Hug-M.-Papadakis, JMAA ’19) and extended it to more general
energies (Hug-M.-Papadakis, 15’).
Requires one Poisson equation to solve in Rn+1 per iteration.

Oudet, Papadakis & Peyré adapted the primal dual algorithm of Chambolle-Pock
’10 (CP) on a staggered discretization (SIAM Imaging ’14).
Faster (less iterations), but still requires one Poisson equation to solve in Rn+1 per
iteration.

A fast algorithm for entropy regularization of the energy was introduced by Cuturi
in 2013.

In Henry, M. & Perrier we enhanced this algorithm using the CP algorithm on an
Helmholtz decomposition of (ρ,m) in Rn+1 (ICIP ’15).
Faster, a single Poisson equation to solve in Rn+1 at initialization.

Presently, this algorithm is further considered in a new setting which links it with
minimal surfaces equation.
Even faster, due to the simpler structure of the convex functional.
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Roadmap

Quick intro to Chambolle-Pock primal-dual algorithm

Application to dynamic optimal transportation

Helmholtz version of primal-dual for DOT

Some numerical results and comparisons

Link with minimal surfaces
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Chambolle-Pock (CP) algorithm

It applies to problems which could be written as

min
x∈X

F (Kx) + G(x)

where X ,Y are Hilbert spaces, F : Y → R and G : X → R are convex proper l.s.c.
functionals, and K a linear continuous operator from X to Y .

The min-max form is

min
x∈X

max
y∈Y
〈Kx , y〉 − F ∗(y) + G(x)

where F ∗(y) = supx∈X 〈x , y〉 − F (x) is the convex conjugate of F , which verifies
F ∗∗ = F .

Roughly speaking, the CP algorithm alternates gradient ascents of the concave
functional y → 〈Kx , y〉 − F ∗(y) and gradient descents of the convex functional
x → 〈Kx , y〉+ G(x) = 〈x ,K∗y〉+ G(x).

Its power lies in the ability to perform seemingless implicit iterations whenever F ∗

and G are easily proximable.
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Chambolle-Pock (CP) algorithm

min
x∈X

max
y∈Y
〈Kx , y〉 − F ∗(y) + G(x) = min

x∈X
max
y∈Y
〈x ,K∗y〉+ G(x)− F ∗(y)

In its simplest form (without θ parameter)

Implicit ascent: y k+1 = y k + σ(Kxk − ∂F ∗(y k+1)) which corresponds to

y k+1 = (id + σ∂F ∗)−1(y k + σKxk)

Implicit descent: xk+1 = xk − τ(K∗y k+1 + ∂G(xk+1) which corresponds to

xk+1 = (id + τ∂G)−1(xk − τK∗y k+1)

Chambolle-Pock’10 (and numbers of following results by Peyré, Condat, ...) proved
under assumption on σ, τ > 0 such that στ‖K‖2 < 1 that this algorithm converges
linearly to a solution of the min-max problem.

Works well if the inverse maps can be easily computed. This is what we referred as
easily proximable, since for a convex l.s.c. functional H : Z → R:

(id + σ∂H)−1(z) = arg min
u∈Z

1
2
‖u − z‖2 + σH(u) =: proxσH(z)
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Chambolle-Pock (CP) algorithm
Examples of easily proximable functionals:

Indicator of a closed convex set C (χC = 0 inside C , +∞ outside):

proxχC
(z) = arg min

u∈Z

1
2
‖u − z‖2 + χC (u) = arg min

u∈C

1
2
‖u − z‖2 = projC (z)

`1-norm in RN ,

proxλ‖·‖1(z) = arg min
u∈RN

1
2
‖u − z‖2 + λ‖u‖1 = ([|zi | − λ]+ sgn(zi ))1≤i≤N

It turns out that:

J∗ is the indicator function of a paraboloid set:

K =

{
(a, b) ∈ Rn+1, a +

|b|2

2
≤ 0
}

and projection on a paraboloid set reduces to find roots of a polynomial of degree 3.

Projection on the affine set of divergence-free vector fields Cρ0,ρ1 with given normal
boundary values, amounts to solve a Poisson equation with corresponding Neumann
boundary condition.

PDE team (LJK) Dynamical optimal transport 14/06/2022 14 / 31



Papadakis / Peyré / Oudet algorithm

Alternates projection on the paraboloid and projection on divergence-free velocity fields.
Here K , in the continuous setting, is the identity1 I.

Algorithm (Available on authors’s GitHub)

– Initialization : τ > 0, σ > 0, θ ∈ [0, 1], µ0 = (ρ0,m0), z0 = Iµ0 given
– Iterations :

zk+1 = projK (zk + σIµ̃k) Paraboloid projection

µk+1 = projC(ρ0,ρ1)(µ
k − τI∗zk+1) Poisson equation

µ̃k+1 = µk+1 + θ(µk+1 − µk) Acceleration

Cost per iteration for an image size d × d pixels:
d3 projections on K + one Poisson equation on a grid d3.

1In the discrete implementation it is the interpolation operator between unstaggered and
staggered grids.
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Helmholtz decomposition

Idea: to avoid this Poisson equation, perform the minimization in the constraint set
(which forbids also to go in the flat direction).
To work in Cρ0,ρ1 , we use the orthogonal decomposition of L2(Q)1+n, with
Q = (0, 1)× Ω,

(ρ,m) = ∇× φ+∇h,
where unless otherwise stated we denote ∇ = ∇t,x . We have φ ∈ (H1

0 (Q))3, and
h ∈ H1(Q)/R. Because (ρ,m) is divergence-free we obtain{

∆t,xh = 0 in Q,
∂h
∂νQ

= (ρ,m) · νQ on ∂Q.
(3)

Then, knowing h, we can find the minimum of the energy expressed in the new unknown:

Jh(∇× φ) =

∫ 1

0

∫
Ω

Jh(∇× φ(t, x))dxdt, (4)

where Jh = J(·+∇h) pointwise.
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Our primal-Dual algorithm
The primal-dual algorithm described by Chambolle and Pock applies on (4):

min
φ

max
z
〈Kφ, z〉+ χ0(φ)− J ∗h (z).

K = ∇× is the curl operator.

F ∗(z) := J∗h (z) = J∗(z)− 〈z ,∇h〉 thus proxσJ∗
h

(x) = proxσJ∗(x + σ∇h).

G := χ0 : X → [0,+∞) is the indicator function of C0 := {φ, φ = 0 on ∂Q}.

Algorithm (GitHub MATLAB codes + Python notebook)

– Initialization : τ, σ, θ ∈ [0, 1], (φ0, z0 = Kφ0, φ̃0 = φ0).
– Iterations :

zk+1 = proxσJ ∗
h

(zk + σK φ̃k) = projK (zk + σ(∇× φ̃k +∇h))

φk+1 = proxχ0(φk − τK∗zk+1) = projC0(φk − τ∇∗ × zk+1)

φ̃k+1 = φk+1 + θ(φk+1 − φk)

Cost per iteration for an image size d × d pixels: d3 projections on K .
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A word on discretization: 1D+t case
Centered grid. The evaluation of the dual variable z(t, x) is done on a regular grid
G c1, whereas the one of the primal variable φ(t, x) is done on a regular grid G c2,
defined by

G c1 = {ti , xj}1≤i≤M, 1≤j≤N , G c2 = {ti−1/2, xj−1/2}1≤i≤M+1, 1≤j≤N+1,

with ti = i
M+1 , xj = j

N+1 the discrete locations in the domain Q = (0, 1)2.

Staggered grid. We now introduce the grid G s1, which provides a discretization
coherent with the divergence of (ρ,m) and which is defined by:

G s1
t = {ti−1/2, xj}1≤i≤M+1, 1≤j≤N , G s1

x = {ti , xj−1/2}1≤i≤M, 1≤j≤N+1.
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A word on discretization: 2D+t case
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A grid G s1 to evaluate
(ρ,m1,m2) = ∇× φ+∇h.

A grid G s2 to define (φ1, φ2, φ3) whose curl
lives on the staggered grid G s1 .

Figure: Staggered grids for 2D+t images
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Numerical tests
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Figure: Comparison at each iteration of the functional J (bottom left), the minimum
value of ρ (bottom right), the L2-errors between ρ and ρs (top left) and between m and
ms (top right) between PDPOP (modified algorithm of [?]), PDHH algorithm (algo.??),
and also PDPOPgh for the last figure (algo [?] on github), in the case of Figure ??.
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Output of (full centered) python code: time slices views
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Output of (full centered) python code: spatio-temporal
views

Figure: Left: initial state. Right: final state
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Case with obstacles2 (python notebook available)
Solve the minimization problem written in the space of constraint using Helmholtz
decomposition, for a weighted functional with some weight A larger on the
obstacles than outside. This amounts to look for a minimum of

min
(ρ,m)∈Cρ0,ρ1

∫ 1

0

∫
Ω

Jα(ρ,m)dxdt, Jα(ρ,m) =
mTA(t, x)m

2ρ

Typical examples are isotropic stationnary or unstationary:

A(t, x) = α(x)I2 A(t, x) = α(t, x)I2

2For theory and more general constraints see (Hug, Papadakis, Maitre, M2AN ’15)
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Link with minimal surfaces equation: dimension 1 case
Let us consider the case n = 1. Then the Helmholtz decomposition in L2(Q)2 reads:

(ρ,m) = ∇× φ+∇h

with φ ∈ H1
0 (Q) and h ∈ H1(Q)/R. Here ∇× φ = (∂xφ,−∂tφ).

Since (ρ,m) is divergence-free, h is harmonic, thus ∇h = ∇× ψ and
(ρ,m) = ∇× Φ.

The Hessian matrices of J(X1,X2) =
X2
2

2X1
and of J̄(X1,X2) =

√
X 2

1 + X 2
2 are

proportional:

∇2J =
1
X 3

1

(
X 2

2 −X1X2

−X1X2 X 2
1

)
∇2J̄ =

1

(X 2
1 + X 2

2 )
3
2

(
X 2

2 −X1X2

−X1X2 X 2
1

)
Thus the OT problem is formally equivalent to

min
Φ

∫ 1

0

∫
Ω

‖∇×Φ‖dxdt = min
Φ

∫ 1

0

∫
Ω

‖∇Φ‖dxdt = min
(ρ,m)∈Cρ0,ρ1

∫ 1

0

∫
Ω

√
ρ2 + m2dxdt

whose Euler-Lagrange equation is

divt,x
∇Φ

‖∇Φ‖ = 0
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Link with minimal surfaces equation: dimension 1 case
Application with Primal-dual method:

Algorithm
– Initialization : τ, σ, θ ∈ [0, 1], (Φ0, z0 = ∇Φ0, Φ̃0 = Φ0).
– Iterations :

zk+1 = proxσ‖·‖∗1 (zk + σK Φ̃k) = projB(zk + σ∇Φ̃k), projB(z) =
z

max(‖z‖, 1)

Φk+1 = proxχ0(Φk − τ div zk+1) = projC0(Φk − τ div zk+1)

Φ̃k+1 = Φk+1 + θ(Φk+1 − Φk)

Cost per iteration for an "image" size d pixels:
d2 projections on the unit Ball.

Solving the Euler-Lagrange equation
by a fixed point iteration in FreeFEM++:
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Link with minimal surfaces equation: dimension 2 case
Not so simple: the hessian property does not hold anymore. Actually in 1D any
convex cost gives the same transport, but this is not the case in higher dimensions.

Let us consider the following energy:

E(ρ,m) =

∫ 1

0

∫
Ω

√
ρ2 + m2dxdt. (5)

still minimized on the constraint set

Cρ0,ρ1 = {(ρ,m), ∂tρ+ divm = 0, ρ(0, ·) = ρ0, ρ(1, ·) = ρ1, m · n = 0 on ∂Ω} .

Since
√
ρ2 + m2 = ρ

√
1 + v2, the associated cost is (verifies Ma-Trudinger-Wang

property):
dm(x , y) =

√
1 + |x − y |2 − 1

For this cost, the Helmholtz decomposition leads to a vectorial minimal surface
problem with no Poisson equation and a projection on a Euclidean ball:

inf
φ∈(H1

0 (Q))3

∫ 1

0

∫
Ω

|∇ × φ+∇h|2dxdt, (6)

where the infimum is taken on φ ∈ (H1
0 (Q))3.
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Link with minimal surfaces equation: dimension 2 case

dm(x , y) =
√

1 + |x − y |2 − 1 is intermediate between L1 and L2.

Indeed, dm ≈ |x − y | for |x − y | � 1 while dm(x , y) ≈ 1
2 |x − y |2 when x ≈ y .

Brenier3 pointed out the the relativistic cost dr (x , y) = c2
(
1−

√
1− |x−y|2

c2

)
(+∞ if |x − y | > c), whose dual is dm(x , y) = c2

(√
1 + |x−y|2

c2 − 1
)

which

interpolates L1 and L2 distances while c goes from 0 to +∞.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

0.5*x**2
abs(x)

sqrt(1+x**2)-1

3Brenier, Y. (2003). Extended Monge-Kantorovich theory. In Optimal transportation and
applications (pp. 91-121). Springer, Berlin, Heidelberg.
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Link with minimal surfaces equation: dimension 2 case
The associated Lagrangian for the minimization of E on Cρ0,ρ1 is:

Lms(ρ,m, ψ) =

∫ 1

0

∫
Ω

√
ρ2 + m2−ρ∂tψ−m ·∇xψdxdt−

∫
Ω

ρ0ψ(0, x)−ρ1ψ(1, x)dx

A saddle point (ρ,m, ψ) of Lms is characterized by
ρ√

ρ2 + m2
= ∂tψ,

m√
ρ2 + m2

= ∇xψ, ∂tρ+ divm = 0,

which leads to the Hamilton-Jacobi equation

|∇t,xψ| = 1.

The counterpart of the Euler equation of L2 OT is the stationary Euler equation in
the (t, x) space,

(∇t,xψ · ∇t,x)∇t,xψ = 0. (7)
In terms of (ρ,m) our saddle point verifies:

∂tρ+ divx m = 0(
ρ

m

)
· ∇t,x

 ρ√
ρ2+m2

m√
ρ2+m2

 = 0R3
(8)
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Euler and Clebsch variables in hydrodynamics
Euler showed that any continuously differentiable vector field u of free divergence
may be represented locally as

u = ∇φ1 ×∇φ2 (Euler form)

where φ1 and φ2 are scalar functions are called the Clebsch potentials (or Euler,
Darboux and Pfaff4).

Remark 1: this is a valuable although nonlinear and only local, generalization of the
1D + t situation, since ∇× φ ≈ ∇φ× (0, 0, 1)T = ∇φ×∇x2.

Remark 2: Since for any vector field v , ∇× v is divergence free, it can be written as

∇× v = ∇φ1 ×∇φ2 (Euler form)

then ∇× (v − φ1∇φ2) = 0 so that any smooth vector field v can be written as

v = φ1∇φ2 +∇h.

In that context, φ1, φ2, h are called Monge (!) potentials.

Remark 3: used by e.g. Tom Hou to study singularity in Euler equations and
Flavien Léger to link regularize optimal transport with Schrödinger Bridge problems.

4C. Truesdell, The Kinematics of Vorticity, K. Ohkitani, Nonlinearity 2018 and ref. therein
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Link with minimal surfaces equation: dimension 2 case

Our OT problem therefore boils down to minimize on φ1, φ2 the energy∫ 1

0

∫
Ω

‖∇t,xφ1 ×∇t,xφ2‖dxdt.

whose Euler-Lagrange equations are

divt,x

(
∇t,xφ1 ×∇t,xφ2

‖∇t,xφ1 ×∇t,xφ2‖
× ∇φi

)
= 0, i = 1, 2 (9)

these equations are equivalent to a kind of minimal codim 2 surface equation:

divt,x

(
‖∇t,xφi‖

P∇t,xφ
⊥
i

(∇t,xφj)

‖P∇t,xφ
⊥
i

(∇t,xφj)‖

)
= 0, (i , j) ∈ {(1, 2), (2, 1)}. (10)

This formulation appears in the Level Set method to model a co-dimension 2
interface5 as intersection of two hypersurfaces described by level functions φ1 and
φ2.

5
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Summary

We proposed a method to solve the dynamic OT problem which relies on a
parametrization of the constraint space, saving computational costs.

This approach can cope with a large class of energies which could account for
obstacles or physical priors in images.

A parametrization in terms of Clebsch variables gives some insight on the geometry
of the minimizers.
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