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Missile guidance problem

Cruise missile trajectory optimization in the vicinity of a target.

Cruise missile: a self propelled endo-atmospheric aerial vehicle
maneuvering using its aerodynamic surfaces.

To avoid exposure to ennemy radars, it �ies most of the time at
very low altitude, except in the very vicinity of the target.

It aims to hit a ground target under speci�ed �ight conditions
(speed, �ight path angle).

Study limited to the vertical plane (most critical).
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Typical trajectory shape

1. initial transitory phase: the vehicle joins the cruise altitude

2. "cruise phase": the missile remains close to hc

3. "bunt phase": climb and dive onto the target
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Dynamical system modelling

ẋ = v . cos γ (1a)

ḣ = v . sin γ (1b)

v̇ =
Tmax.(1+ Cs .v).u1 − D(h, v)

m
− g . sin γ (1c)

γ̇ =
L(h, v)

m.v
− g . cos γ

v
(1d)

ṁ = −Cs .Tmax.u1 (1e)

The aerodynamic forces (drag & lift) are given by:

L(h, v) = q̄(h, v).S .Cl (2a)

D(h, v) = q̄(h, v).S .(Cd + kcz .C
2
l ) (2b)
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Dynamical system modelling

q̄ := 1
2
ρ(h).v2 is the dynamic pressure, Tmax is the maximum

thrust, Cl , Cd and kcz are aerodynamic coe�cients, S is the cross
section of the missile and ρ(.) is the air density.

The control is in dimension 2: the thrust throttle u1(.) and the lift
coe�cient Cl := u2(.).

The controls are bounded due to the vehicle physical limitations:
u1(t) ∈ [η, 1], with η ∈]0, 1[ and |u2(t)| ⩽ um2 .

Notations: ξ := (x h v γ m)T , the dynamics f is given by (1)
u := (u1, u2) and U := [η, 1]× [−um2 , um2 ]
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Optimal control problem

(OCP)



min
(tf ,u∈U)

∫ tf

0

(
k0 + k1.

(h(s)− hc)
2

h2c
+ k2.u2(s)

2

)
ds

ξ̇(s) = f (ξ(s), u(s)) ∀s ∈ [0, tf ]

ξ(0) = ξ0, ξ(tf ) = ξf

u(s) ∈ U ∀s ∈ [0, tf ]

(3)

where:

• ξ0 = (x0 h0 v0 γ0 m0)
T and ξf = (xf hf vf γf ∗)T are the

prescribed initial and �nal states.

• hc is the cruise altitude

• (k0, k1, k2) ∈ R3 is the weight triple in the performance index.
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Direct method

▷ Get the global structure of the optimal control by solving the
problem using a direct method (Ipopt solver under the automatic
di�erentiation code AMPL)

▷ Numerical values of the boundary conditions:

(x0, h0, v0, γ0,m0) = (0m, 200m, 300m/s, 0◦, 600kg)

(xf , hf , vf , γf ,mf ) = (25000m, 0m, 230m/s,−50◦, *)
k0 = k1 = k2 = 0.1
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Numerical results using Ipopt under AMPL
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Comments

▷ Crank Nicholson numerical scheme. Very reasonable computation
time (5sec) on the NEOS server with a "naive" initialisation.

▷ Main output: tf ≃ 94.6s, ts ≃ 92s, Cost ≃ 14.3

▷ The optimal structure of the u1(.) is of bang-bang nature u1 = 1
then u1 = η. In what follows, we exploit this without proving it.

▷ Partial turnpike phenomenon on h et γ state variables due to the
cruise altitude constraint in the cost.
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Turnpike property

Turnpike property

• The solution of an optimal control problem in large time
should spend most of its time near a steady-state.

• In in�nite horizon the solution should converge to that
steady-state.
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Recent literature

Exponential turnpike → Trelat, Zuazua, JDE 2015 (�nite dim.);
Trélat, Zhang, Zuazua, SICON 2018 (in�nite dim.)

Measure turnpike results for dissipative systems → Bonvin

Faulwasser 2016; Grune 2018; Trélat Zhang MCSS 2018

Partial turnpike → Trélat 2021; Aftalion Trélat 2021
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Pontryagin Maximum Principle

The Hamiltonian: H(ξ, p, p0, u) := ⟨p, f (ξ, u)⟩+ p0.f 0(ξ, u)

The optimal triple (ξ⋆(.), p⋆(.), u⋆(.)) of (OCP) checks:

ξ̇⋆(t) =
∂H

∂p
(ξ⋆(t), p⋆(t), p0, u⋆(t)), (4a)

ṗ⋆(t) = −∂H
∂ξ

(ξ⋆(t), p⋆(t), p0, u⋆(t)) (4b)

u⋆(t) = argmax
v∈U

H(ξ⋆(t), p⋆(t), p0, v) (4c)

Extremal state constraints: ξ⋆(0) = ξ0 and ξ⋆(t⋆f ) = ξf

Transversality condition: p⋆m(t
⋆
f ) = 0

Terminal condition: H(ξ⋆(t⋆f ), p
⋆(t⋆f ), p

0, u⋆(t⋆f )) = 0

Assumption: p0 = −1 → no abnormal case.
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Shooting function
From the maximisation condition (4c): u = Π(ξ, p), the numerical
solving of (4) is equivalent to �nd z = (ξ, p) s.t:

ż(t) = F (z(t)) and G (z(0), z(tf )) = 0 (5)

Usual implementation: z(0) unknown tuned such that (5) is true.

▷ When turnpike, approach losing its e�ciency when T large.

▷ New variant (see Trelat, Zuazua, JDE 2015):
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Model reduction

Exploiting the partial turnpike-like behaviour:

∀t ∈ [τ, tf − τ ], h(t) ≃ hc :

(1b)⇒ ḣ(t) ≃ 0⇒ γ(t) ≃ 0 (6a)

(1d)⇒ γ̇(t) ≃ 0⇒ ū2 ≃
m.g

q̄(hc , v).S
(6b)

The system behavior can be approximated in dimension 3 by setting
h(t) = hc and γ(t) = 0.

To numerically solve (OCP), we perform a continuation on the �nal
state over three intermediate control problems of increasing
dimension and complexity.
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(OCP)3

(OCP3)


min

u∈[η,1]
tf

ϕ̇(s) = f3(ϕ(s), u(s)) ∀s ∈ [0, tf ]

ϕ(0) = ϕ0, ϕ(tf ) = ϕf

• ϕ := (x v m)T , u := u1

• f3 :=

 v
Tmax.(1+ Csv)

m
u − D0(hc , v)

m
−Cs .Tmax.u


• D0(h, v) := q̄(hc , v).S .Cd is the �rst order drag force.

• ϕ0 = (x0 v0 m0)
T and ϕf = (xf vf ∗)T .
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(OCP)θ
4

Add γ variable.

(OCPθ
4)


min

(u1,u2)∈U

∫ tf

0

(
k0 + k2u

2
2(t)

)
dt

ψ̇(s) = f θ4 (ψ(s), u1(s), u2(s)) ∀s ∈ [0, tf ]

ψ(0) = ψ0, ψ(tf ) = ψf

• ϕ := (x v γ m)T , u := (u1, u2), θ ∈ [0, 1]

• f θ4 :=


v cos(θ.γ)

Tmax.(1+ Csv).u1 − D(h, v , u2)

m
− θ.g . sin(γ)

L(h, v , u2)

m.v
− g . cos(γ)

v
−Cs .Tmax.u


• ψ0 = (x0 v0 γ0 m0)

T and ψf = (xf vf γf ∗)T .
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(OCP)δ
5

Add h variable.

(OCPδ
5)


min

(u1,u2)∈U

∫ tf

0

(
k0 + k1.

(h(t)− hc)
2

h2c
+ k2u

2
2(t)

)
dt

ξ̇(s) = f δ5 (ξ(s), u1(s), u2(s)) ∀s ∈ [0, tf ]

ξ(0) = ξ0, ξ(tf ) = ξf

• ξ := (x h v γ m)T , δ ∈ [0, 1]

• f δ5 :=



v cos(γ)
v . sin(γ)

Tmax.(1+ Csv).u1 − D(δ.h, v , u2)

m
− θ.g . sin(γ)

L(δ.h, v , u2)

m.v
− g . cos(γ)

v
−Cs .Tmax.u
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Continuation strategy
1. (OCP3): Standard shooting on the �nal state from

(x i3, v
i
3) = (1000m, 285m/s) to (x f3 , v

f
3 ) = (3000m, 270m/s):

xh3 (λ) = x i3 + λ.(x f3 − x i3)

vh3 (λ) = v i3 + λ.(v f3 − v i3)

for λ ∈ [0, 1]. Trivial initial guess (p(0), ts , tf ).

2. (OCPθ
4): Set (x

i
4, v

i
4) = (x f3 , v

f
3 ), γ

i
4 = 0◦ and θ = 0. Standard

shooting on the �nal state and θ from (x i4, v
i
4, γ

i
4, 0) up to

(x f4 , v
f
4 , γ

f
4 , 1):

xh4 (λ) = x i4 + λ.(x f4 − x i4)

vh4 (λ) = v i4 + λ.(v f4 − v i4)

γh4 (λ) = γ i4 + λ.(γf4 − γ i4)
θh(λ) = λ.

with λ ∈ [0, 1], (x f4 , v
f
4 , γ

f
4) = (10000m, 260m/s,−20◦).
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Continuation strategy

3. (OCPδ
5): Set (x

i
5, h

i
5, v

i
5, γ

i
5) = (x f4 , hf , v

f
4 , γ

f
4). Shooting from

the middle on the �nal state and δ from (x i5, h
i
5, v

i
5, γ

i
5, 0) up

to (x f5 , h
f
5, v

f
5 , γ

f
5 , 1) :

xh5 (λ) = x i5 + λ.(x f5 − x i5)

hh5(λ) = hi5 + λ.(hf5 − hi5)

vh5 (λ) = v i5 + λ.(v f5 − v i5)

γh5 (λ) = γ i5 + λ.(γf5 − γ i5)
δh(λ) = λ.

for λ ∈ [0, 1], (x f5 , h
f
5, v

f
5 , γ

f
5) = (15000m, hf , 240m/s,−35◦).

The initialization is done using the estimated adjoint state and
times from (OCP1

4), setting ph
(
tf
2

)
= 0.5.
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Continuation strategy

4. (OCP1
5): Triple shooting method from the middle: two

additional time knots t1b, t1f are added to the initial one tf
2

such that t1b = tf
4
and t1f = 3.tf

4
.

xh5m(λ) = x i5m + λ.(xf − x i5m)

hh5m(λ) = hi5m + λ.(hf − hi5m)

vh5m(λ) = v i5m + λ.(vf − v i5m)

γh5m(λ) = γ i5m + λ.(γf − γ i5m)

with λ ∈ [0, 1], (x i5m, h
i
5m, h

i
5m, γ

i
5m) = (x f5 , h

f
5, v

f
5 , γ

f
5).
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Homotopy algorithm

Initialization: λ = 0, z = z0, s = 0.1
while s ⩾ smin and λ ⩽ 1 do

λ = λ+ s
ϕ = ϕi + λ. (ϕf − ϕi )
Look for z̃ zero of the shooting function
if success then
z ← z̃
s ← min(2.s, smax)

else

λ← λ− s
s ← s

2

end if

end while
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Numerical implementation

▷ Implementation in Python language on a "standard +" desktop
computer.

▷ The scipy.optimize package associated to the hybrd method →
zeros of the shooting function.

▷ The scipy.integrate.odeint package → integration of the ODE.
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3d model
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4d model
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5d model (simple shooting)
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5d model (triple shooting)
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Comments

Dim Unknowns Proc. time ∥F (z)∥ Shooting

3 5 0.15 s 10−29 standard & simple

4 6 0.5 s 10−22 standard & simple

5 12 11 s 10−16 middle & simple

5 32 32 s 10−10 middle & triple

▷ The continuation with the "classical" shooting method fails for
xf ⩾ 8000m.

▷ For xf ⩾ 15000m, it is required to implement a multiple shooting
method in order to increase the stability.

▷ The "junctions" between the models remain to be automatized
and optimized...
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Thank you for your attention!
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Technological parameters of the missile

Variable Value Unit

d 0.65 m

Cd 0.4 na

Tmax 5000 N

Cs 4.10−4 kg .s1.N−1

g 9.81 m.s−2

ρ0 1.225 kg/m3

hr 7314 m

η 0.3 n.a

kcz 0.05 n.a

um2 2 n.a

hc 100 m
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