
Boundary condition on porous boundary

Eduard Marušić-Paloka
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Boundary condition on porous boundary

In fluid mechanics, different physical situations demand different

boundary conditions:

• Impermeable wall ⇒ no-slip u = 0

• Inlet/outlet or moving boundary ⇒ u = g

• Pressure boundary condition p = q & u × n = 0

• Stress boundary condition Tn = q

• Flux boundary condition

∫
Γ

u · n = F

• Slip (Navier) boundary condition
∂uτ
∂n

+ α uτ = 0

• Porous boundary ?
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Effective condition on a porous boundary

Situation: Viscous flow in domain with porous boundary

What boundary condition corresponds to porous boundary?
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Interface condition between a free flow and a porous medium

Effective condition is the Beavers-Joseph condition:

∂uτ
∂n

=
α√
K

(uτ − U) , un = 0 (1)

(Beavers & Joseph (1967), Jäger & Mikelić (1996) )
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Porous interface inside a fluid domain
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Porous interface inside a fluid domain

Effective condition:

u = c = const. , [p] = p+ − p− = λ c (2)

(Sanchez-Palencia (1985), Conca (1987) , Bourgeat, Gipouloux,

Marušić-Paloka (2002) )

Remark

The above law can be seen as the Darcy law on the porous wall

u = k (p+ − p−) .

6



Porous interface inside a fluid domain

Effective condition:

u = c = const. , [p] = p+ − p− = λ c (2)

(Sanchez-Palencia (1985), Conca (1987) , Bourgeat, Gipouloux,
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Porous interface inside a fluid domain

The case of high porosity (array of small obstacles distributed on a

surface) was studied by G.Allaire in 1991

Brinkman-type of the effective model is obtained

−µ∆u +∇p + M u δΣ = 0

where δΣ is a measure concentrated on the surface Σ.
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Description of the problem

The idea is to start with the Stokes system in a domain with

boundary that has periodically distributed holes. On the solid part

of the boundary we impose the standard no-slip condition, while on

each hole we impose an appropriate dynamic condition: the value

of the stress. The goal is to obtain the effective model by studying

the convergence of the homogenization procedure, as the period of

the porous boundary tends to zero.
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The domain’s geometry
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Figure: Domain with porous boundary.

Γε = ΓD
ε ∪ ΓN

ε

ΓD
ε − wall , ΓN

ε − holes .
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The governing system

As indicated in the Introduction, we assume that the fluid flow is

governed by the Stokes system. We add the corresponding

boundary conditions to obtain:

−µ∆uε +∇pε = 0 , div uε = 0 in Ω , (3)

the dynamic b.c. : { T(uε, pε) n = −P0 n on ΓN
ε (4)

the kinematic b.c. :

{
uε = 0 on ΓD

ε ∪ S ,

uε = g on Σ − the inflow
(5)

T(uε, pε) = −2µe(uε) + pε I − the stress tensor
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Asymptotic expansion

We seek for the asymptotic approximation of the solution in the

following form:

uε ≈
n∑

k=1

uk(x) wk(y) + O(ε) , y =
x

ε
(6)

pε ≈ 1

ε

n∑
k=1

uk(x) πk(y) + P(x) + O(ε) , (7)

(wk , πk) , k = 1, · · · , n - the solutions of the auxiliary

boundary-value problems posed in the infinite strip

G = 〈0, 1〉n−1 × 〈0,+∞〉

u = (u1, · · · , un) , P − the effective velocity and pressure
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Boundary layer

G
periodicity

exp. decay at ∞
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Boundary layer

Outside of the boundary layer (i.e. for large yn ) we want

wk ≈ ek , πk ≈ 0 ,

so that

uε ≈
n∑

k=1

uk(x) ek = u , pε ≈ P .

Ω

Boundary layer@
@I
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Auxiliary problem

−µ∆ywk +∇yπ
k = 0 in G , (8)

divy wk = 0 in G , wk = 0 on γD , (9)

T(wk , πk)en = dk on γN , (10)

(wk , πk) is 1-periodic in y ′ , ∇ywk ∈ L2(G) , (11)

The unique solutions of the boundary layer problems (8)-(11), for

any dk ∈ Rn, exponentially decay to some constants, that are not

given in advance. The idea is to control those constants choose

by choosing vectors dk in a way that

lim
yn→+∞

wk = ek . (12)
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Auxiliary problem

So dk are not given in advance, they are the part of the problem.

We can prove that a unique triple

(wk , πk ,dk) ∈ H1(Ω)n × L2(Ω)× Rn can be found, such that

(wk , πk) stabilize exponentially to (ek , 0), as yn → +∞.

Furthermore dk · ek > 0 . That is essential since dk appear as the

coefficients in our effective boundary condition.
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As a consequence of the exponential decay, outside of the

boundary layer we have

n∑
k=1

uk(x) wk(y) ≈ u = (u1, · · · , un)

n∑
k=1

uk(x) πk(y) ≈ 0 .

Thus the effective velocity and pressure of the fluid are (u,P).
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The effective boundary condition

We denote by s the fluid stress on the porous boundary

s = T(u,P) n

T(u,P) = −2µD(u) + P I .

Let L be the positive definite symmetric matrix defined from the

auxiliary problem (8)-(11) by

[L]kj =
[
dk
j

]
.

The effective boundary condition then reads

u = Kε(s− P0 n) on Γ , (13)

where

Kε = εL−1

is the (positive definite and symmetric) permeability tensor of the

porous wall.
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The effective boundary condition

Vector P0 n is the exterior stress on the boundary. Thus, it is a

generalized Darcy law on the boundary, saying that the velocity

on the boundary is proportional to the difference between the inner

and the outer stress on the boundary.

What is the relation with Beavers-Joseph law?

18



The effective boundary condition

Vector P0 n is the exterior stress on the boundary. Thus, it is a

generalized Darcy law on the boundary, saying that the velocity

on the boundary is proportional to the difference between the inner

and the outer stress on the boundary.

What is the relation with Beavers-Joseph law?

18



The effective boundary condition

In 2D case, the permeability tensor Kε turns out to be diagonal.

In 3D case, if the geometry of the pores is isotropic (e.g. circular,

rectangular or elliptic holes), then the permeability tensor Kε

becomes block-diagonal

Kε = ε

 k11 k12 0

k21 k22 0

0 0 k33

 . (14)
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Beavers-Joseph law

In that case, the effective boundary condition (13) splits in two

parts. For the normal velocity, we get the (scalar) Darcy law on

the boundary

un = kε (P0 − sn) . (15)

kε = n · Kεn > 0 – the normal permeability of the boundary.

sn – the normal component of the stress vector s.
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Beavers-Joseph law

As for the tangential part, we get the effective boundary condition

claiming that the slip velocity is proportional to the shear rate

ε sτ = M uτ . (16)

In 2D M =
1

k11
. In 3D M =

[
k11 k12

k21 k22

]−1

.

Vectors uτ and sτ are the tangential parts of the velocity and the

stress, respectively

Thus the shear stress in the fluid is proportional to the slip

velocity, which is exactly the Beavers-Joseph law.
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Effective equations

−µ∆u +∇P = 0 in Ω ,

div u = 0 in Ω ,

u = Kε (s− P0 n) on Γ ,

u = 0 on S ,

u = g on Σ .

(17)

Its weak formulation reads:

W = {v ∈ H1(Ω)n ; div v = 0 , v = 0 on ∂Ω\Γ }

Find u ∈ g + W such that

µ

∫
Ω
∇u · ∇w +

∫
Γ

Kε
−1u · w = −

∫
Γ
P0 wn , ∀ w = (wi ) ∈W .
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Effective equations

The bilinear form on the left-hand side is obviously coercive, so

that the problem admits a unique solution. If the Stokes system is

replaced by the Navier-Stokes, the existence and uniqueness still

hold, for data that is not too large.

We recall that the effective boundary condition reads

u = Kε (s− P0 n) ,

Even though Kε = O(ε) is small, the Darcy condition cannot

be approximated by the no-slip condition u = 0 .

First of all, such problem is not well-posed (unless
∫

Σ g · n = 0).

Secondly the stress in the boundary layer s ∼ O
(

1
ε

)
so that

Kε (s− P0 n) 6≈ 0
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Rigorous justification

Rectangular domain
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Rigorous justification

Theorem (Justification for rectangular domain)

For any δ > 0 and Ωδ = Ω ∩ {0 < x3 < δ} there exists a constant

C > 0 such that

|uε − u|L2(Ωδ) + |pε − P|L2(Ωδ) ≤ C ε . (18)

Furthermore, for t ∈ [1, 2]

|uε − u|Lt(Ω) ≤ Cε
1
t∣∣∣∣∣pε −

(
P + ε−1

2∑
k=1

πk(x/ε) uk

)∣∣∣∣∣
Lt(Ω)

≤ Cε
1
t , 1 ≤ t ≤ 2 .

Finally,

pε − P ⇀ 0 weakly in (H1(Ω))′ . (19)

25



References
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