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A Motivating Problem : Spikes Deconvolution

Blurred and noisy observation of stars on a domain X

(here Dirichlet blurring kernel on the 2-torus)

o Statistics. Is recovery of positions, weights and number of

particles possible? With which estimator?

e Optimization. Can we compute this estimator accurately and

. 2 Thi
efficiently ? ~~This talk, /15




Setting (simplified for this talk)

e ambiant space X’ (compact Riemannian d-manifold)
* observed signal g € L?(X)
o known impulse response ¢(-,-) € C3(X x X)

Optimization problem

o Take m € N particles with weight/position (a,x) € Ry x X
o Parameterize with 6 = ((a1,x1), - .., (am, xm)) € (R4 x X)™
e Find the minimizer (in 6 and m) of

m

Fm(0) = /X (%Z‘?@(X»Xi) —g(X))de-l- ;Em:ai
i=1

i=1

Y
Data fitting Regularization
D
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NB: F,, is not convex and admits spurious local minima



Formulation over measures

Symmetries lead to a natural reformulation:

1 m
0= (a5, xi)ie1 € (Ry x X)™ = um= m;a,-éxi € M4 (X)

Objective over the space of nonnegative measures M (X)

F =3 [ ([ obe)duty) —e() ax+ ()

Data fitting Regularization

Signed case (a; € R)
Basic properties of F

- Flim) = Fn(0) Set {¢ Bk
fi = (pss p—)

~~ regularization by A||fi||Tvy [De
Castro & Gamboa, 2012] 3/15

- convex

- admits a minimizer p*




Conic Particle Gradient Descent

Algorithm (continuous time version)
e Initialize (x;); uniformly in X’ (at random/on a grid), a; =1

o Compute (6(t))¢>0 by following

%ai(t) = —4ma(t)V, Fr(6(t))
%Xi(t) = —amV, Fn(6(t))

Why multiplicative updates for weights?

Initializing with 6(0) = (ao, xo)
# -

Initializing with
6(0) = ((a0/2, x0), (a0/2, x0))

*
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Summary of results

Let F* :=inf,>10 Fm(@) the optimal value

Theorem (Local convergence)

If the problem is non-degenerate, there exists Cp, C; > 0 such that

Fn(0(0) < F*+C = Fn(0(t)) — F* < Ge Gt

Theorem (Global convergence)

If the problem is non-degenerate, there exists Cj, C; > 0 such that

a< G

sup inf dist(x,x;(0)) < ¢
xeXx i=1,...m

= lim Fn(0(t) = F*.

~~ These results are uniform in m > 0.

Chizat (2019). Sparse Optimization on the Space of Measures with Over-parameterized Gradient Descent.
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Two-phase analysis

—— additive updates
—— multiplicative updates
—— conic particle GD

—=-- fixed grid error

Suboptimality gap

0 50 100 150 200
niter

e global phase: convex approach, approximates a = 0

e local phase: non-convex finish, exponential convergence

~ this talk: behavior of 1st order methods on (infinitely) thin grids
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Sparsity and optimality

Assumption 1 (Uniqueness)

. . . . . . . [
There exists a unique minimizer which is sparse: p* =" afdyx.
- 1

Let V[u] € C3(X) be the first variation of F at y, characterized by

F(p+ev) = F(,u)+6/X V[ul(x)dv(x)+o(e), Vv e M(X) adm.

Proposition (Optimality conditions)

The first variation of F at p* satisfies
V)20 and spt(a*) = £, ..., xpe b € {V[u'] = 0}.

' vyl

Ex Ex
Xv xl 75 8/15



Non-degeneracy

Definition (Interaction kernels)

Global interaction kernel K € R(™"(4+1)* (convention Voo = 26):

I,_j ), (i \/>v qb Xj 7' ?\/;;(’vj/gb(x;;? ')>L2

Local interaction kernel H = diag(H;)™, € R (d+1))* with

Hj = V2V[u*](x7)

Definition (Non—degeneracy) Can be guaranteed a priori
We say that F is non-degenerate iff: under spikes separation &
e K>0 noise level conditions [Duval
o argmin V[,u*] _ {Xf7 o ,X;;,*} & Peyré, 2015] [Poon et al, 2019]

. Akiyama & Suzuki, 2021
e Hi>~0,ie{l,...,m} [ )
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Rates of Convex Optimization on
Thin Grids




General framework & algorithms

e Fix ref. measure 7 and pose p = f7 with f € L1(7)
e Minimize F(f) = G(f) + H(f), G smooth and H prox-tractable
s?, p€lL2]

e Power entropy Bregman divergences Dy, 1(s) =
slog(s), p=1

Algorithm 1: (Bregman) Proximal Gradient Method (PGM)
Initialization: fo € dom H, step-size s > 0
for k=0,1,... do
| frp1 = argming {G(fi) + [ GU(f — fr)dr + H(f) + L1D5(f, fr)}
end
Output: fri1

Algorithm 2: Accelerated (Bregman) Proximal Gradient Method (APGM)
Initialization: fy = hg € dom H, o = 1, step-size s >0
for k=0,1,... do
g = (1= ) fie + vehe
hiy1 = argming {G(ge) + (VG(gk), f — gr) + H(f) + % D5(f, i)}
Fir = (1= 1) fk + Yehs1
a1 = 3 (7 + 4 - %)
end
Output: fri1
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Paul Tseng (2010). Approximation accuracy, gradient methods |[...] for structured convex optimization.



Known guaranties and How to use them

Theorem [Tseng, 2010, adapted]
For a small enough step-size s, if bounded iterates, it holds

4 1
_ < — >
F(fi) — F(f) < SN D;(f,fo), VfeLXr),Vk>0
£
k

where 5 =1 for PGM and 8 = 2 for APGM.

e Problem: Dj(f*,fy) = oo (in fact f* ¢ L1(7))
e Workaround: use instead
F(fi) ~inf F < inf (F(F) ~inf F) + &Ds(f, )

Often used in the literature about (S)GD in Hilbert spaces...
Jacobs, Léger, Li, Osher (2019). Solving large-scale optimization problems with a convergence rate |[...].
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Main results

Convergence rates [Chizat’ 2021]

For non-degenerate sparse problems, (A)PGM satisfies

23
k“Gha2 if p> 1

F(fk) — inf F g
log(k)k=# ifp=1

e rates are exact up to log factors (lower bounds)

e beyond non-degenerate cases: the rate depends on the

structure at optimality (see paper)

e for signed problems: use hyperbolic entropy (p = 1)

Chizat (2021). Convergence Rates of Gradient Methods for Convex Optimization in the Space of Measures
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Numerics

10*

F(fi) —inf F
F(fi) - inf F

Sk ORCTTTY

p P
1024 p=2 e k24 N
10° 10t 10? 10° 104 10° 10! 102 103 104
k k
(a) PGM (d =2, ¢=2) (b) APGM (d=2, ¢ =2)

Observed vs. theoretical rates on a non-degenerate sparse 2D

deconvolution problem

~» p =1 (APGM with hyperbolic entropy) is one order of magnitude
faster than p = 2 (FISTA) on a large range of accuracies!
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Concluding remarks

e Extensions
We focused on GD but one could explore more advanced
algorithms (pre-conditioning, SGD)

e Curse of dimensionality
The guarantees require exp(d) particles, which is unavoidable

under our assumptions.
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