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A Motivating Problem : Spikes Deconvolution

Blurred and noisy observation of stars on a domain X
(here Dirichlet blurring kernel on the 2-torus)

Questions

• Statistics. Is recovery of positions, weights and number of

particles possible? With which estimator?

• Optimization. Can we compute this estimator accurately and

efficiently ?  This talk.
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Estimator

Setting (simplified for this talk)

• ambiant space X (compact Riemannian d-manifold)

• observed signal g ∈ L2(X )

• known impulse response φ(·, ·) ∈ C3(X × X )

Optimization problem

• Take m ∈ N particles with weight/position (a, x) ∈ R+ ×X
• Parameterize with θ =

(
(a1, x1), . . . , (am, xm)

)
∈ (R+ ×X )m

• Find the minimizer (in θ and m) of

Fm(θ) :=

∫
X

( 1

m

m∑
i=1

aiφ(x , xi )− g(x)
)2

dx︸ ︷︷ ︸
Data fitting

+
λ

m

m∑
i=1

ai︸ ︷︷ ︸
Regularization

NB: Fm is not convex and admits spurious local minima 2/15



Formulation over measures

Symmetries lead to a natural reformulation:

θ = (ai , xi )
m
i=1 ∈ (R+ ×X )m ⇒ µm :=

1

m

m∑
i=1

aiδxi ∈M+(X )

Objective over the space of nonnegative measures M+(X )

F (µ) =
1

2

∫
X

(∫
X
φ(x , y) dµ(y)− g(x)

)2
dx︸ ︷︷ ︸

Data fitting

+ λµ(X )︸ ︷︷ ︸
Regularization

Basic properties of F

- F (µm) = Fm(θ)

- convex

- admits a minimizer µ∗

Signed case (ai ∈ R)

Set

{
φ̃ = (+φ,−φ)

µ̃ = (µ+, µ−)

 regularization by λ‖µ̃‖TV [De

Castro & Gamboa, 2012] 3/15



Conic Particle Gradient Descent

Algorithm (continuous time version)

• Initialize (xi )i uniformly in X (at random/on a grid), ai = 1

• Compute (θ(t))t≥0 by following
d

dt
ai (t) = −4mai (t)∇aiFm(θ(t))

d

dt
xi (t) = −αm∇xiFm(θ(t))

Why multiplicative updates for weights?

Initializing with θ(0) = (a0, x0)

⇔
Initializing with

θ(0) = ((a0/2, x0), (a0/2, x0))
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Summary of results

Let F ∗ := infm≥1,θ Fm(θ) the optimal value

Theorem (Local convergence)

If the problem is non-degenerate, there exists C0,C1 > 0 such that

Fm(θ(0)) ≤ F ∗ + C0 ⇒ Fm(θ(t))− F ∗ ≤ C0e
−C1t

Theorem (Global convergence)

If the problem is non-degenerate, there exists C ′0,C
′
1 > 0 such that α ≤ C ′0

sup
x∈X

inf
i=1,...,m

dist(x , xi (0)) ≤ C ′1
⇒ lim

t→∞
Fm(θ(t)) = F ∗.

 These results are uniform in m > 0.
Chizat (2019). Sparse Optimization on the Space of Measures with Over-parameterized Gradient Descent.
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Two-phase analysis
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fixed grid error

• global phase: convex approach, approximates α = 0

• local phase: non-convex finish, exponential convergence

 this talk: behavior of 1st order methods on (infinitely) thin grids
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Sparsity and optimality

Assumption 1 (Uniqueness)

There exists a unique minimizer which is sparse: µ∗ =
∑m∗

i=1 a
∗
i δx∗i .

Let V [µ] ∈ C3(X ) be the first variation of F at µ, characterized by

F (µ+εν) = F (µ)+ε

∫
X
V [µ](x)dν(x)+o(ε), ∀ν ∈M(X ) adm.

Proposition (Optimality conditions)

The first variation of F at µ∗ satisfies

V [µ∗] ≥ 0 and spt(µ∗) = {x∗1 , . . . , x∗m∗} ⊂ {V [µ∗] = 0}.
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Non-degeneracy

Definition (Interaction kernels)

Global interaction kernel K ∈ R(m∗(d+1))2
(convention ∇0φ = 2φ):

K(i ,j),(i ′,j ′) = 〈
√
a∗i ∇jφ(x∗i , ·),

√
a∗i ′∇j ′φ(x∗i ′ , ·)〉L2

Local interaction kernel H = diag(Hi )
m∗
i=1 ∈ R(m∗(d+1))2

with

Hi := ∇2V [µ∗](x∗i )

Definition (Non-degeneracy)

We say that F is non-degenerate iff:

• K � 0

• arg minV [µ∗] = {x∗1 , . . . , x∗m∗}
• Hi � 0, i ∈ {1, . . . ,m∗}

Can be guaranteed a priori

under spikes separation &

noise level conditions [Duval

& Peyré, 2015] [Poon et al, 2019]

[Akiyama & Suzuki, 2021]
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Rates of Convex Optimization on

Thin Grids



General framework & algorithms

• Fix ref. measure τ and pose µ = f τ with f ∈ L1(τ)

• Minimize F (f ) = G (f ) + H(f ), G smooth and H prox-tractable

• Power entropy Bregman divergences Dη̄, η(s) =

{
sp, p ∈]1, 2]

s log(s), p = 1

Paul Tseng (2010). Approximation accuracy, gradient methods [...] for structured convex optimization.
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Known guaranties and How to use them

Theorem [Tseng, 2010, adapted]

For a small enough step-size s, if bounded iterates, it holds

F (fk)− F (f ) ≤ 4

s(k + 1)β︸ ︷︷ ︸
ξk

Dη̄(f , f0), ∀f ∈ L1(τ),∀k ≥ 0

where β = 1 for PGM and β = 2 for APGM.

• Problem: Dη̄(f ∗, f0) =∞ (in fact f ∗ /∈ L1(τ))

• Workaround: use instead

F (fk)− inf F ≤ inf
f ∈L1(τ)

(
F (f )− inf F

)
+ ξkDη̄(f , f0)

Often used in the literature about (S)GD in Hilbert spaces...

Jacobs, Léger, Li, Osher (2019). Solving large-scale optimization problems with a convergence rate [...].
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Main results

Convergence rates [Chizat’ 2021]

For non-degenerate sparse problems, (A)PGM satisfies

F (fk)− inf F .

 k
− 2β

(p−1)d+2 if p > 1

log(k)k−β if p = 1

• rates are exact up to log factors (lower bounds)

• beyond non-degenerate cases: the rate depends on the

structure at optimality (see paper)

• for signed problems: use hyperbolic entropy (p = 1)

Chizat (2021). Convergence Rates of Gradient Methods for Convex Optimization in the Space of Measures
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Numerics

Observed vs. theoretical rates on a non-degenerate sparse 2D

deconvolution problem

 p = 1 (APGM with hyperbolic entropy) is one order of magnitude

faster than p = 2 (FISTA) on a large range of accuracies!
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Concluding remarks

• Extensions

We focused on GD but one could explore more advanced

algorithms (pre-conditioning, SGD)

• Curse of dimensionality

The guarantees require exp(d) particles, which is unavoidable

under our assumptions.
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