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Introduction

� During a disaster situation (tsunamis, earthquake,. . . ), several human
behaviors can be observed. Three main categories can be identified:

• Alert • Panic • Control

� The aim of the ANR Com2sica project is to model this situation as a
compartmental SIR type model.
� A first attempt in this way is an ODE model.
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Figure: The transfer diagram of the APC model.
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The temporal APC model

• ρi : R+ −→ R for i = 1, · · · , 5.



d

dt
ρ1 = −(b1 + b2 + δ1)ρ1 + γ(t)ρ4 + b3ρ3 + b4ρ2︸ ︷︷ ︸

Intrinsic transitions

−F (ρ1, ρ3)− G (ρ1, ρ2)︸ ︷︷ ︸
Imitation terms

,

d

dt
ρ2 = −(b4 + c1 + δ2)ρ2 + b2ρ1 + c2ρ3︸ ︷︷ ︸

Intrinsic transitions

,+G (ρ1, ρ2)−H (ρ2, ρ3)︸ ︷︷ ︸
Imitation terms

,

d

dt
ρ3 = −(b3 + c2 + δ3)ρ3 + b1ρ1 + c1ρ2 − ϕ(t)ρ3︸ ︷︷ ︸

Intrinsic transitions

+F (ρ1, ρ3) + H (ρ2, ρ3)︸ ︷︷ ︸
Imitation terms

,

d

dt
ρ4 = −γ(t)ρ4︸ ︷︷ ︸

Intrinsic transitions

,

d

dt
ρ5 = +ϕ(t)ρ3︸ ︷︷ ︸

Intrinsic transitions

, t ≥ 0

(1)

� The initial condition
(ρ1(0), ρ2(0), ρ3(0), ρ4(0), ρ5(0))T = (0, 0, 0, 1, 0)T , since the population
is supposed to be in a daily behavior before the onset of the disaster.
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Figure: The transfer diagram of the APC model.

� The role played by the spatial configuration and its constraints is not
negligible in the dynamics of human reactions.
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Outline

1 A spatio-temporal advection-diffusion PDE model describing human
behaviors during a catastrophic event

2 Well-posedness and positivity

3 Numerical simulations
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Spatial modelization

• Ω ⊂ R2 is a bounded smooth domain.

• ρi = ρi (t, x) with t ≥ 0 and x ∈ Ω.
• Diffusion terms: di∆ρi , with di > 0.
• Advection terms: −∇ · (ρi ~vi (ρ)), i ∈ {2, 3} with

~vi (ρ) = Vi (ρ)ν(x) where Vi (ρ) = Vi ,max

(
1−

∑5
i=1 ρi
ρmax

)
,

with Vi ,max > 0, and ν(x) is the desired direction of the movement.
Moreover

~vi (ρ) = 0 if i 6= 2, 3.

• Boundary conditions: Let qi (ρ) := −di∇ρi + ρi~vi (ρ) be the flux of
ρi , then we set

qi (ρ) · n = qiout(ρ) · n, i = 1, · · · , 5,
where

qiout(ρ) := Vi ,out ρi where Vi ,out ≥ 0.
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The spatio-temporal APC model

We obtain the following APC model:



∂tρ1 = d1∆ρ1 − (b1 + b2 + δ1)ρ1 + γ(t)ρ4 + b3ρ3 + b4ρ2

−F (ρ1, ρ3)− G (ρ1, ρ2) in Ω, t ≥ 0,
∂tρ2 = d2∆ρ2 − (b4 + c1 + δ2)ρ2 + b2ρ1 + c2ρ3

−∇ · (ρ2 ~v2(ρ)) + G (ρ1, ρ2)−H (ρ2, ρ3) in Ω, t ≥ 0,
∂tρ3 = d3∆ρ3 − (b3 + c2 + δ3)ρ3 + b1ρ1 + c1ρ2 − ϕ(t)ρ3

−∇ · (ρ3 ~v3(ρ)) + F (ρ1, ρ3) + H (ρ2, ρ3) in Ω, t > 0,
∂tρ4 = d4∆ρ4 − γ(t)ρ4 in Ω, t ≥ 0
∂tρ5 = d5∆ρ5 + ϕ(t)ρ3 in Ω, t ≥ 0

Boundary conditions

(−di∇ρi + ρi~vi (ρ)) · n = Vi,out ρi · n, i = 1, · · · , 5, on ∂Ω, t ≥ 0,

Initial condition

ρ(0, x) = (0, 0, 0, θ(x), 0)T := ρ0(x) ∀x ∈ Ω.
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Functional framework and linear operators

• We consider the APC model setting in the Banach space

X := Lp(Ω)5,

with p > 2, endowed with its usual norm.

• We define the boundary Banach space

∂X := W 1−1/p,p(∂Ω)5.

• Let A : D(A )→ X be defined by

A := diag(d1∆, d2∆, d3∆, d4∆, d4∆, d5∆) and D(A ) = W 2,p(Ω)5.

• The boundary operator L : D(A )→ ∂X is given by

(L ρ)i := di∂nρi .

8/15



Functional framework and linear operators

• We consider the APC model setting in the Banach space

X := Lp(Ω)5,

with p > 2, endowed with its usual norm.

• We define the boundary Banach space

∂X := W 1−1/p,p(∂Ω)5.

• Let A : D(A )→ X be defined by

A := diag(d1∆, d2∆, d3∆, d4∆, d4∆, d5∆) and D(A ) = W 2,p(Ω)5.

• The boundary operator L : D(A )→ ∂X is given by

(L ρ)i := di∂nρi .

8/15



Functional framework and linear operators

• We consider the APC model setting in the Banach space

X := Lp(Ω)5,

with p > 2, endowed with its usual norm.

• We define the boundary Banach space

∂X := W 1−1/p,p(∂Ω)5.

• Let A : D(A )→ X be defined by

A := diag(d1∆, d2∆, d3∆, d4∆, d4∆, d5∆) and D(A ) = W 2,p(Ω)5.

• The boundary operator L : D(A )→ ∂X is given by

(L ρ)i := di∂nρi .

8/15



Functional framework and linear operators

• We consider the APC model setting in the Banach space

X := Lp(Ω)5,

with p > 2, endowed with its usual norm.

• We define the boundary Banach space

∂X := W 1−1/p,p(∂Ω)5.

• Let A : D(A )→ X be defined by

A := diag(d1∆, d2∆, d3∆, d4∆, d4∆, d5∆) and D(A ) = W 2,p(Ω)5.

• The boundary operator L : D(A )→ ∂X is given by

(L ρ)i := di∂nρi .

8/15



Nonlinearities

• Let α ∈ (1/p + 1/2, 1). The nonlinearities are defined on the Banach
space:

Xα := {ϕ ∈W 2α,p(Ω)5 | di∂nϕi |∂Ω = 0}

• The nonlinear operator K : [0,∞)× Xα −→ X is defined by

K1(t, ρ1,∇ρ) = −(b1 + b2 + δ1)ρ1 + γ(t)ρ4 + b3ρ3 + b4ρ2

−F (ρ1, ρ3)− G (ρ1, ρ2),

K2(t, ρ2,∇ρ) = −(b4 + c1 + δ2)ρ2 + b2ρ1 + c2ρ3 −∇ · (ρ2 ~v2(ρ))

+ G (ρ1, ρ2)−H (ρ2, ρ3),

K3(t, ρ3,∇ρ) = −(b3 + c2 + δ3)ρ3 + b1ρ1 + c1ρ2 −∇ · (ρ3 ~v3(ρ))

+ F (ρ1, ρ3) + H (ρ2, ρ3)− φ(t)ρ3,

K4(t, ρ4,∇ρ) = −γ(t)ρ4,

K5(t, ρ5,∇ρ) = φ(t)ρ3,

• The nonlinear boundary term M : Xα −→ ∂X is given by

M (ρ)i := (−ρi~vi ,out + ρi ~vi (ρ)) · n.
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Abstract formulation

With these notations, the model writes as follows:
u′(t) =A u(t) + K (t, u(t)), t ≥ 0,

L u(t) =M (u(t)), t ≥ 0,

u(0) =u0

(2)

where u(t) := (ρ1(t, ·), ρ2(t, ·), ρ3(t, ·), ρ4(t, ·), ρ5(t, ·))T ,
and u0 := (0, 0, 0, θ(x), 0)T

Theorem 1 (Local existence and positivity)

For each u0 ∈ Xα there exist a maximal time T (u0) > 0 and a unique
maximal solution u(·, u0) ∈ C ([0,T (u0)),Xα) ∩ C 1((0,T (u0)),X ) of
equation (2).
Moreover, if u0 ≥ 0 a.e. on Ω, then for any t ∈ (0,T (u0)), u(t, x) ≥ 0
a.e. on Ω.
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Configuration

� In order to highlight the behavior of the populations during the
catastrophic event, we suppose that people cannot return to an everyday
behavior.
� We present different scenarios of evacuation.
� We set ∂Ω = Γ ∪ Γout where Γ designate the wall (where the flux is
zero) and Γout is the escape region (where the flux is different from zero),

Figure: The direction vector ν(x1, x2).
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Different initial conditions at each scenario

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

• (a) The population is concentrated in a single group in the center of
the domain;

• (b) The population is subdivided into three groups;

• (c) An obstacle is located between the exit and the population, which
is concentrated in a single group within the domain.
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See the attached videos!
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Advection and pedestrians transported by the crowd
phenomenon.

� Even if in our model there is no advection terms in the equation
describing the evolution of the population in alert and daily, the alert
population nevertheless undergoes a phenomenon of advection.

Alert (with new scale) at

final time: Scenario 1

Alert at final time:

Scenario 2

Alert at final time:

Scenario 3
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MERCI!
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Simulations: Table of values

Parameters
d1 = 0.001

Diffusion d2 = 0.05
d3 = 0.01
d4 = 0.01

V2,max = 0.3
Advection V3,max = 0.2

V1 = 0.2
Speed at the V2 = 0.1

boundary V3 = 0.3
V4 = 0.2

Parameters
αa→c = 0.6

Imitation αa→p = 0.7
αp→c = 0.6
αc→p = 0.7

c1 = 0.1
c2 = 0.4

Intrinsic b1 = 0.1
transitions b2 = 0.2

b3 = 0.001
b4 = 0.001
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