A spatio-temporal advection-diffusion model describing human behaviors during a catastrophic event

Kamal Khalil
Laboratoire de Mathématiques Appliquées du Havre
Joint work with
Valentina Lanza, David Manceau \& M-A. Aziz-Alaoui

CANUM 2020

13 juin 2022

Introduction

唌 During a disaster situation (tsunamis, earthquake,...), several human behaviors can be observed. Three main categories can be identified:

- Alert
- Panic

殓 The aim of the ANR Com2sica project is to model this situation as a compartmental SIR type model.
A first attempt in this way is an ODE model.

Alert-Panic-Control (APC) diagram

Figure: The transfer diagram of the APC model.
V. Lanza, E. Dubos-Paillard, R. Charrier, N. Verdière, D. Provitolo, O. Navarro, M.A. Aziz-Alaoui, Spatio-Temporal Dynamics of Human Behaviors During Disasters: A Mathematical and Geographical Approach, In Complex Systems, Smart Territories and Mobility Springer, Cham, (2021) 201-218.

The temporal APC model

- $\rho_{i}: \mathbb{R}^{+} \longrightarrow \mathbb{R}$ for $i=1, \cdots, 5$.

$$
\left\{\begin{array}{l}
\frac{d}{d t} \rho_{1}=\underbrace{-\left(b_{1}+b_{2}+\delta_{1}\right) \rho_{1}+\gamma(t) \rho_{4}+b_{3} \rho_{3}+b_{4} \rho_{2}}_{\text {Intrinsic transitions }} \underbrace{-\mathscr{F}\left(\rho_{1}, \rho_{3}\right)-\mathscr{G}\left(\rho_{1}, \rho_{2}\right)}_{\text {Initation terms }}, \tag{1}\\
\frac{d}{d t} \rho_{2}=\underbrace{-\left(b_{4}+c_{1}+\delta_{2}\right) \rho_{2}+b_{2} \rho_{1}+c_{2} \rho_{3}}_{\text {Intrinsic transitions }}, \underbrace{+\mathscr{G}\left(\rho_{1}, \rho_{2}\right)-\mathscr{H}\left(\rho_{2}, \rho_{3}\right)}_{\text {Intrinsic transitions }}, \\
\frac{d}{d t} \rho_{3}=\underbrace{-\left(b_{3}+c_{2}+\delta_{3}\right) \rho_{3}+b_{1} \rho_{1}+c_{1} \rho_{2}-\varphi(t) \rho_{3}}_{\text {Imitation terms }} \underbrace{+\mathscr{F}\left(\rho_{1}, \rho_{3}\right)+\mathscr{H}\left(\rho_{2}, \rho_{3}\right)}_{\text {Imitation terms }}, \\
\frac{d}{d t} \rho_{4}=\underbrace{-\gamma(t) \rho_{4}}_{\text {Intrinsic transitions }}, \\
\frac{d}{d t} \rho_{5}=\underbrace{+\varphi(t) \rho_{3}}_{\text {Intrinsic transitions }}, t \geq 0
\end{array}\right.
$$

傕 The initial condition
$\left(\rho_{1}(0), \rho_{2}(0), \rho_{3}(0), \rho_{4}(0), \rho_{5}(0)\right)^{T}=(0,0,0,1,0)^{T}$, since the population is supposed to be in a daily behavior before the onset of the disaster.

Alert-Panic-Control (APC) diagram

Figure: The transfer diagram of the APC model.
 negligible in the dynamics of human reactions.

Outline

(1) A spatio-temporal advection-diffusion PDE model describing human behaviors during a catastrophic event
(2) Well-posedness and positivity
(3) Numerical simulations

Outline

(1) A spatio-temporal advection-diffusion PDE model describing human behaviors during a catastrophic event

(2) Well-posedness and positivity

(3) Numerical simulations

Spatial modelization

- $\Omega \subset \mathbb{R}^{2}$ is a bounded smooth domain.

Spatial modelization

- $\Omega \subset \mathbb{R}^{2}$ is a bounded smooth domain.
- $\rho_{i}=\rho_{i}(t, x)$ with $t \geq 0$ and $x \in \Omega$.

Spatial modelization

- $\Omega \subset \mathbb{R}^{2}$ is a bounded smooth domain.
- $\rho_{i}=\rho_{i}(t, x)$ with $t \geq 0$ and $x \in \Omega$.
- Diffusion terms: $d_{i} \Delta \rho_{i}$, with $d_{i}>0$.

Spatial modelization

- $\Omega \subset \mathbb{R}^{2}$ is a bounded smooth domain.
- $\rho_{i}=\rho_{i}(t, x)$ with $t \geq 0$ and $x \in \Omega$.
- Diffusion terms: $d_{i} \Delta \rho_{i}$, with $d_{i}>0$.
- Advection terms: $-\nabla \cdot\left(\rho_{i} \overrightarrow{v_{i}}(\rho)\right), i \in\{2,3\}$ with

$$
\vec{v}_{i}(\rho)=V_{i}(\rho) \nu(x) \quad \text { where } \quad V_{i}(\rho)=V_{i, \max }\left(1-\frac{\sum_{i=1}^{5} \rho_{i}}{\rho_{\max }}\right)
$$

with $V_{i, \max }>0$, and $\nu(x)$ is the desired direction of the movement.
Moreover

$$
\overrightarrow{v_{i}}(\rho)=0 \text { if } i \neq 2,3 .
$$

- $\Omega \subset \mathbb{R}^{2}$ is a bounded smooth domain.
- $\rho_{i}=\rho_{i}(t, x)$ with $t \geq 0$ and $x \in \Omega$.
- Diffusion terms: $d_{i} \Delta \rho_{i}$, with $d_{i}>0$.
- Advection terms: $-\nabla \cdot\left(\rho_{i} \overrightarrow{v_{i}}(\rho)\right), i \in\{2,3\}$ with

$$
\vec{v}_{i}(\rho)=V_{i}(\rho) \nu(x) \quad \text { where } \quad V_{i}(\rho)=V_{i, \max }\left(1-\frac{\sum_{i=1}^{5} \rho_{i}}{\rho_{\max }}\right)
$$

with $V_{i, \max }>0$, and $\nu(x)$ is the desired direction of the movement.
Moreover

$$
\overrightarrow{v_{i}}(\rho)=0 \text { if } i \neq 2,3 .
$$

- Boundary conditions: Let $q_{i}(\rho):=-d_{i} \nabla \rho_{i}+\rho_{i} \vec{v}_{i}(\rho)$ be the flux of ρ_{i}, then we set

$$
q_{i}(\rho) \cdot n=q_{\text {out }}^{i}(\rho) \cdot n, \quad i=1, \cdots, 5,
$$

where

$$
q_{\text {out }}^{i}(\rho):=V_{i, \text { out }} \rho_{i} \quad \text { where } \quad V_{i, \text { out }} \geq 0
$$

The spatio-temporal APC model

We obtain the following APC model:

$$
\left\{\begin{array}{rlr}
\partial_{t} \rho_{1}= & d_{1} \Delta \rho_{1}-\left(b_{1}+b_{2}+\delta_{1}\right) \rho_{1}+\gamma(t) \rho_{4}+b_{3} \rho_{3}+b_{4} \rho_{2} & \\
& -\mathscr{F}\left(\rho_{1}, \rho_{3}\right)-\mathscr{G}\left(\rho_{1}, \rho_{2}\right) & \text { in } \Omega, t \geq 0, \\
\partial_{t} \rho_{2}= & d_{2} \Delta \rho_{2}-\left(b_{4}+c_{1}+\delta_{2}\right) \rho_{2}+b_{2} \rho_{1}+c_{2} \rho_{3} & \\
& -\nabla \cdot\left(\rho_{2} \overrightarrow{v_{2}}(\rho)\right)+\mathscr{G}\left(\rho_{1}, \rho_{2}\right)-\mathscr{H}\left(\rho_{2}, \rho_{3}\right) & \text { in } \Omega, t \geq 0, \\
\partial_{t} \rho_{3}= & d_{3} \Delta \rho_{3}-\left(b_{3}+c_{2}+\delta_{3}\right) \rho_{3}+b_{1} \rho_{1}+c_{1} \rho_{2}-\varphi(t) \rho_{3} & \\
& -\nabla \cdot\left(\rho_{3} \overrightarrow{v_{3}}(\rho)\right)+\mathscr{F}\left(\rho_{1}, \rho_{3}\right)+\mathscr{H}\left(\rho_{2}, \rho_{3}\right) & \text { in } \Omega, t>0, \\
\partial_{t} \rho_{4}=d_{4} \Delta \rho_{4}-\gamma(t) \rho_{4} & \text { in } \Omega, t \geq 0 \\
\partial_{t} \rho_{5}=d_{5} \Delta \rho_{5}+\varphi(t) \rho_{3} & \text { in } \Omega, t \geq 0
\end{array}\right.
$$

Boundary conditions

$$
\left(-d_{i} \nabla \rho_{i}+\rho_{i} \vec{v}_{i}(\rho)\right) \cdot n=V_{i, \text { out }} \rho_{i} \cdot n, \quad i=1, \cdots, 5, \quad \text { on } \partial \Omega, t \geq 0
$$

Initial condition

$$
\rho(0, x)=(0,0,0, \theta(x), 0)^{T}:=\rho_{0}(x) \quad \forall x \in \Omega
$$

Outline

(1) A spatio-temporal advection-diffusion PDE model describing human behaviors during a catastrophic event
(2) Well-posedness and positivity

Functional framework and linear operators

- We consider the APC model setting in the Banach space

$$
X:=L^{p}(\Omega)^{5}
$$

with $p>2$, endowed with its usual norm.

Functional framework and linear operators

- We consider the APC model setting in the Banach space

$$
X:=L^{p}(\Omega)^{5}
$$

with $p>2$, endowed with its usual norm.

- We define the boundary Banach space

$$
\partial X:=W^{1-1 / p, p}(\partial \Omega)^{5}
$$

Functional framework and linear operators

- We consider the APC model setting in the Banach space

$$
X:=L^{p}(\Omega)^{5}
$$

with $p>2$, endowed with its usual norm.

- We define the boundary Banach space

$$
\partial X:=W^{1-1 / p, p}(\partial \Omega)^{5}
$$

- Let $\mathscr{A}: D(\mathscr{A}) \rightarrow X$ be defined by
$\mathscr{A}:=\operatorname{diag}\left(d_{1} \Delta, d_{2} \Delta, d_{3} \Delta, d_{4} \Delta, d_{4} \Delta, d_{5} \Delta\right) \quad$ and $\quad D(\mathscr{A})=W^{2, p}(\Omega)^{5}$.

Functional framework and linear operators

- We consider the APC model setting in the Banach space

$$
X:=L^{p}(\Omega)^{5}
$$

with $p>2$, endowed with its usual norm.

- We define the boundary Banach space

$$
\partial X:=W^{1-1 / p, p}(\partial \Omega)^{5}
$$

- Let $\mathscr{A}: D(\mathscr{A}) \rightarrow X$ be defined by
$\mathscr{A}:=\operatorname{diag}\left(d_{1} \Delta, d_{2} \Delta, d_{3} \Delta, d_{4} \Delta, d_{4} \Delta, d_{5} \Delta\right) \quad$ and $\quad D(\mathscr{A})=W^{2, p}(\Omega)^{5}$.
- The boundary operator $\mathscr{L}: D(\mathscr{A}) \rightarrow \partial X$ is given by

$$
(\mathscr{L} \rho)_{i}:=d_{i} \partial_{n} \rho_{i} .
$$

Nonlinearities

- Let $\alpha \in(1 / p+1 / 2,1)$. The nonlinearities are defined on the Banach space:

$$
X_{\alpha}:=\left\{\varphi \in W^{2 \alpha, p}(\Omega)^{5} \mid d_{i} \partial_{n} \varphi_{i \mid \partial \Omega}=0\right\}
$$

Nonlinearities

- Let $\alpha \in(1 / p+1 / 2,1)$. The nonlinearities are defined on the Banach space:

$$
X_{\alpha}:=\left\{\varphi \in W^{2 \alpha, p}(\Omega)^{5} \mid d_{i} \partial_{n} \varphi_{i \mid \partial \Omega}=0\right\}
$$

- The nonlinear operator $\mathscr{K}:[0, \infty) \times X_{\alpha} \longrightarrow X$ is defined by

$$
\left\{\begin{aligned}
\mathscr{K}_{1}\left(t, \rho_{1}, \nabla \rho\right)= & -\left(b_{1}+b_{2}+\delta_{1}\right) \rho_{1}+\gamma(t) \rho_{4}+b_{3} \rho_{3}+b_{4} \rho_{2} \\
& -\mathscr{F}\left(\rho_{1}, \rho_{3}\right)-\mathscr{G}\left(\rho_{1}, \rho_{2}\right), \\
\mathscr{K}_{2}\left(t, \rho_{2}, \nabla \rho\right)= & -\left(b_{4}+c_{1}+\delta_{2}\right) \rho_{2}+b_{2} \rho_{1}+c_{2} \rho_{3}-\nabla \cdot\left(\rho_{2} \overrightarrow{v_{2}}(\rho)\right) \\
& +\mathscr{G}\left(\rho_{1}, \rho_{2}\right)-\mathscr{H}\left(\rho_{2}, \rho_{3}\right) \\
\mathscr{K}_{3}\left(t, \rho_{3}, \nabla \rho\right)= & -\left(b_{3}+c_{2}+\delta_{3}\right) \rho_{3}+b_{1} \rho_{1}+c_{1} \rho_{2}-\nabla \cdot\left(\rho_{3} \overrightarrow{v_{3}}(\rho)\right) \\
& +\mathscr{F}\left(\rho_{1}, \rho_{3}\right)+\mathscr{H}\left(\rho_{2}, \rho_{3}\right)-\phi(t) \rho_{3}, \\
\mathscr{K}_{4}\left(t, \rho_{4}, \nabla \rho\right)= & -\gamma(t) \rho 4, \\
\mathscr{K}_{5}\left(t, \rho_{5}, \nabla \rho\right)= & \phi(t) \rho_{3},
\end{aligned}\right.
$$

Nonlinearities

- Let $\alpha \in(1 / p+1 / 2,1)$. The nonlinearities are defined on the Banach space:

$$
X_{\alpha}:=\left\{\varphi \in W^{2 \alpha, p}(\Omega)^{5} \mid d_{i} \partial_{n} \varphi_{i \mid \partial \Omega}=0\right\}
$$

- The nonlinear operator $\mathscr{K}:[0, \infty) \times X_{\alpha} \longrightarrow X$ is defined by

$$
\left\{\begin{aligned}
\mathscr{K}_{1}\left(t, \rho_{1}, \nabla \rho\right)= & -\left(b_{1}+b_{2}+\delta_{1}\right) \rho_{1}+\gamma(t) \rho_{4}+b_{3} \rho_{3}+b_{4} \rho_{2} \\
& -\mathscr{F}\left(\rho_{1}, \rho_{3}\right)-\mathscr{G}\left(\rho_{1}, \rho_{2}\right), \\
\mathscr{K}_{2}\left(t, \rho_{2}, \nabla \rho\right)= & -\left(b_{4}+c_{1}+\delta_{2}\right) \rho_{2}+b_{2} \rho_{1}+c_{2} \rho_{3}-\nabla \cdot\left(\rho_{2} \overrightarrow{v_{2}}(\rho)\right) \\
& +\mathscr{G}\left(\rho_{1}, \rho_{2}\right)-\mathscr{H}\left(\rho_{2}, \rho_{3}\right) \\
\mathscr{K}_{3}\left(t, \rho_{3}, \nabla \rho\right)= & -\left(b_{3}+c_{2}+\delta_{3}\right) \rho_{3}+b_{1} \rho_{1}+c_{1} \rho_{2}-\nabla \cdot\left(\rho_{3} \overrightarrow{v_{3}}(\rho)\right) \\
& +\mathscr{F}\left(\rho_{1}, \rho_{3}\right)+\mathscr{H}\left(\rho_{2}, \rho_{3}\right)-\phi(t) \rho_{3}, \\
\mathscr{K}_{4}\left(t, \rho_{4}, \nabla \rho\right)= & -\gamma(t) \rho 4, \\
\mathscr{K}_{5}\left(t, \rho_{5}, \nabla \rho\right)= & \phi(t) \rho_{3},
\end{aligned}\right.
$$

- The nonlinear boundary term $\mathscr{M}: X_{\alpha} \longrightarrow \partial X$ is given by

$$
\mathscr{M}(\rho)_{i}:=\left(-\rho_{i} \vec{v}_{i, \text { out }}+\rho_{i} \vec{v}_{i}(\rho)\right) \cdot n .
$$

Abstract formulation

With these notations, the model writes as follows:

$$
\left\{\begin{align*}
u^{\prime}(t) & =\mathscr{A} u(t)+\mathscr{K}(t, u(t)), & & t \geq 0 \tag{2}\\
\mathscr{L} u(t) & =\mathscr{M}(u(t)), & & t \geq 0 \\
u(0) & =u_{0} & &
\end{align*}\right.
$$

where $u(t):=\left(\rho_{1}(t, \cdot), \rho_{2}(t, \cdot), \rho_{3}(t, \cdot), \rho_{4}(t, \cdot), \rho_{5}(t, \cdot)\right)^{T}$, and $\quad u_{0}:=(0,0,0, \theta(x), 0)^{T}$

Abstract formulation

With these notations, the model writes as follows:

$$
\left\{\begin{align*}
u^{\prime}(t) & =\mathscr{A} u(t)+\mathscr{K}(t, u(t)), & & t \geq 0 \tag{2}\\
\mathscr{L} u(t) & =\mathscr{M}(u(t)), & & t \geq 0 \\
u(0) & =u_{0} & &
\end{align*}\right.
$$

where $u(t):=\left(\rho_{1}(t, \cdot), \rho_{2}(t, \cdot), \rho_{3}(t, \cdot), \rho_{4}(t, \cdot), \rho_{5}(t, \cdot)\right)^{T}$, and $u_{0}:=(0,0,0, \theta(x), 0)^{T}$

Theorem 1 (Local existence and positivity)

For each $u_{0} \in X_{\alpha}$ there exist a maximal time $T\left(u_{0}\right)>0$ and a unique maximal solution $u\left(\cdot, u_{0}\right) \in C\left(\left[0, T\left(u_{0}\right)\right), X_{\alpha}\right) \cap C^{1}\left(\left(0, T\left(u_{0}\right)\right), X\right)$ of equation (2).
Moreover, if $u_{0} \geq 0$ a.e. on Ω, then for any $t \in\left(0, T\left(u_{0}\right)\right), u(t, x) \geq 0$ a.e. on Ω.

Outline

(1) A spatio-temporal advection-diffusion PDE model describing human behaviors during a catastrophic event
(2) Well-posedness and positivity
(3) Numerical simulations

Configuration

喂 In order to highlight the behavior of the populations during the catastrophic event，we suppose that people cannot return to an everyday behavior．
恽 We present different scenarios of evacuation．
鲒 We set $\partial \Omega=\Gamma \cup \Gamma_{\text {out }}$ where Γ designate the wall（where the flux is zero）and $\Gamma_{\text {out }}$ is the escape region（where the flux is different from zero），

Figure：The direction vector $\nu\left(x_{1}, x_{2}\right)$ ．

(a) Scenario 1
(b) Scenario 2
(c) Scenario 3

- (a) The population is concentrated in a single group in the center of the domain;
- (b) The population is subdivided into three groups;
- (c) An obstacle is located between the exit and the population, which is concentrated in a single group within the domain.

See the attached videos!

Advection and pedestrians transported by the crowd phenomenon.

榢 Even if in our model there is no advection terms in the equation describing the evolution of the population in alert and daily, the alert population nevertheless undergoes a phenomenon of advection.

Alert (with new scale) at final time: Scenario 1

Alert at final time: Scenario 2

Alert at final time: Scenario 3

MERCI!

Simulations: Table of values

	Parameters
Diffusion	$d_{1}=0.001$
	$d_{2}=0.05$
	$d_{3}=0.01$
	$d_{4}=0.01$
Advection	$V_{2, \text { max }}=0.3$
	$V_{3, \text { max }}=0.2$
Speed at the boundary	$V_{1}=0.2$
	$V_{2}=0.1$
	$V_{3}=0.3$
	$V_{4}=0.2$

	Parameters
Imitation	$\alpha_{a \rightarrow c}=0.6$
	$\alpha_{a \rightarrow p}=0.7$
	$\alpha_{p \rightarrow c}=0.6$
	$\alpha_{c \rightarrow p}=0.7$
Intrinsic transitions	$c_{1}=0.1$
	$c_{2}=0.4$
	$b_{1}=0.1$
	$b_{2}=0.2$
	$b_{3}=0.001$
	$b_{4}=0.001$

